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414 Overview

• 414: Introduction to Operating Systems 
• Fundamentals of OS design
• “Systems” comprise a broad range of topics; we will cover 

that range
• Lectures will cover the basic material and supplement the 

textbook

• Textbook
• Silberschatz & Galvin, Operating System Concepts, 6th

Edition

• Weekly reading and homeworks
• We will read some research papers in addition to the book 

chapters



415 Overview

• 415: Practicum in Operating Systems
• Major programming assignment
• Designed to complement the course and lectures
• Also, to expose you to fun, cutting edge systems 

programming
• Sections will meet before every assignment to go over the 

details and expectations

• Must enroll in both 414 and 415
• This year, we’ll use tablet PCs for the project
• May work in pairs



Course Goals
• In this class we will learn:

• What the parts of an OS are
• How the OS and each sub-part is structured
• What the important mechanisms are 
• What the important policies are 
• What algorithms and implementation techniques are 

typically used
• We will do this through reading, lectures, and a 

project
• Project will involve some aspect of ubiquitous computing using 

tablet PCs
• Reading: Chapters 1 & 2

• You will need to keep up with all three of these



Grading

• 414: Intro to Operating Systems 
• Reading Assignments (~10%)
• Midterm (~30%)
• Final (~50%)
• Subjective criteria (~10%)

• 415: Practicum in Operating Systems
• Six projects (100%)

• This is a rough guide



Academic Integrity

• Everything you turn in must be your own work
• Certain types of collaboration are part of the 

learning experience
• May consult with others on C syntax, problem clarification, 

and debugging strategies.

• Dishonesty has no place in any community
• May NOT be in possession of someone else’s homework or 

project, may NOT copy, share or collaborate on answers to 
homework questions, may NOT copy code from another 
group, etc.

• The academic integrity guidelines provide the general ground 
rules

• The penalty is an immediate F in 414 and 415



Course Outline

• Architectural support
• Concurrency, processes, threads
• Synchronization, mutual exclusion, monitors, 

semaphores, condition variables, deadlocks
• Networking, distributed systems
• Memory Management, virtual memory 
• Storage Management, I/O, filesystems
• Security
• Case studies



What is an Operating System?
• Definition: An Operating System (OS) comprises all of 

the code that provides a virtual machine on top of the 
hardware. Typically, that virtual machine is more 
convenient (that is, has more desirable properties) than 
the physical machine 
– “All of the code you did not write”
– Simpler
– More reliable
– More secure
– More portable
– More efficient
– …

Applications

Hardware

Operating System

Physical machine interface

OS interface



What do Operating Systems Do?
• Manage physical resources

– Drive devices
– Examples: CPU, memory, disks, tapes, networks, displays, keyboards, mice, 

cameras, speakers, printers…

• Provide abstractions and a set of well-defined operations on those abstractions
– Provide synthesized, or virtual, resources and interfaces
– Examples: files, directories, users, processes, threads, sockets, etc.
– Simplify programming by hiding complexity through high-level abstractions
– Improve portability by taking over low-level programming tasks from applications
– Provide users with a well-behaved environment, mask failures

• Isolate and mediate between entities
– Act as a trusted intermediary between distrusting applications



What’s in an OS?

Machine Dependent 
Services

CPU, Memory, Disks, Tapes, Network Interface Card, 

Mouse, Frame buffer, Printers, Keyboard …

Generic I/O

Networking

File System

Memory Management

Process Management

Virtual Memory

Naming

Access Control

Windowing & graphics

Windowing & GfxMachine 
Independent 
Services

Applications

OS Interface

Physical Machine Intf

Device Drivers

Shells

Quake Sql Server

System Utils

Logical OS Structure



Issues in Operating Systems
• Structure -- how is an operating system organized ?
• Concurrency -- how are parallel activities created and controlled ?
• Sharing -- how are resources shared among users ?
• Naming -- how are resources named by users or programs ?
• Protection -- how is one user/program protected from another ?
• Security -- how to authenticate, control access, and secure privacy?
• Performance -- why is it so slow ?
• Reliability and fault tolerance – how do we deal with failures ?
• Extensibility -- how do we add new features ?
• Communication -- how can we exchange information ?



Issues in OS (2)
• Scale  and growth -- what happens as demands or resources 

increase ?
• Persistence -- how to make data outlast the processes that created 

them
• Compatibility -- can we ever do anything new ?
• Distribution -- accessing the world of information
• Accounting -- who pays the bills, and how do we control 

resource usage?



Why is this material
critical ?
• Concurrency

• Therac-25, Shuttle livelock

• Communication
• FAA Air traffic control system

• Persistence
• Denver airport

• Virtual Memory
• Blue Screens of Death

• Security
• IRS



BSOD



BSOD



Therac-25

• A safety-
critical 
system with 
software 
interlocks

• Beam 
controlled 
entirely 
through a 
custom OS



Therac-25
• A synchronization failure was triggered when competent nurses 

used the back arrow to change the data on the screen “too 
quickly”

• Beam killed one person directly, burned others, and may have 
given inadequate treatment to cancer patients

• Problem was very difficult to diagnose; initial fix involved removal 
of the back arrow key from the keyboard

• People died because a programmer could (or did) not implement 
correct synchronization primitives

• This class will ensure that you will understand the science and 
engineering behind building complex systems



A Brief History of
Operating Systems
• Initially, the OS was just a run-time library

• You linked your application with the OS, loaded the whole program into 
memory, and ran it

• How do you get it into the computer ? Through the control panel!

• Simple batch systems
• Permanently resident OS in primary memory
• It loaded a single job from card reader, ran it, and loaded the next job...
• Control cards in the input file told the OS what to do
• Spooling allowed jobs to be read ahead of time onto tape/disk or into 

memory

Compute
I/O



Multiprogrammed
BatchSystems
• Multiprogramming systems provided increased utilization

• Keeps multiple runnable jobs loaded in memory
• Overlaps I/O processing of a job with computation of another
• Benefits from I/O devices that can operate asynchronously
• Requires the use of interrupts and DMA
• Optimizes for throughput at the cost of response time

Compute

I/O

Compute

I/O



Timesharing
• Timesharing supported interactive computer use

• Each user connects to a central machine through a cheap 
terminal, feels as if she has the entire machine 

• Based on time-slicing -- dividing CPU equally among the users 
• Permitted active viewing, editing, debugging, participation of 

users in the execution process
• Security mechanisms required to isolate users from each other
• Requires memory protection hardware for isolation
• Optimizes for response time at the cost of throughput

Compute



Personal Computing
• Computers are cheap, so give everyone a dedicated 

computer
• Initially, the OS became a library again due to hardware 

constraints
• Multiprogramming, memory protection, and other 

advances were added back
• For entirely different reasons



Parallel Operating Systems
• Support parallel applications wishing to get speedup of 

computationally complex tasks
• Needs basic primitives for dividing one task into multiple 

parallel activities
• Supports efficient communication between those 

activities
• Supports synchronization of activities to coordinate 

sharing of information
• It’s common now to use networks of high-performance 

PCs/workstations as a parallel computer



Distributed Operating Systems
• Distributed systems facilitate use of geographically 

distributed resources
• Machines connected by wires, no shared memory or clock

• Supports communication between parts of a job or 
different jobs

• Interprocess communication

• Sharing of distributed resources, hardware and software
• Resource utilization and access

• Permits some parallelism, but speedup is not the issue



Real-time Operating Systems
• Goal: To cope with rigid time constraints
• Hard real-time

• OS guarantees that applications will meet their deadlines
• Examples: TCAS, health monitors, factory control, etc.

• Soft real-time
• OS provides prioritization, on a best-effort basis
• No deadline guarantees, but bounded delays
• Examples: most electronic appliances

• Real-time means “predictable”
• NOT fast



Ubiquitous Computing
• The decreased cost of processing makes it possible to 

embed computers everywhere.  Each “embedded” 
application needs its own control software:

• PDAs, cell phones, intelligent appliances, etc.

• In the near future, you will have 100s of these devices
• If not already

• Poses lots of problems for current systems
• Structure, naming, scaling, security, etc.

• We will tackle some of them in this class



Lessons from History

• The point is not that batch systems were ridiculous
• They were exactly right for the tradeoffs at the time

• The tradeoffs change

• Need to understand the fundamentals
• So you can design better systems for tomorrow’s tradeoffs

0.1<= 1>> 10# Users

2000256MB128KBDRAM

10000100 Mb/s9600 b/sNet Bandwidth

800080GB10MBDisk
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Future

• …
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