
1

TCP/IP

Emin Gun Sirer

IP

• Internetworking protocol
• Network layer

• Common packet format for the Internet
• Specifies what packets look like
• Fragments long packets into shorter packets
• Reassembles fragments into original shape

• Some parts are fundamental, and some are
arbitrary

• IPv4 is what most people use
• IPv6 clears up some of the messy parts, but is not yet in wide

use

IPv4 packet layout

Version IHL TOS Total Length
Identification Flags Fragment Offset

TTL Protocol Header Checksum
Source Address

Destination Address
Options

Data

IPv4 packet layout

Version IHL TOS Total Length
Identification Flags Fragment Offset

TTL Protocol Header Checksum
Source Address

Destination Address
Options

Data

2

IP Fragmentation

• Networks have different maximum packet sizes
• Big packets are sometimes desirable – less overhead
• Huge packets are not desirable – reduced response time for

others

• Higher level protocols (e.g. TCP or UDP) could
figure out the max transfer unit and chop data into
smaller packets

• The endpoints do not necessarily know what the MTU is on
the path

• The route can change underneath

• Consequently, IP transparently fragments and
reassembles packets

IP Fragmentation Mechanics

• IP divides a long datagram into N smaller
datagrams

• Copies the header
• Assigns a Fragment ID to each part
• Sets the More Fragments bit
• Receiving end puts the fragments together based

on the new IP headers
• Throws out fragments after a certain amount of

time if they have not be reassembled

IP Options

• Source Routing: The source specifies the set of
hosts that the packet should traverse

• Record Route: If this option appears in a packet,
every router along a path attaches its own IP
address to the packet

• Timestamp: Every router along the route attaches
a timestamp to the packet

• Security: Packets are marked with user info, and
the security classification of the person on whose
behalf they travel on the network

• Most of these options pose security holes and are generally not
implemented

UDP

• Unreliable Datagram Protocol
• IP goes from host to host
• We need a way to get datagrams from one

application to another
• How do we identify applications on the

hosts ?
• Assign port numbers
• E.g. port 13 belongs to the time service

3

UDP Packet Layout

• UDP adds Ports, Data Length and Data checksum

Version IHL TOS Total Length
Identification Flags Fragment Offset

TTL Protocol Header Checksum
Source Address

Destination Address
Source Port

Data

Destination Port
Length Checksum

IP

UDP

UDP

• UDP is unreliable
• A UDP packet may get dropped at any time
• It may get duplicated
• A series of UDP packets may get reordered

• Applications need to deal with reordering,
duplicate suppression, reliable delivery

• Some apps can ignore these effects and still function

• Unreliable datagrams are the bare-bones network
service

• Good to build on, esp for multimedia applications

TCP

• Transmission Control Protocol
• Reliable, ordered communication

• Enough applications demand reliable ordered
delivery that they should not have to implement
their own protocol

• A standard, adaptive protocol that delivers good-
enough performance and deals well with
congestion

• All web traffic travels over TCP/IP

TCP/IP Packets

Version IHL TOS Total Length
Identification Flags Fragment Offset

TTL Protocol Header Checksum
Source Address

Destination Address
Source Port

Data

Destination Port
Sequence Number

Acknowledgement Number

IP

TCP WindowOffset ACK|URG|SYN|FIN|RST
Checksum Urgent Pointer
Options Padding

4

TCP Packets

• Each packet carries a unique ID
• The initial number is chosen randomly
• The ID is incremented by the data length

• Each packet carries an acknowledgement
• Can acknowledge a set of packets by ack’ing the

latest one received

• Reliable transport is implemented using
these identifiers

TCP Connections

• TCP is connection
oriented

• A connection is
initiated with a three-
way handshake

• Three-way handshake
ensures against
duplicate SYN
packets

• Takes 3 packets, 1.5
RTT

SYN

SYN, ACK of SYN

ACK of SYN

Typical TCP Usage

• Three round-trips to set up a
connection, send a data
packet, receive a response,
tear down connection

• FINs work (mostly) like
SYNs to tear down
connection

• Need to wait after a FIN for
straggling packets

SYN

SYN, ACK of SYN

ACK of SYN

DATA

DATA, ACK

FIN, ACK
FIN, ACK

Reliable transport

• TCP keeps a copy of all sent,
but unacknowledged packets

• If acknowledgement does not
arrive within a “send
timeout” period, packet is
resent

• Send timeout adjusts to the
round-trip delay

DATA, id=17

DATA 23, ACK 17

DATA, id=18

DATA, id=18

Send timeout

5

TCP timeouts

• What is a good timeout period ?
• Want to improve throughput without unnecessary

transmissions

• Timeout is thus a function of RTT and deviation

NewAverageRTT = (1 - ?) OldAverageRTT + ? LatestRTT
NewAverageDev = (1 - ?) OldAverageDev + ? LatestDev
where LatestRTT = (ack_receive_time – send_time),

LatestDev = | LatestRTT – AverageRTT|,
? = 1/8, typically.

Timeout = AverageRTT + 4*AverageDev

TCP Windows

• Multiple outstanding packets can increase
throughput

TCP Windows

• Can have more than one
packet in transit

• Especially over fat pipes, e.g.
satellite connection

• Need to keep track of all
packets within the window

• Need to adjust window size

DATA, id=17
DATA, id=18
DATA, id=19
DATA, id=20

ACK 17
ACK 18
ACK 19
ACK 20

TCP Congestion Control

• TCP Increases its window size as long as no
packets are dropped

• It halves the window size when a packet drop
occurs

• A packet drop is evident from the acknowledgements

• Therefore, it will slowly build up to the max
bandwidth, and hover around the max

• It doesn’t achieve the max possible though
• Instead, it shares the bandwidth well with other TCP

connections

• This linear-increase, exponential backoff in the
face of congestion is termed TCP-friendliness

6

TCP Window Size

• Linear increase
• Exponential

backoff

• Assuming no
other losses in
the network
except those
due to
bandwidth

Time

B
an

dw
id

th

Max Bandwidth

TCP Fairness

• Want to
share the
bottleneck
link fairly
between two
flows

Bandwidth for Host B

B
an

dw
id

th
 f

or
 H

os
t A

B

A

Bottleneck
Link

D

TCP Slow Start

• Linear increase takes a long time to build up a
window size that matches the link
bandwidth*delay

• Most file transactions are not long enough
• Consequently, TCP can spend a lot of time with

small windows, never getting the chance to reach
a sufficiently large window size

• Fix: Allow TCP to build up to a large window size
initially by doubling the window size until first
loss

TCP Slow Start

• Initial phase of
exponential
increase

• Assuming no
other losses in
the network
except those
due to
bandwidth

Time

B
an

dw
id

th

Max Bandwidth

7

TCP Summary

• Reliable ordered message delivery
• Connection oriented, 3-way handshake

• Transmission window for better throughput
• Timeouts based on link parameters

• Congestion control
• Linear increase, exponential backoff

• Fast adaptation
• Exponential increase in the initial phase

