
Introduction to Distributed Systems

22/22/2001

Distributed Systems

• Nearly all systems today are distributed in some way, e.g.:
– they use email
– they access files over a network

– they access printers over a network
– they are backed up over a network

– they share other physical or logical resources
– they cooperate with other people on other machines
– soon: they receive video, audio, etc.

32/22/2001

Why use distributed systems?

• Distributed systems are now a requirement:
– economics dictate that we buy small computers
– everyone needs to communicate
– we need to share physical devices (printers) as well as

information (files, etc.)
– many applications are by their nature distributed (bank teller

machines, airline reservations, ticket purchasing)
– in the future, to solve the interesting problems, we will need to

get large collections of small machines to cooperate

42/22/2001

What is a distributed system?

• There are several levels of distribution.
• Earliest systems used simple explicit network programs:

– FTP: file transfer program
– Telnet (rlogin): remote login program

– mail
– remote job entry (or rsh): run jobs remotely

• Each system was a completely autonomous independent
system, connected to others on the network

52/22/2001

Loosely-Coupled Systems

• Most distributed systems are “loosely-coupled”
• Each CPU runs an independent autonomous OS.
• Hosts communicate through message passing.
• Computers don’t really trust each other.
• Some resources are shared, but most are not.
• The system may look differently from different

hosts.
• Typically, communication times are long.

62/22/2001

Closely-Coupled Systems

• A distributed system becomes more “closely coupled”
as it:

– appears more uniform in nature
– runs a “single” operating system

– has a single security domain
– shares all logical resources (e.g., files)

– shares all physical resources (CPUs, memory, disks, printers, etc.)

• In the limit, a distributed system looks to the user as if it
were a centralized timesharing system, except that it’s
constructed out of a distributed collection of hardware
and software components.

72/22/2001

Tightly-Coupled Systems

• A “tightly-coupled” system usually refers to a
multiprocessor.
– Runs a single copy of the OS with a single job queue
– has a single address space
– usually has a single bus or backplane to which all processors and

memories are connected
– has very low communication latency
– processors communicate through shared memory

82/22/2001

Some Issues in Distributed Systems

• Transparency (how visible is the distribution)
• Security
• Reliability
• Performance
• Scalability
• Programming models
• Communications models

92/22/2001

Transparency

• In a true distributed system with transparency:
– it would appear as a single system
– different modes would be invisible

– jobs would migrate automatically from node to node
– a job on one node would be able to use memory on another

102/22/2001

Distribution and the OS

• There are various issues that the OS must deal
with:

– how to provide efficient network communication

– what protocols to use
– what is the application interface to remote apps (although this might

be a language issue)

– protection of distributed resources

112/22/2001

The Network

• There are various network technologies that can be used to
interconnect nodes.

• In general, Local Area Networks (LANs) are used to connect
hosts within a building. Wide Area Networks (WANs) are
used across the country or planet.

• We are at an interesting point, as network technology is
about to see an order-of-magnitude performance increase.
This will have a huge impact on the kinds of systems we can
build.

122/22/2001

Issues in Networking

• Topology

– What does the network look like ?
• Connection Strategy

– How much state is in the network, and how much is in the packet ?
• Routing

– How do we determine the best way to get to there from here ?

• Bandwidth, latency, throughput and contention
– What are the limitations on the pipes, and how do we discover them ?

• Reliability
– How do we make an unreliable infrastructure appear to be reliabl e ?

• Efficiency
• Scalability

• Cost

132/22/2001

Network Topologies

Point to Point Ring Broadcast

Star Tree
Switch

142/22/2001

Messages

• At a low level, network communication is via messages.
• A message is simply a typed byte string passed between

two levels of the system (e.g., OS to OS, app to app).
• A message usually contains a header, indicating what kind

of information it contains, and some data.
• What the message “means,” i.e., how to interpret the bytes

in the message, is an agreement between the two
communicating parties (the protocol).

152/22/2001

The anatomy of a message

Where are messages kept before
they are sent? and after they
are received?

destination host addr .

source host addr .

application ID

msg length

msg data

checksum

header

The msg data may itself contain a
header and some data for another level
of communication, and so on.

162/22/2001

The OSI Model

• The Open Systems Interconnect model is a standard way of
understanding the conceptual layers of network communication.

• This is a model, nobody builds systems like this.
• Each level provided certain functions and guarantees, and

communicates with the same level on remote notes.
• A message is generated at the highest level, and is passed down

the levels, encapsulated by lower levels, until it is sent over the
wire.

• On the destination, it makes its way up the layers,until the high-
level msg reaches its high -level destination.

172/22/2001

OSI Levels

Presentation

Transport

Network

Data Link

Physical

Application

Presentation

Transport

Network

Data Link

Physical

ApplicationNode A Node B

Network

182/22/2001

OSI Levels

• Physical Layer: electrical details of bits on the wire

• Data Link: sending “frames” of bits and error detection
• Network Layer:” routing packets to the destination

• Transport Layer: reliable transmission of messages,
disassembly/assembly, ordering, retransmission of lost packets

• Session Layer; really part of transport, typ. Not impl.

• Presentation Layer: data representation in the message
• Application: high -level protocols (mail, ftp, etc.)

192/22/2001

Addressing and Packet Format
• Every network card has a

unique address in
HARDWARE.

• The ``Data'' segment
contains higher level
protocol information.

– Which protocol is this
packet destined for?

– Which process is the
packet destined for?

– Which packet is this in a
sequence of packets?

– What kind of packet is
this?

• This is the stuff of the OSI
reference model.

Start (7 bytes)

Destination (6)

Source (6)

Length (2)

Msg Data (1500)

Checksum (4)

202/22/2001

Ethernet packet dispatching

• An incoming packet comes into the ethernetcontroller.
• The ethernetcontroller reads it off the network into a buffer.
• It interrupts the CPU.
• A network interrupt handler reads the packet out of the controller

into memory.
• A dispatch routine looks at the Data part and hands it to a higher

level protocol
• The higher level protocol copies it out into user space.
• A program manipulates the data.
• The output path is similar.
• Consider what happens when you send mail.

212/22/2001

Example: Mail
Hi Dad. Hi Dad.

Hi Dad.
To: Dad

SrcAddr: 128.95.1.2
DestAddr: 128.95.1.3
SrcPort: 100
DestPort: 200
Bytes: 1-20

Hi Dad.

To: Dad

SrcEther: 0xdeadbeef
DestEther: 0xfeedface

SrcAddr: 128.95.1.2
DestAddr: 128.95.1.3
SrcPort: 100
DestPort: 200
Bytes: 1-20

Hi Dad.

To: Dad

Mail Composition And Display

Mail Transport Layer

Network Transport Layer

Link Layer

Hi Dad.

To: Dad

SrcAddr: 128.95.1.2
DestAddr: 128.95.1.3
SrcPort: 100
DestPort: 200
Bytes: 1-20

Hi Dad.

To: Dad

SrcEther: 0xdeadbeef
DestEther: 0xfeedface

SrcAddr: 128.95.1.2
DestAddr: 128.95.1.3
SrcPort: 100
DestPort: 200
Bytes: 1-20

Hi Dad.

To: Dad
Network

User

Kernel

222/22/2001

Two ways to handle networking

• Circuit Switching
– what you get when you make a phone call
– good when you require constant bit rate
– good for reserving bandwidth (refuse connection if bandwidth not

available)

• Packet Switching
– what you get when you send a bunch of letters
– network bandwidth consumed only when sending
– packets are routed independently
– packetizing may reduce delays (using parallelism)

• Message Switching
– It’s just packet switching, but routers perform store-and-forward

232/22/2001

Packet switching is preferable for data
communications

• From the perspective of the network
– but may not be preferable for some applications

• Applications are bursty
– variable amounts of info at irregular intervals

– a diskless workstation: needs all bandwidth to transfer a page,
so can’t reserve it

– circuit switching may have high cost to set up connection

– maintaining the connection may waste bandwidth if connection
is used infrequently

242/22/2001

New Applications

• Video and Voice may be different (more like phone
system)

• But with data compression, makes circuit
switching less attractive:
– compressed video generates a variable bit rate signal
– signal needs to be transported within a certain max. delay,

but bandwidth needed is variable

• New applications will be very bursty and will
require guarantees about latency.

252/22/2001

Routing

• Moving packets from one network to another.
• Routers run their own address distribution

protocol to ensure connectivity
– decisions based on a distance metric

Router
gateway

routing table

262/22/2001

Finally

• TCP/IP (Transmission Control Protocol/Internet Protocol)
provides reliable, ordered bytestreams between pairs of
processes

• UDP/IP (User Datagram Protocol) provides unreliable,
unordered messages between pairs of processes

• A network interface delivers packets to the operating system.
• The operating system delivers messages to an application

according to the destination specified in the packet
• The rest is all about distributed programming!

