
1

TCP/IP

Emin Gun Sirer

IP

• Internetworking protocol
• Network layer

• Common packet format for the Internet
• Specifies what packets look like
• Fragments long packets into shorter packets
• Reassembles fragments into original shape

• Some parts are fundamental, and some are 
arbitrary

• IPv4 is what most people use
• IPv6 clears up some of the messy parts, but is not yet in wide 

use
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IP Fragmentation

• Networks have different maximum packet sizes
• Big packets are sometimes desirable – less overhead
• Huge packets are not desirable – reduced response time for 

others

• Higher level protocols (e.g. TCP or UDP) could 
figure out the max transfer unit and chop data into 
smaller packets

• The endpoints do not necessarily know what the MTU is on 
the path

• The route can change underneath

• Consequently, IP transparently fragments and 
reassembles packets

IP Fragmentation Mechanics

• IP divides a long datagram into N smaller 
datagrams

• Copies the header
• Assigns a Fragment ID to each part
• Sets the More Fragments bit
• Receiving end puts the fragments together based 

on the new IP headers
• Throws out fragments after a certain amount of 

time if they have not be reassembled

IP Options

• Source Routing: The source specifies the set of 
hosts that the packet should traverse

• Record Route: If this option appears in a packet, 
every router along a path attaches its own IP 
address to the packet

• Timestamp: Every router along the route attaches 
a timestamp to the packet

• Security: Packets are marked with user info, and 
the security classification of the person on whose 
behalf they travel on the network

• Most of these options pose security holes and are generally not 
implemented

UDP

• Unreliable Datagram Protocol
• IP goes from host to host
• We need a way to get datagrams from one 

application to another
• How do we identify applications on the 

hosts ?
• Assign port numbers
• E.g. port 13 belongs to the time service
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UDP Packet Layout

• UDP adds Ports, Data Length and Data checksum
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UDP

• UDP is unreliable
• A UDP packet may get dropped at any time
• It may get duplicated
• A series of UDP packets may get reordered

• Applications need to deal with reordering, 
duplicate suppression, reliable delivery

• Some apps can ignore these effects and still function

• Unreliable datagrams are the bare-bones network 
service

• Good to build on, esp for multimedia applications

TCP

• Transmission Control Protocol
• Reliable, ordered communication

• Enough applications demand reliable ordered 
delivery that they should not have to implement 
their own protocol

• A standard, adaptive protocol that delivers good-
enough performance and deals well with 
congestion

• All web traffic travels over TCP/IP

TCP/IP Packets
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TCP Packets

• Each packet carries a unique ID
• The initial number is chosen randomly
• The ID is incremented by the data length

• Each packet carries an acknowledgement
• Can acknowledge a set of packets by ack’ing the 

latest one received

• Reliable transport is implemented using 
these identifiers

TCP Connections

• TCP is connection
oriented

• A connection is 
initiated with a three-
way handshake

• Three-way handshake 
ensures against 
duplicate SYN 
packets

• Takes 3 packets, 1.5 
RTT

SYN

SYN, ACK of SYN

ACK of SYN

Typical TCP Usage

• Three round-trips to set up a 
connection, send a data 
packet, receive a response, 
tear down connection

• FINs work (mostly) like 
SYNs to tear down 
connection

• Need to wait after a FIN for 
straggling packets

SYN

SYN, ACK of SYN

ACK of SYN

DATA

DATA, ACK

FIN, ACK
FIN, ACK

Reliable transport

• TCP keeps a copy of all sent, 
but unacknowledged packets

• If acknowledgement does not 
arrive within a “send 
timeout” period, packet is 
resent

• Send timeout adjusts to the 
round-trip delay

DATA, id=17

DATA 23, ACK 17

DATA, id=18

DATA, id=18

Send timeout
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TCP timeouts

• What is a good timeout period ?
• Want to improve throughput without unnecessary 

transmissions

• Timeout is thus a function of RTT and deviation

NewAverageRTT = (1 - ? ) OldAverageRTT + ? LatestRTT
NewAverageDev = (1 - ? ) OldAverageDev + ? LatestDev
where LatestRTT = ( ack_receive_time – send_time),

LatestDev  = | LatestRTT – AverageRTT|,
? = 1/8, typically.

Timeout = AverageRTT + 4*AverageDev

TCP Windows

• Multiple outstanding packets can increase 
throughput

TCP Windows

• Can have more than one 
packet in transit

• Especially over fat pipes, e.g. 
satellite connection

• Need to keep track of all 
packets within the window

• Need to adjust window size

DATA, id=17
DATA, id=18
DATA, id=19
DATA, id=20

ACK 17
ACK 18
ACK 19
ACK 20

TCP Congestion Control

• TCP Increases its window size as long as no 
packets are dropped

• It halves the window size when a packet drop 
occurs

• A packet drop is evident from the acknowledgements

• Therefore, it will slowly build up to the max 
bandwidth, and hover around the max

• It doesn’t achieve the max possible though
• Instead, it shares the bandwidth well with other TCP 

connections

• This linear-increase, exponential backoff in the 
face of congestion is termed TCP-friendliness
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TCP Window Size

• Linear increase
• Exponential 

backoff

• Assuming no 
other losses in 
the network 
except those 
due to 
bandwidth
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TCP Fairness

• Want to 
share the 
bottleneck 
link fairly 
between two 
flows
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TCP Slow Start

• Linear increase takes a long time to build up a 
window size that matches the link 
bandwidth*delay

• Most file transactions are not long enough
• Consequently, TCP can spend a lot of time with 

small windows, never getting the chance to reach 
a sufficiently large window size

• Fix: Allow TCP to build up to a large window size 
initially by doubling the window size until first 
loss

TCP Slow Start

• Initial phase of 
exponential 
increase

• Assuming no 
other losses in 
the network 
except those 
due to 
bandwidth
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TCP Summary

• Reliable ordered message delivery
• Connection oriented, 3-way handshake

• Transmission window for better throughput
• Timeouts based on link parameters

• Congestion control
• Linear increase, exponential backoff

• Fast adaptation
• Exponential increase in the initial phase


