
Introduction to
Operating Systems

COS 414/415
Spring 2004

Prof. E. Gün Sirer

Administrative
• Instructors:

• Prof. Emin Gün Sirer, egs@cs, 4119A Upson, M 2:15-3:15

• Communication
• cs414@cs.cornell.edu

• TAs:
• Krzystof Ostrowski, krzys@cs
• Bernard Wong, bwong@cs
• Benjamin Ee
• Dogan Famer Engin
• Arjun Rao

• All official information will be on the web site
• http://www.cs.cornell.edu/courses/cs414/2004SP/

mailto:egs@cs
mailto:egs@cs
mailto:bwong@cs

414 Overview

• 414: Introduction to Operating Systems
• Fundamentals of OS design
• “Systems” comprise a broad range of topics; we will cover

that range
• Lectures will cover the basic material and supplement the

textbook

• Textbook
• Silberschatz & Galvin, Operating System Concepts, 6th

Edition

• Weekly reading and homeworks
• We will read some research papers in addition to the book

chapters

415 Overview

• 415: Practicum in Operating Systems
• Major programming assignment
• Designed to complement the course and lectures
• Also, to expose you to fun, cutting edge systems

programming
• Sections will meet before every assignment to go over the

details and expectations

• Must enroll in both 414 and 415
• This year, we’ll use tablet PCs for the project
• May work in pairs

Course Goals
• In this class we will learn:

• What the parts of an OS are
• How the OS and each sub-part is structured
• What the important mechanisms are
• What the important policies are
• What algorithms and implementation techniques are

typically used
• We will do this through reading, lectures, and a

project
• Project will involve some aspect of ubiquitous computing using

tablet PCs
• Reading: Chapters 1 & 2

• You will need to keep up with all three of these

Grading

• 414: Intro to Operating Systems
• Reading Assignments (~10%)
• Midterm (~30%)
• Final (~50%)
• Subjective criteria (~10%)

• 415: Practicum in Operating Systems
• Six projects (100%)

• This is a rough guide

Academic Integrity

• Everything you turn in must be your own work
• Certain types of collaboration are part of the

learning experience
• May consult with others on C syntax, problem clarification,

and debugging strategies.

• Dishonesty has no place in any community
• May NOT be in possession of someone else’s homework or

project, may NOT copy, share or collaborate on answers to
homework questions, may NOT copy code from another
group, etc.

• The academic integrity guidelines provide the general ground
rules

• The penalty is an immediate F in 414 and 415

Course Outline

• Architectural support
• Concurrency, processes, threads
• Synchronization, mutual exclusion, monitors,

semaphores, condition variables, deadlocks
• Networking, distributed systems
• Memory Management, virtual memory
• Storage Management, I/O, filesystems
• Security
• Case studies

What is an Operating System?
• Definition: An Operating System (OS) comprises all of

the code that provides a virtual machine on top of the
hardware. Typically, that virtual machine is more
convenient (that is, has more desirable properties) than
the physical machine
– “All of the code you did not write”
– Simpler
– More reliable
– More secure
– More portable
– More efficient
– …

Applications

Hardware

Operating System

Physical machine interface

OS interface

What do Operating Systems Do?
• Manage physical resources

– Drive devices
– Examples: CPU, memory, disks, tapes, networks, displays, keyboards, mice,

cameras, speakers, printers…

• Provide abstractions and a set of well-defined operations on those abstractions
– Provide synthesized, or virtual, resources and interfaces
– Examples: files, directories, users, processes, threads, sockets, etc.
– Simplify programming by hiding complexity through high-level abstractions
– Improve portability by taking over low-level programming tasks from applications
– Provide users with a well-behaved environment, mask failures

• Isolate and mediate between entities
– Act as a trusted intermediary between distrusting applications

What’s in an OS?

Machine Dependent
Services

CPU, Memory, Disks, Tapes, Network Interface Card,

Mouse, Frame buffer, Printers, Keyboard …

Generic I/O

Networking

File System

Memory Management

Process Management

Virtual Memory

Naming

Access Control

Windowing & graphics

Windowing & GfxMachine
Independent
Services

Applications

OS Interface

Physical Machine Intf

Device Drivers

Shells

Quake Sql Server

System Utils

Logical OS Structure

Issues in Operating Systems
• Structure -- how is an operating system organized ?
• Concurrency -- how are parallel activities created and controlled ?
• Sharing -- how are resources shared among users ?
• Naming -- how are resources named by users or programs ?
• Protection -- how is one user/program protected from another ?
• Security -- how to authenticate, control access, and secure privacy?
• Performance -- why is it so slow ?
• Reliability and fault tolerance – how do we deal with failures ?
• Extensibility -- how do we add new features ?
• Communication -- how can we exchange information ?

Issues in OS (2)
• Scale and growth -- what happens as demands or resources

increase ?
• Persistence -- how to make data outlast the processes that created

them
• Compatibility -- can we ever do anything new ?
• Distribution -- accessing the world of information
• Accounting -- who pays the bills, and how do we control

resource usage?

Why is this material
critical ?
• Concurrency

• Therac-25, Shuttle livelock

• Communication
• FAA Air traffic control system

• Persistence
• Denver airport

• Virtual Memory
• Blue Screens of Death

• Security
• IRS

BSOD

BSOD

Therac-25

• A safety-
critical
system with
software
interlocks

• Beam
controlled
entirely
through a
custom OS

Therac-25
• A synchronization failure was triggered when competent nurses

used the back arrow to change the data on the screen “too
quickly”

• Beam killed one person directly, burned others, and may have
given inadequate treatment to cancer patients

• Problem was very difficult to diagnose; initial fix involved removal
of the back arrow key from the keyboard

• People died because a programmer could (or did) not implement
correct synchronization primitives

• This class will ensure that you will understand the science and
engineering behind building complex systems

A Brief History of
Operating Systems
• Initially, the OS was just a run-time library

• You linked your application with the OS, loaded the whole program into
memory, and ran it

• How do you get it into the computer ? Through the control panel!

• Simple batch systems
• Permanently resident OS in primary memory
• It loaded a single job from card reader, ran it, and loaded the next job...
• Control cards in the input file told the OS what to do
• Spooling allowed jobs to be read ahead of time onto tape/disk or into

memory

Compute
I/O

Multiprogrammed
BatchSystems
• Multiprogramming systems provided increased utilization

• Keeps multiple runnable jobs loaded in memory
• Overlaps I/O processing of a job with computation of another
• Benefits from I/O devices that can operate asynchronously
• Requires the use of interrupts and DMA
• Optimizes for throughput at the cost of response time

Compute

I/O

Compute

I/O

Timesharing
• Timesharing supported interactive computer use

• Each user connects to a central machine through a cheap
terminal, feels as if she has the entire machine

• Based on time-slicing -- dividing CPU equally among the users
• Permitted active viewing, editing, debugging, participation of

users in the execution process
• Security mechanisms required to isolate users from each other
• Requires memory protection hardware for isolation
• Optimizes for response time at the cost of throughput

Compute

Personal Computing
• Computers are cheap, so give everyone a dedicated

computer
• Initially, the OS became a library again due to hardware

constraints
• Multiprogramming, memory protection, and other

advances were added back
• For entirely different reasons

Parallel Operating Systems
• Support parallel applications wishing to get speedup of

computationally complex tasks
• Needs basic primitives for dividing one task into multiple

parallel activities
• Supports efficient communication between those

activities
• Supports synchronization of activities to coordinate

sharing of information
• It’s common now to use networks of high-performance

PCs/workstations as a parallel computer

Distributed Operating Systems
• Distributed systems facilitate use of geographically

distributed resources
• Machines connected by wires, no shared memory or clock

• Supports communication between parts of a job or
different jobs

• Interprocess communication

• Sharing of distributed resources, hardware and software
• Resource utilization and access

• Permits some parallelism, but speedup is not the issue

Real-time Operating Systems
• Goal: To cope with rigid time constraints
• Hard real-time

• OS guarantees that applications will meet their deadlines
• Examples: TCAS, health monitors, factory control, etc.

• Soft real-time
• OS provides prioritization, on a best-effort basis
• No deadline guarantees, but bounded delays
• Examples: most electronic appliances

• Real-time means “predictable”
• NOT fast

Ubiquitous Computing
• The decreased cost of processing makes it possible to

embed computers everywhere. Each “embedded”
application needs its own control software:

• PDAs, cell phones, intelligent appliances, etc.

• In the near future, you will have 100s of these devices
• If not already

• Poses lots of problems for current systems
• Structure, naming, scaling, security, etc.

• We will tackle some of them in this class

Lessons from History

• The point is not that batch systems were ridiculous
• They were exactly right for the tradeoffs at the time

• The tradeoffs change

• Need to understand the fundamentals
• So you can design better systems for tomorrow’s tradeoffs

0.1<= 1>> 10# Users

2000256MB128KBDRAM

10000100 Mb/s9600 b/sNet Bandwidth

800080GB10MBDisk

20000$5000$100000$/MIPS

100010001MIPS

Factor20011981

Future

• …

	Introduction toOperating Systems
	Administrative
	414 Overview
	415 Overview
	Course Goals
	Grading
	Academic Integrity
	Course Outline
	What is an Operating System?
	What do Operating Systems Do?
	What’s in an OS?
	Issues in Operating Systems
	Issues in OS (2)
	Why is this materialcritical ?
	BSOD
	BSOD
	Therac-25
	Therac-25
	A Brief History ofOperating Systems
	MultiprogrammedBatchSystems
	Timesharing
	Personal Computing
	Parallel Operating Systems
	Distributed Operating Systems
	Real-time Operating Systems
	Ubiquitous Computing
	Lessons from History
	Future

