
Processor Scheduling

2

Background

• The previous lecture introduced the basics of
concurrency

– Processes and threads
– Definition, representation, management

• We now understand how a programmer can spawn
concurrent computations

• The OS now needs to partition one of the central
resources, the CPU, between these concurrent tasks

3

Scheduling

• The scheduler is the manager of the CPU
resource

• It makes allocation decisions – it chooses to run
certain processes over others from the ready
queue

– Zero threads: just loop in the idle loop
– One thread: just execute that thread
– More than one thread: now the scheduler has to make a

resource allocation decision

• The scheduling algorithm determines how jobs
are scheduled

4

Scheduling

• Threads alternate between performing I/O and
performing computation

• In general, the scheduler runs:
– when a process switches from running to waiting
– when a process is created or terminated
– when an interrupt occurs

• In a non-preemptive system, the scheduler waits for a
running process to explicitly block, terminate or yield

• In a preemptive system, the scheduler can interrupt a
process that is running.

New Ready Running
Terminated

Waiting

5

Process States

New Ready Running Terminated

Waiting

Processes are I/O-bound when they spend most of
their time in the waiting state
Processes are CPU-bound when they spend their time
in the ready and running states

Time spent in each entry into the running state is
called a CPU burst

6

Scheduling Evaluation Metrics

• There are many possible quantitative criteria for
evaluating a scheduling algorithm:
– CPU utilization: percentage of time the CPU is not idle
– Throughput: completed processes per time unit
– Turnaround time: submission to completion
– Waiting time: time spent on the ready queue
– Response time: response latency
– Predictability: variance in any of these measures

• The right metric depends on the context

7

Scheduling Algorithms FCFS

• First-come First-served (FCFS) (FIFO)
– Jobs are scheduled in order of arrival
– Non-preemptive

• Problem:
– Average waiting time can be large if small jobs wait behind

long ones

– May lead to poor overlap of I/O and CPU and convoy effects

time

P1 P2 P3

0 16 20 24

P1P2 P3

0 4 8 24

8

Scheduling Algorithms LIFO

• Last-In First-out (LIFO)
– Newly arrived jobs are placed at the head of the ready queue
– Improves response time for newly created threads

• Problem:
– May lead to starvation – early processes may never get the

CPU

9

Problem

• You work as a short-order cook
– A short order cook has to cook food for customers as they

come in and specify which dish they want
– Each dish takes a different amount of time to prepare

• You want to minimize the average amount of
time the customers wait for their food

• What strategy would you use ?
– Note: most restaurants use FCFS.

10

Scheduling Algorithms SJF

• Shortest Job First (SJF)
– Choose the job with the shortest next CPU burst
– Provably optimal for minimizing average waiting time

• Problem:
– Impossible to know the length of the next CPU burst

P1 P2P3

0 15 21 24

P1P2 P3

0 3 9 24

P3 P2

11

• Approximate the duration of the next CPU-burst from
the durations of the previous bursts

– The past can be a good predictor of the future
• No need to remember entire past history

• Use exponential average:

tnduration of the n th CPU burst
?n+1 predicted duration of the (n+1)st CPU burst

?n+1 = ? tn + (1- ?) ?n
where 0 ? ? ? 1

? determines the weight placed on past behavior

Shortest Job First Prediction

12

Scheduling Algorithms SRTF

• SJF can be either preemptive or non-preemptive
– The distinction occurs when a new, short job arrives while the

currently process has a long time left to execute

• Preemptive SJF is called shortest remaining time
first

13

Priority Scheduling

• Priority Scheduling
– Choose next job based on priority
– For SJF, priority = expected CPU burst
– Can be either preemptive or non- preemptive

• Problem:
– Starvation: jobs can wait indefinitely

• Solution to starvation
– Age processes: increase priority as a function of waiting time

14

Round Robin

• Round Robin (RR)
– Often used for timesharing
– Ready queue is treated as a circular queue (FIFO)
– Each process is given a time slice called a quantum
– It is run for the quantum or until it blocks
– RR allocates the CPU uniformly (fairly) across all participants.

If average queue length is n, each participant gets 1/n
– As the time quantum grows, RR becomes FCFS
– Smaller quanta are generally desireable, because they

improve response time

• Problem:
– Context switch overhead of frequent context switch

15

RR with Time Quantum = 20

Process Burst Time
P1 53
P2 17
P3 68
P4 24

• The Gantt chart is:

• Typically, higher average turnaround than SJF,
but better response time.

P1 P2 P3 P4 P1 P3 P4 P1 P3 P3

0 20 37 57 77 97 117 121 134 154 162

16

Scheduling Algorithms

• Multi-level Queue Scheduling
• Implement multiple ready queues based on job “type”

– interactive processes
– CPU-bound processes
– batch jobs
– system processes
– student programs

• Different queues may be scheduled using different
algorithms

• Intra-queue CPU allocation can be either strict or
proportional

• Problem: Classifying jobs into queues is difficult
– A process may have CPU-bound phases as well as interactive ones

17

Multilevel Queue Scheduling

System Processes

Interactive Processes

Batch Processes

Student Processes
Lowest priority

Highest priority

18

Scheduling Algorithms

• Multi-level Feedback Queues
• Implement multiple ready queues

– Different queues may be scheduled using different algorithms
– Just like multilevel queue scheduling, but assignments are not static

• Jobs move from queue to queue based on feedback
– Feedback = The behavior of the job, e.g. does it require the ful l

quantum for computation, or does it perform frequent I/O ?

• Very general algorithm
• Need to select parameters for:

– Number of queues
– Scheduling algorithm within each queue
– When to upgrade and downgrade a job

19

Multilevel Feedback Queue Scheduling

Quantum = 2

Quantum = 4

Quantum = 8

FCFS

Lowest priority

Highest priority

20

Real-time Scheduling

• Real-time processes have timing constraints
– Expressed as deadlines or rate requirements

• Common RT scheduling policies
– Rate monotonic

– Simple, just one scalar priority related to the periodicity of
the job

– Priority = 1/rate
– Static

– Earliest deadline first (EDF)
– Dynamic but more complex
– Priority = deadline

• Both schemes require admission control to
provide guarantees

21

Scheduling on a Multiprocessor

• Two alternatives based on the total number of
queues:

– Each processor has its own separate queue
– All processors share a common ready-queue, and

autonomously pick threads to execute from this common
queue whenever they are idle (work stealing)

• Scheduling locally on any single processor is
mostly the same as scheduling on a uniprocessor

• Issues:
– Want to keep threads local to a processor (processor affinity)
– Want to keep related threads together (gang-scheduling)

22

Turnaround Time Varies With The Time
Quantum

