Processes & Threads

Managing Concurrency in Computer
Systems

Process M anagement

Process management deals with several issues:

— what are the units of execution

— how are those units of execution represented in the OS
— how iswork scheduled in the CPU

— what are possible execution states, and how does the system move
from one to another

The Process

Basic idea isthe process:
— process is the unit of execution
— it'sthe unit of scheduling

— it’sthe dynamic (active) execution context (as opposed to a program,
which is static)

A processis sometimes called a job or atask or a sequential
process.

A sequential processisa program in execution; it definesthe
sequential, instruction-at-a-time execution of a program.

What'sin a Process?

A process consists of at least:
— the code for the running program
— thedata for the running program
— an execution stack tracing the state of procedure calls made
— the Program Counter, indicating the next instruction
— aset of general -purpose registers with current values

— aset of operating system resour ces (open files, connections to other
programs, etc.)

The process contains all the state for a program in execution.

Process State

There may be several processes running the same program (e.g.,
an editor), but each isadistinct process with its own
representation.
Each process has an execution state that indicates what it is
currently doing, e.g.,:

— ready: waiting to be assigned to the CPU

— running: executing instructions on the CPU

— waiting: waiting for an event, e.g., I/O completion
Asa program executes, it moves from state to state

Process State Changing

Processes move from state to state as a result of
actions they perform (e.g., system calls), OS actions
(rescheduling), and external actions (interrupts)

Process Data Structures

At any time, there are many processesin the system, each in its
particular state.
The OS must have data structures representing each process: this
data structureiscalled the PCB:

— Process Control Block
The PCB contains all of the info about a process.
The PCB iswhere the OS keeps all of a process' hardware
execution state (PC, SP, registers) when the processisnot running.

The PCB contains the
entire state of the
process

PCBs and Hardware State

State Queues

When a processis running its Program Counter, stack pointer,
registers, etc., are loaded on the CPU (l.e., the processor hardware
registers contain the current values)

When the OS stopsrunning a process, it saves the current values
of those registersinto the PCB for that process.

When the OSisready to start executing a new process, it loadsthe
hardware registers from the values stored in that process' PCB.
The process of switching the CPU from one process to another is
called a context switch. Timesharing systems may do 100s or 1000s
of context switches a second!

The OS maintains a collection of queues that represent the state of
all processesin the system.

Thereistypically one queue for each state, e.g., ready, waiting for
1/0, etc.

Each PCB is queued onto a state queue according to its current
state.

« Asaprocess changes state, its PCB is unlinked from one queue and linked
onto another.

State Queues

PCBs and State Queues

PCB A PCBB PCBC

tail ptr

There may be many wait queues, one for each
type of wait (specific device, timer, message,...).

PCBs are data structures, dynamically allocated in OS memory.

When a processis created, a PCB isallocated to it, initialized, and
placed on the correct queue.

As the process computes, its PCB moves from queue to queue.
When the processisterminated, its PCB is deallocated.

Cooperating Processes

« Processes can beindependent or they can be cooperating to
accomplish asinglejob.
« Cooperating processes can be used:
— to gain speedup by overlapping activities or performing work in
parallel
— to better structure an application as a small set of cooperating
processes
— to shareinformation between jobs
* Sometimes processes are structured as a pipeline where each
produces work for the next stage that consumesiit, and so on.

Processes and Threads

A full process includes numerous things:
— an address space (defining all the code and data pages)
— OSresources and accounting information
— a“thread of control”, which defines where the processis
currently executing (basically, the PC and registers)
« Creating a new process is costly, because of all of the
structures (e.g., page tables) that must be allocated
« Communicating between processes is costly, because
most communication goes through the OS

Parallel Programs

« Suppose | want to build a parallel program to execute on a
multiprocessor, or aweb server to handle multiple simultaneous
web requests. | need to:

— create several processes that can executein parallel

— cause each to map to the sameaddress space (because they're part of
the same computation)

— giveeach its starting address and initial parameters
— the OS will then schedule these processes, in parallel, on the various
processors
« Noticethat there'salot of cost in creating these processes and
possibly coordinating them. There'salso a lot of duplication,
because they all sharethe same address space, protection, etc......

“Lightweight” Processes

* What'ssimilar in these processes?

— They all share the same code and data (addr ess space)
— they all share the same privileges
— they share almost everything in the process

¢ What don’t they share?

— Each hasits own PC, registers, and stack pointer

* ldea: why don’'t we separate theidea of process (address space,

accounting, etc.) from that of the minimal “thread of control” (PC,
SP, registers)?

Threadsand Processes

How different OSs support threads

Some newer operating systems (Mach, Chorus, NT) therefore
support two entities:
— theprocess, which defines the addr ess spaceand general process
attributes
— thethread, which defines a sequential execution stream within a
process
A thread isbound to a single process. For each process, however,
there may be many threads.
Threads arethe unit of scheduling; processes are containersin
which threads execute.

I:L address space
.: thread

© @
o] @ @

example: MS/DOS example: Unix

® © ERIEEDY
® © @ [@9]

example: Xerox Pilot example: Mach, OSF, Chorus,
NT

Separation of Threads and Processes

Kernd Threads

Separating threads and processes makes it easier to support multi-
threaded applications
Concurrency (multithreading) isuseful for:

— improving program structure

— handling concurrent events (e.g., web requests)

— building parallel programs

So, multi-threading is useful even on a uniprocessor.

But, threads, even when supported separately from processesin
the kernel, are too slow.

» Kernel threads still suffer from performance problems.
« Operationson kernel threads are slow because:
— athread operation still requires a kernel call
— kernel threads may be overly general, in order to support needs of
different users, languages, etc.
— thekernel doesn't trust the user, so there must be lots of checking on
kernel calls

User-Level Threads (Old) Example of thread performance

« Tomakethreadsreally fast, they should be implemented at the Yrix Topaz FastThreads
level
usd, feve _ _ _ Rork 11320 1208 39
* A user-level thread is managed entirely by the run-timesystem
(user-level code that is linked with your program). Signal/wait 1846 229 52
« Each thread isrepresented simply by a PC, registers, stack and a

little control block, managed in the user’s address space.

« Creating anew thread, switching between threads, and
synchronizing between threads can all be done without kernel
involvement. «Ultrix: 1 thread per address space

(performance on a 3 MIPS processor, in microseconds)

*Topaz: multiple threads per address space

*FastThreads: multiple user threads per
address space

Example U-L Thread Interface

t = thread_fork(initial context)
create anew thread of control
thread_stop()
stop the calling thread, sometimes called thread_block
thread_start(t)
start the named thread
thread_yield()
voluntarily give up the processor
thread_exit()
terminate the calling thread, sometimes called thread_destroy.

