
1

Mobile Code

• Shipping computation from one host to another is a
very useful paradigm
– Applets: programs can be more compact than equivalent

data, can interact with user with low latency
• Can be used for complex GUIs, page description languages, etc.

– Agents: program acting on behalf of a user, can interact
with its environment with low latency

• Can be used for data collection (e.g. price comparison), load-
balancing, long-lived computing tasks

– Servlets, ASPs: code submitted by clients that would like
to run in the context of a larger software system

• Web servers, rent-a-server, database systems, etc.

Mobile Code
Protection within a Single Address Space

Emin Gun Sirer

Problems

• Mobile code is invaluable in building extensible
systems

• But in general, running code provided by someone
else poses a security risk

• Could place every extension in a separate
hardware address space
– The code could perform any read, write, jump operation

and the MMU would catch any missteps
– The OS could catch every system call and direct

through a reference monitor
– BUT, the extension code typically must run in the same

protection domain as the base system to be useful

Mobile Code Protection

• Can we place extension code in the same address
space as the base system, yet remain secure ?
– Imagine how an app can modify the paging policy the

OS uses for its pages

• Many techniques have been proposed
– SFI
– Safe interpreters
– Language-based protection
– PCC

2

SFI

• Control what the application can do by
managing the instruction stream

• Software fault isolation (SFI)
• Assign a range of contiguous addresses to each

extension
• Rewrite the extension’s code segment, inserting

checks before every read, write and jump to ensure
that it is legitimate

• Checks can be cheap
• Need only recompute address and perform range

check, 3-7 instructions

SFI Loads and Stores

• Every load and store is
preceded by the check that
the hardware would have
done

• Dedicate two general
purpose registers to hold
the base and limit

• Modern processors have
extra stall cycles during
which the checks can be
performed

base limit

extension

…
LDQ R1, 34(R2)
…

SFI’ed extension

…
ADD R0, 34, R2
SUBU R0, R0, R14
BLT R0, R15, error
LDQ R1, 34(R2)
…

LDQ R14, BASE
LDQ R15, LIMIT
…

SFI control flow

• An extension should only be able to jump to
well-defined entry points in the system

• Restrict control flow to indirect jumps off of
a table

SFI

• Hard to share data
– Must still be copied from one extension’s

memory range into another’s

• Performance problems
– The checks extract a high penalty

• Hard to scale to large numbers of extensions

3

Safe Interpreters

• Restrict code to an interpreted language
– E.g. telescript, python, perl, tcl, etc…

• The application must go through interpreter
for execution
– The interpreter can enforce security checks at

any instruction, the application does not have
direct access to hardware

• Slow

Language-based Typesafety

• Constrain the vocabulary of the extensions to a
subset of safe instruction sequences
– Force the programmer to use a language that cannot

express unsafe operations
• Many instances

– Imperative: Java, Modula-3, Limbo
– Functional: ML, O’caml, Haskell
– Domain-specific: BPF

• Use a verifier to check statically that extensions
will not violate safety at runtime

Verification

• Verifier is a specialized theorem-
prover
– System safety depends on axioms such

as “thou shalt not create arbitrary
pointers through pointer arithmetic”

– Verifier simulates all possible
executions of the program, making
conservative assumptions

– Checks for violation of safety axioms

PUSH 13

PUSH 15
ADDI

PUSH ref
ADDI

…

PCC

• Proof-carrying code
• Extension peresents a certificate that it is safe w.r.t. a

safety policy
– Certificate is a proof in first-order logic
– The proof is linked to the code
– The recipient evaluates the proof to check if the safety

condition holds over the program

• Details beyond scope of this OS course
– See courses by Prof. Morisett and Prof. Kozen

