
Project 5: Miniroute

Bernard Wong



What is Miniroute?

It is an ad-hoc networking layer
What is ad-hoc networking?

Ad-hoc networking allows multi-hop wireless 
communication without the need for infrastructure 

Why would I want this?
Removes infrastructure costs
Allows quick deployment
Possibly more reliable (no single point of failure)

Based on Dynamic Source Routing (DSR)
http://www.cs.cornell.edu/People/egs/615/johnson-dsr.pdf



What do you mean by routing?
Packets that arrive at your machine 
may not necessary be meant for you

Previously, these packets would be 
dropped, now they should be routed to 
the destination

How do I do this?
Add a routing layer in BETWEEN the 
network layer and the transport layer
This means your minimsg/minisockets 
works on top of it and for the most part 
do not need to be modified

Network

UDP-like protocol

User application

TCP-like protocol

Routing



How does the routing protocol work?
DSR is a reactive protocol

When a host wants to deliver a packet to a destination 
host where the route to the destination is unknown, it 
will send a route discovery packet
A route discovery packet is broadcasted to any hosts 
that can hear it (within proximity of wireless signal)
These hosts in turn will re-broadcast the discovery 
packet if it is not the destination, while attaching itself 
as part of the route
When the destination is reached, the collected routing 
path is reversed, and a reply message is sent back 
along this reversed path



How does the routing protocol work?
e.g. a route (which is stored in the routing header) may 
contain A->B->C where C is the destination, at which point 
host C will flip the route to C->B->A and send a reply back 
to host A
If the source receives a reply, it will add this route into its 
route cache (as route discovery is expensive), and use this 
route to send the data
Route cache expires in 3 seconds, to prevent stale cache 
entries (due to host movement)
Route discovery has to be performed again when route 
expires

Is there a better way of doing this other than timeouts? (Yes!)



How does the routing protocol work?
How does this protocol terminate if the destination 
host cannot be reached?

A TTL (time to live) field is decremented on each re-
broadcast (TTL initialized to MAX_ROUTE_LENGTH)
A host receiving a packet with TTL of 0 and is not the 
destination host should not re-broadcast it
To prevent redundant re-broadcasts, route discovery ids are 
assigned per route discovery packet
A host should not re-broadcast a discovery request that it 
had broadcasted before

This means each host needs to somehow keep track of what 
discovery packets its seen in the past



What needs to be implemented?
In minimsg/minisockets, replace 
network_send_pkt with miniroute_send_pkt
Network handler needs to be updated

Must recognize the miniroute header
Routing control packets must be passed off to 
routing thread
For data packets, if destination reached, simply 
deliver packet to ports/socket
Otherwise, again must deliver to routing thread



What needs to be implemented?
Routing thread needs to be created

Contains state machine to handle and route packets
network_bcast_packet() provided for broadcasting

Route cache table needed
Must contain SIZE_OF_ROUTE_CACHE entries
Route cache needs to be invalidated after timeout

This can be done with or without alarms
Should be somewhat efficient, as SIZE_OF_ROUTE_CACHE 
can potentially be large

Aim for average access time of O(1) or O(logN)
Think hash table, scatter table, tree



What needs to be implemented?
A table containing recent node discovery packet ids 
that the host has heard is needed

In order to eliminate redundant broadcasts

Write an Instant Messenger application using 
miniroute

Requires reading keyboard input from user
Add read.c, read.h and read_private.h 
Include “read_private.h” to minithread.c
Add miniterm_initialize to minithread_system_initialize
Use miniterm_read() to read data from the keyboard



Additional changes
In network.h

Set BCAST_ENABLED to 1
Set BCAST_ADDRESS

192.168.1.255 for ad-hoc network (see instructions for 
setting an ad-hoc network)
x.y.z.255 for CSUGLAB 

For debugging purposes 
Set BCAST_TOPOLOGY_FILE 
Provide a topology file (see project description)

Allows testing without wireless
Use only in CSUGLAB (not for Tablets)



Tablets?
Yup, you’ll finally use them

Only real way to test an ad-hoc routing is through wireless

Can compile and run tests like CSUGLAB desktops
Setup tablet to use the wireless card

Set to ad-hoc mode
Specify an IP address for your tablets based on your group

192.168.1.${GROUPID}

Set Subnet Mask to 255.255.255.0
Set Gateway to 192.168.1.254



Additional Requirements
At any host, there must be at most a single routing discovery 
request for any destination at any one time

Multiple threads should not trigger multiple routing discovery 
requests for the same destination
Only one cache entry for each destination (unless…)

Use the route reply packets with the latest information (use
seq_no for this)
Use the structures and data-types provided in miniroute.h

Allows everyone to participate in the routing (i.e. routing should 
work across groups)
However, minimsg/minisockets do not have to interoperate across 
groups



Additional Requirements
Furthermore, routing interoperability requires 
the routing header entries to be in network 
order

Every short, int, long must be translated to 
network order before being sent, and translated to 
host order after being received
Translation functions provided in network.c



For the ambitious…
Lots of optimization opportunities 
1) Routing cache does not need to have a timeout

If a host detects a broken link in the route path, it can send back 
an error message to the source host and the source host can purge 
the cache entry and re-perform discovery
Requires the integrity of each hop to be verified
Can be done via hop to hop acknowledgements

Very very inefficient

Can have each routing host eavesdrop, waiting for the next hop to 
forward the packet

Replace unicast hop to hop sends with broadcasts
Requires additional filtering work in the network handler



For the ambitious…
2) Localized route patching

Instead of sending a error message back to the source host if a 
particular hop to hop communication fails, have the hop that 
identified the route breakage to perform a new route discovery
It can then patch the route, thus allowing it to continue routing the 
packet to the destination host
Route cache on both source/destination should also be eventually
updated

3) Aggressive caching
There are lots of unexploited opportunities for caching
Every reply/request/data packet that is routed through a host is an 
opportunity

Have to be careful, only some of the route data is worth caching, and is 
different depending on whether it is a reply/request/data packet



For the ambitious…
4) Redundant routes

By keeping additional routes to a destination, packets can be 
quickly re-routed if the primary route breaks
Re-routing using the redundant routes can be done when 
the source receives an error
Redundant routes can be embedded into the header (in 
some tree format), allowing localized re-routing

5) Hybrid proactive/reactive routing protocol
See Professor Sirer’s SHARP: 
http://www.cs.cornell.edu/courses/cs414/2004SP/papers/sharp.pdf


	Project 5: Miniroute
	What is Miniroute?
	What do you mean by routing?
	How does the routing protocol work?
	How does the routing protocol work?
	How does the routing protocol work?
	What needs to be implemented?
	What needs to be implemented?
	What needs to be implemented?
	Additional changes
	Tablets?
	Additional Requirements
	Additional Requirements
	For the ambitious…
	For the ambitious…
	For the ambitious…

