Remote Procedure Call

Clients and Servers

A common model for structuring distributed computation is via the
client/server paradigm

A server is aprogram (or collection of programs) that provide some service,
eg., file service, name service, ...

The server may exist on one or more nodes.

A client is a program that uses the service.

A client first binds to the server, |.e., locates it in the network and establishes a
connection.

The client then sends requests to perform actions; this is done by sending
messages that indicate which service is desired, along with params. The server
returns a response.

3/2/2001 2

The Problem with Messages

* While messages provide very flexible communication, they also have certain
problems:
requires that programmer worry about message formats
messages must be packed and unpacked
— messages haveto be decoded by server to figure out what is requested
— messages are often asynchronous
— they may require specia error handling functions
+ Basically, messages are not a natural programming model for most
programmers.

3/2/2001

Procedure Call

A more natural way to communicate is through procedure call:

— every language supportsit

— semantics are well defined and understood

— natura for programmersto use
Basic idea: let'sjust define a server as a module that exports aset of
procedures that can be called by client programs.
To use the server, the client just does a procedure call, as if it were linked with
the server

3/2/2001 4

(Remote) Procedure Call

« So, we would like to use procedure call as amodel for
distributed communication.
¢ Lots of issues:
— how do we make thisinvisible to the programmer?
— what are the semantics of parameter passing?
— how is binding done (locating the server)?
— how do we support heterogeneity (OS, arch., language)
— etc.

3/2/2001

Remote Procedure Call

* The basic model for Remote Procedure Cal (RPC) was
described by Birrell and Nelson in 1980, based on work
done at Xerox PARC.

» Goas was to make RPC look as much like local PC as
possible.

» Used computer/language support.

» There are 3 components on each side:

— auser program (client or server)
— aset of stub procedures
— RPC runtime support

3/2/2001 6

RPC

* Basic process for building a server:
— Server program defines the server’ sinterface using an interface
definition language (IDL)
— The IDL specifies the names, parameters, and types for all client-
callable server procedures
— A stub compiler reads the IDL and produces two stub procedures

for each server procedure: aclient-side stub and a server-side stub
— The server writer writes the server and links it with the server-side
stubs; the client writes her program and links it with the client-side

stubs.

— The stubs are responsible for managing all details of the remote
communication between client and server.

3/2/2001

RPC Stubs

« Basicaly, aclient-side stub is a procedure that 1ooks to the
client asif it were a callable server procedure.

e A sarver-side stub looks to the server asif it'sacalling
client.

» The client program thinks it is calling the server; in fact,
it's calling the client stub.

» The server program thinks it's called by the client; in fact,
it's called by the server stub.

* The stubs send messages to each other to make the RPC
happen.

3/2/2001 8

RPC Call Structure

RPC Return Structure

client client makes server is | procfoo(a,b) server client . : server proc proc foo(a,b) server
program call foo(x,y) Is(tﬁgp?ié.m ::gl::ijtl):ry begin foa.. program program call foo(x,y) lient continues returns begin foa.. program
end foo end foo
l cal foo + call foo A|raurn | return
Jient stub build: stubunpack Jient btub unpack subbulcs
clien ub burlas mgg client ub unpacks
b procfoo(a,b) pecket, inserts params and call foo(x,y) ser;er b proc foo(a,b) 0, 1T mgmt call foo(x,y) serger
pevams makes cal stul 0 caller args u
l send mg 4 s recsivet Al sy resived send my
runtimesends runtime i runtime
RPC msg toremote receives my RPC RPC g\r’n; msg responds RPC
runtime node and calls stub) runtime funtime Lails stub tooriginal runtime
msg
3/2/2001 cal 9 3/2/2001 rewmn 10
RPC Binding RPC Marshalling
« Binding is the process of connecting the client and server * Marshalling is the packing of procedure parametersinto a
» The server, when it starts up, exports its interface, message packet.
identifying itself to a network name server and telling the * The RPC stubs call type-specific procedures to marshall
local runtime its dispatcher address. (or unmarshall) all of the parameters to the call.
¢ The client, before issuing any calls, importsthe server, * On the client side, the client stub marshalls the parameters
which causes the RPC runtime to lookup the server into the call packet; on the server side the server stub
through the name service and contact the requested server unmarshalls the parameters in order to call the server's
to setup a connection. procedure.

« The import and export are explicit calls in the code. * On the return, the server stub marshalls return parameters
into the return packet; the client stub unmarshalls return
parameters and returns to the client.

3/2/2001 1 3/2/2001 12

RPC Final

* RPC isthe most common model now for communications
in distributed applications.

* RPCisessentialy language support for distributed
programming.

* RPC relies on a stub compiler to automatically produce
client/server stubs from the IDL server description.

« RPCiscommonly used, even on a single node, for
communication between applications running in different
address spaces. In fact, most RPCs are intra-node.

3/2/2001 13

