
1

1

Processes & Threads

Managing Concurrency in Computer 
Systems

2

Process Management

• Process management deals with several issues:
– what are the units of execution

– how are those units of execution represented in the OS

– how is work scheduled in the CPU
– what are possible execution states, and how does the system move

from one to another

3

The Process

• Basic idea is the process:
– process is the unit of execution

– it’s the unit of scheduling

– it’s the dynamic (active) execution context (as opposed to a pro gram, 
which is static)

• A process is sometimes called a job or a task or a sequential 
process.

• A sequential process is a program in execution;  it defines the 
sequential, instruction-at-a-time execution of a program.

4

What’s in a Process?

• A process consists of at least:
– the code for the running program

– the data for the running program

– an execution stack tracing the state of procedure calls made
– the Program Counter, indicating the next instruction

– a set of general -purpose registers with current values

– a set of operating system resources (open files, connections to other 
programs, etc.)

• The process contains all the state for a program in execution.



2

5

Process State

• There may be several processes running the same program (e.g., 
an editor), but each is a distinct process with its own 
representation.

• Each process has an execution state that indicates what it is 
currently doing, e.g.,:

– ready:  waiting to be assigned to the CPU
– running:  executing instructions on the CPU

– waiting:  waiting for an event, e.g., I/O completion

• As a program executes, it moves from state to state

6

Process State Changing

New Ready Running
Terminated

Waiting

Processes move from state to state as a result of 
actions they perform (e.g., system calls), OS actions
(rescheduling), and external actions (interrupts)

7

Process Data Structures

• At any time, there are many processes in the system, each in its
particular state.

• The OS must have data structures representing each process:  this 
data structure is called the PCB:

– Process Control Block

• The PCB contains all of the info about a process.
• The PCB is where the OS keeps all of a process’ hardware 

execution state (PC, SP, registers) when the process is not runn ing.

8

PCB

The PCB contains the 
entire state of the 
process

process state

process number

program counter

stack pointer

general -purpose registers

memory management info

username of owner

queue pointers for state queues

scheduling info (priority, etc.)

accounting info



3

9

PCBs and Hardware State

• When a process is running its Program Counter, stack pointer, 
registers, etc., are loaded on the CPU (I.e., the processor hardware 
registers contain the current values)

• When the OS stops running a process, it saves the current values
of those registers into the PCB for that process.

• When the OS is ready to start executing a new process, it loads the 
hardware registers from the values stored in that process’ PCB.

• The process of switching the CPU from one process to another is 
called a context switch.  Timesharing systems may do 100s or 1000s 
of context switches a second!

1 0

State Queues

• The OS maintains a collection of queues that represent the state of 
all processes in the system.

• There is typically one queue for each state, e.g., ready, waiting for 
I/O, etc.

• Each PCB is queued onto a state queue according to its current 
state.

• As a process changes state, its PCB is unlinked from one queue and linked 
onto another.

1 1

State Queues

Ready Queue Header

Wait Queue Header

head ptr
tail ptr

head ptr
tail ptr

PCB BPCB A PCB C

PCB X PCB M

There may be many wait queues, one for each
type of wait (specific device, timer, message,…).

1 2

PCBs and State Queues

• PCBs are data structures, dynamically allocated in OS memory.
• When a process is created, a PCB is allocated to it, initialized, and 

placed on the correct queue.
• As the process computes, its PCB moves from queue to queue.
• When the process is terminated, its PCB is deallocated.



4

1 3

Cooperating Processes

• Processes can be independent or they can be cooperating to 
accomplish a single job.

• Cooperating processes can be used:
– to gain speedup by overlapping activities or performing work in 

parallel
– to better structure an application as a small set of cooperating

processes

– to share information between jobs

• Sometimes processes are structured as a pipeline where each 
produces work for the next stage that consumes it, and so on.

1 4

Processes and Threads

• A full process includes numerous things:
– an address space (defining all the code and data pages)
– OS resources and accounting information
– a “thread of control”, which defines where the process is 

currently executing (basically, the PC and registers)

• Creating a new process is costly, because of all of the 
structures (e.g., page tables) that must be allocated

• Communicating between processes is costly, because 
most communication goes through the OS

1 5

Parallel Programs

• Suppose I want to build a parallel program to execute on a 
multiprocessor, or a web server to handle multiple simultaneous 
web requests.  I need to:

– create several processes that can execute in parallel

– cause each to map to the same address space (because they’re part of 
the same computation)

– give each its starting address and initial parameters

– the OS will then schedule these processes, in parallel, on the various 
processors

• Notice that there’s a lot of cost in creating these processes and 
possibly coordinating them.  There’s also a lot of duplication, 
because they all share the same address space, protection, etc……

1 6

“Lightweight” Processes

• What’s similar in these processes?
– They all share the same code and data (address space)

– they all share the same privileges

– they share almost everything in the process

• What don’t they share?
– Each has its own PC, registers, and stack pointer

• Idea:  why don’t we separate the idea of process (address space,
accounting, etc.) from that of the minimal “thread of control” (PC, 
SP, registers)?



5

1 7

Threads and Processes

• Some newer operating systems (Mach, Chorus, NT) therefore 
support two entities:

– the process, which defines the address space and general process 
attributes

– the thread, which defines a sequential execution stream within a 
process

• A thread is bound to a single process.  For each process, however, 
there may be many threads.

• Threads are the unit of scheduling;  processes are containers in 
which threads execute.

1 8

How different OSs support threads

example: MS/DOS example: Unix

example: Xerox Pilot
example: Mach, OSF, Chorus, 
NT

= address space

= thread

1 9

Separation of Threads and Processes

• Separating threads and processes makes it easier to support mult i-
threaded applications

• Concurrency (multi-threading)  is useful for:
– improving program structure

– handling concurrent events (e.g., web requests)
– building parallel programs

• So, multi-threading is useful even on a uniprocessor.
• But, threads, even when supported separately from processes in 

the kernel, are too slow.

2 0

Kernel Threads

• Kernel threads still suffer from performance problems.
• Operations on kernel threads are slow because:

– a thread operation still requires a kernel call

– kernel threads may be overly general, in order to support needs of 
different users, languages, etc.

– the kernel doesn’t trust the user, so there must be lots of checking on 
kernel calls



6

2 1

User-Level Threads

• To make threads really fast, they should be implemented at the 
user level

• A user-level thread is managed entirely by the run-time system 
(user-level code that is linked with your program).

• Each thread is represented simply by a PC, registers, stack and a 
little control block, managed in the user’s address space.

• Creating a new thread, switching between threads, and 
synchronizing between threads can all be done without kernel 
involvement.

2 2

(Old) Example of thread performance

Ultrix Topaz FastThreads

Fork 11320 1208 39

Signal/Wait 1846 229 52

•Ultrix:  1 thread per address space

•Topaz: multiple threads per address space

•FastThreads: multiple user threads per 
address space

(performance on a 3 MIPS processor, in microseconds)

2 3

Example U-L Thread Interface

t = thread_fork(initial context)
create a new thread of control

thread_stop()
stop the calling thread, sometimes called thread_block

thread_start(t)
start the named thread

thread_yield()
voluntarily give up the processor

thread_exit()
terminate the calling thread, sometimes called thread_destroy.


