IP

TCP/IP

Emin Gun Sirer

* Internetworking protocol
« Network layer

« Common packet format for the I nternet
« Specifies what packetslook like
« Fragmentslong packets into shorter packets
« Reassemblesfragmentsinto original shape

* Some parts are fundamental, and some are
arbitrary
« |Pv4iswhat most people use

« |Pv6 clears up some of the messy parts, but is not yet in wide
use

IPv4 packet layout

| Pv4 packet layout

Data

Data

| P Fragmentation

IP Fragmentation Mechanics

» Networks have different maximum packet sizes
« Big packets are sometimes desirable — less overhead
 Huge packets are not desirable — reduced response time for
others
« Higher level protocols (e.g. TCP or UDP) could
figure out the max transfer unit and chop datainto
smaller packets

« The endpoints do not necessarily know what the MTU is on
the path

« Theroute can change underneath
» Consequently, IP transparently fragments and
reassembl es packets

IPdividesalong datagraminto N smaller
datagrams

Copiesthe header

AssignsaFragment ID to each part

Setsthe More Fragments bit

Receiving end puts the fragments together based
on the new | P headers

Throws out fragments after a certain amount of
timeif they have not be reassembled

|P Options

UDP

* Source Routing: The source specifies the set of
hoststhat the packet should traverse

 Record Route: If this option appearsin apacket,
every router along a path attachesits own IP
addressto the packet

 Timestamp: Every router along the route attaches
atimestamp to the packet

* Security: Packets are marked with user info, and
the security classification of the person on whose
behalf they travel on the network

« Most of these options pose security holes and are generally not
implemented

Unreliable Datagram Protocol

IP goes from host to host

We need away to get datagrams from one
application to another

How do we identify applications on the
hosts ?

* Assign port numbers

 E.g. port 13 belongs to the time service

UDP Packet Layout

UDP

/nr-:innl 1HI | T0OS

Total | enoth
ldentification lang Eranment Offeet
TTI Drotaenl Header Checleaim

Saurce Address
| DedingtionAddress @@ |
Source Port Destination Port

| ength Checksim

Data

» UDP adds Ports, Data Length and Data checksum

UDP

* UDPisunrdiable
« A UDP packet may get dropped at any time
« It may get duplicated
* A series of UDP packets may get reordered
 Applications need to deal with reordering,
duplicate suppression, reliable delivery
« Some apps can ignore these effects and still function
 Unreliable datagrams are the bare-bones network
service
« Good to build on, esp for multimedia applications

TCP

* Transmission Control Protocol

« Reliable, ordered communication

« Enough applications demand reliable ordered

delivery that they should not have to implement
their own protocol

* A standard, adaptive protocol that delivers good-

enough performance and deals well with
congestion

* All webtraffic travelsover TCP/IP

TCP/IP Packets

TCP

Options Padding

Udld

TCP Packets

 Each packet carriesaunique ID
* Theinitial number is chosen randomly
* The ID isincremented by the data length
 Each packet carries an acknowledgement
« Can acknowledge a set of packets by ack’ing the
latest one received
* Reliable transport isimplemented using
these identifiers

TCP Connections

=<
=z
v

N, ACK of SY.
CK of SY

* TCPisconnection
oriented

e A connection is
initiated with athree-
way handshake

» Three-way handshake
ensures against
duplicate SYN
packets

o Takes 3 packets, 1.5
RTT

Typical TCP Usage

/

 Threeround-tripsto set up a
connection, send adata
packet, receive aresponse,
tear down connection

* FINswork (mostly) like
SYNsto tear down
connection

* Need to wait after aFIN for
straggling packets

SW
ACK of SYN

DarAATK |

i

Reliable transport

i

A, id=17
PATA 23, ACK 1

D id=18
nd timeout .
D id=18

IS

TCP keeps acopy of al sent,
but unacknowledged packets
I acknowledgement does not
arrivewithin a“send
timeout” period, packet is
resent

Send timeout adjuststo the
round-trip delay

TCP timeouts

» What isagood timeout period ?
« Want to improve throughput without unnecessary
transmissions

NewAverageRTT = (1 - ?) OldAverageRTT + ? LatestRTT
NewAverageDev = (1 - ?) OldAverageDev + ? LatestDev
where LatestRTT = (ack_receive_time —send_time),
LatestDev = |LatestRTT— AverageRTT|,
? =1/8, typically.
Timeout =AverageRTT + 4*AverageDev

» Timeout isthusafunction of RTT and deviation

TCP Windows

« Multiple outstanding packets can increase
throughput

TCP Windows

« Can have more than one
DATANG=17 packet in transit

satellite connection

Need to keep track of all
packetswithin thewindow

» Need to adjust window size

i

» Especially over fat pipes, e.g.

TCP Congestion Control

¢ TCPIncreasesitswindow size aslong as no
packets are dropped
« It halvesthe window size when a packet drop
occurs
* A packet drop is evident from the acknowledgements
e Therefore, it will dowly build up to the max

bandwidth, and hover around the max
« |t doesn’t achieve the max possible though
« Instead, it shares the bandwidth well with other TCP
connections
 Thislinear-increase, exponential backoff inthe
face of congestion istermed TCP-friendliness

TCP Window Size

:-EW-TCP Fairness

. >
Time

* Linear increase < « Want to
. i B4
_____________ MaxBendigh orentid : share the
5 bottleneck
= . .
5 Assuming no 3 It;nk fairly
£ other lossesiin & etween two
5 the network b flows
except those
dueto
y bandwidth -
Time Bandwidth for Host B
TCP Slow Start TCP Slow Start
Linear increase takes along time to build up a « Initial phase of
window size that matches the link - . exponential
bandwidth*dddlay | | [TTTTTTTTTTTT Max Bardwitith increase
Most file transactions are not long enough
Consequently, TCP can spend alot of timewith % ¢ Assuming no
small windows, never getting the chance to reach 2 other lossesin
asufficiently large window size g the network
Fix: Allow TCPto build up to alarge window size except those
initidly by doubling the window size until first dueto
loss bandwidth

TCP Summary

Reliable ordered message delivery
« Connection oriented, 3way handshake
Transmission window for better throughput
» Timeouts based on link parameters
Congestion control
« Linear increase, exponential backoff
Fast adaptation

« Exponentia increase in the initial phase

