
Deadlock

Emin Gun Sirer

22/19/2001

Deadlock

• Deadlock is a problem that can exist when a group of processes
compete for access to fixed resources.

• Def: deadlock exists among a set of processes if every process is
waiting for an event that can be caused only by another process in the
set.

• Example: two processes share 2 resources that they must request
(before using) and release (after using). Request either gives access
or causes the proc. to block until the resource is available.

Proc1: Proc2:
request tape request printer
request printer request tape
… <use them> … <use them>
release printer release tape
release tape release printer

32/19/2001

4 Conditions for Deadlock

• Deadlock can exist if and only if 4 conditions hold
simultaneously:

1. mutual exclusion: at least one resource must be held in a non-
sharable mode.

2. hold and wait: there must be a process holding one resource and
waiting for another.

3. no preemption: resources cannot be preempted.
4. circular wait: there must exist a set of processes

[p1, p2, …, pn] such that p1 is waiting for p2, p2 for p3, and so on
and pn waits for p1….

42/19/2001

Resource Allocation Graph

• Deadlock can be described through a resource allocation
graph.

• The RAG consists of a set of vertices P={P1,P2 ,…,Pn} of
processes and R={R1,R2,…,Rm} of resources.

• A directed edge from a processes to a resource, Pi->Rj, implies
that Pi has requested Rj.

• A directed edge from a resource to a process, Rj->Pi, implies
that Rj has been allocated by Pi.

• If the graph has no cycles, deadlock cannot exist. If the graph
has a cycle, deadlock may exist.

52/19/2001

Resource Allocation Graph Example

.

.

.

.

.
.
.
.

.

.

.

. . . .
R1 R3 R3

R4

R2

P3P2P1

R1

P1 P2 P3

P4

R2 R4

There are two cycles here: P1 -R1-P2-R3-P3-R2-P1
and P2 -R3-P3-R2-P2, and there is deadlock .

Same cycles, but no deadlock.

62/19/2001

Dealing with Deadlocks

• Deadlock Prevention & Avoidance: Ensure
that the system will never enter a deadlock
state

• Deadlock Detection & Recovery: Detect that a
deadlock has occurred and recover

• Deadlock Ignorance: Pretend that deadlocks
will never occur

72/19/2001

Deadlock Prevention

• Deadlock Prevention: ensure that at least one of
the necessary conditions cannot exist.
– Mutual exclusion: make resources shareable

– Not possible for some resources

– Hold and wait: guarantee that a process cannot hold a
resource when it requests another, or, make processes
request all needed resources at once, or, make it release all
resources before requesting a new set

– Low utilization, starvation
– Preemption: take resources back if there is contention

– Not always possible, hard model to write applications for

– Circular wait: impose an ordering (numbering) on the
resources and request them in order

82/19/2001

Deadlock Prevention

• Most real systems use deadlock prevention through
resource ordering

• The resource order is a convention that the OS
designers must know and follow

– These conventions complicate system programming

• E.g. must always acquire a buffer cache lock before
acquiring the file system lock, before acquiring the
disk lock

• What happens when you get a page fault ?

92/19/2001

Problems with Deadlock Prevention

• Prevention works by restraining how requests are
made

• Might yield low utilization and low throughput
– Certain resource request sequences are not allowed, limiting

functionality

• With sufficient information about future behavior, we
could allow any process to perform any set of
resource accesses

• As long as their actions would not lead to a deadlock
in the future

102/19/2001

Deadlock Avoidance

• Deadlock Avoidance
– general idea: provide info in advance about what resources will be needed

by processes to guarantee that deadlock will not exist.

• E.g., define a set of processes < P1, P2,... Pn> as safe if
for each Pi, the resources that Pi can still request can be
satisfied by the currently available resources plus the
resources held by all Pj, where j < i.

– this avoids circular waiting

– when a process requests a resource, the system grants or forces it to wait,
depending on whether this would be an unsafe state

• All deadlock states are unsafe. An unsafe state may lead to
deadlock. By avoiding unsafe states, we avoid deadlock

112/19/2001

Example:

• Processes p0, p1, and p2 compete for 12 tape drives
max need current usage could ask for

p0 10 5 5
p1 4 2 2
p2 9 2 7

3 drives remain

• current state is safe because a safe sequence exists:
<p1,p0,p2>

p1 can complete with current resources

p0 can complete with current+p1
p2 can complete with current +p1+p0

• if p2 requests 1 drive, then it must wait because that
state would be unsafe.

122/19/2001

The Banker’s Algorithm

• Banker’s algorithm decides whether to grant a resource
request. Define data structures.

n: integer # of processes
m: integer # of resources

available[1..m] avail[i] is # of avail resources of type i
max[1..n,1..m] max demand of each Pi for each Ri
allocation[1..n,1..m] current allocation of resource Rj to Pi

need[1..n,1..m] max # of resource Rj that Pi may still request

let request[i] be a vector of the # of instances of resource Rj that Process Pi
wants.

132/19/2001

The Basic Algorithm

1. If request[i] > need[i] then error (asked for too much)
2. If request[i] > available[i] then wait (can’t supply it now)
3. Resources are available to satisfy the request:

Let’s assume that we satisfy the request. Then we would
have:

available = available - request[i]
allocation[i] = allocation [i] + request[i]
need[i] = need [i] - request [i]

Now, check if this would leave us in a safe state; if yes, grant
the request, if no, then leave the state as is and cause
process to wait.

142/19/2001

Safety Check

1. free[1..m] = available ; how many resources are available
finish[1..n] = false (for all i) ; none finished yet

2. Find an i s.t. finish[i]=false and need[i] <= work
(find a proc that can complete its request now)
if no such i exists, go to step 4 (we’re done)

3. Found an i:
finish [i] = true ; done with this process
free = free + allocation [i] (assume this process were to finish ,
and its allocation back to the available list)
go to step 2

4. If finish[i] = true for all i, the system is safe.

152/19/2001

Deadlock Detection

• If there is neither deadlock prevention nor avoidance, then
deadlock may occur.

• In this case, we must have:
– an algorithm that determines whether a deadlock has occurred
– an algorithm to recover from the deadlock

• This is doable, but it’s costly

162/19/2001

Deadlock Detection Algorithm

available[1..m] ; # of available resources

allocation[1..n,1..m] ;# of resource of each Ri allocated to Pj
request[1..n,1..m] ; # of resources of each Ri requested by Pj

1. work=available
for all i < n, if allocation [i] not 0

then finish[i]=false else finish[i]=true
2. find an index i such that:

finish[i]=false;

request[i]<=work
if no such i exists, go to 4.

3. work=work+allocation[i]

finish[i] = true, go to 2
4. if finish[i] = false for some i, then system is deadlocked with Pi in deadlock

172/19/2001

Deadlock

• Deadlock detection algorithm is expensive. How often we
invoke it depends on:

– how often or likely is deadlock

– how many processes are likely to be affected when deadlock occurs

• Running the deadlock detection algorithm often will catch
deadlock cycles early

– Few processes will be affected

– Note: there is no single process that caused the deadlock

– May incur large overhead

182/19/2001

Deadlock Recovery

• Once a deadlock is detected, there are two choices:
1. abort all deadlocked processes (which will cause some

computations to be repeated)
2. abort one process at a time until cycle is eliminated (which requires

re-running the detection algorithm after each abort)

• Or, could do process preemption: release resources until
system can continue. Issues:

– selecting the victim (could be clever based on resources allocated)
– rollback (must rollback the victim to a previous state, may require a

transactional programming model, or functional apps)

– starvation (must not always pick same victim)

