Basic Problem

L og-Structured File Systems

Most file systems now have large memory caches
(buffers) to hold recently-accessed blocks

— Most reads are thus satisfied from the buffer cache

From the point of view of the disk, most trafficiswrite
traffic

— Tospeed up disk 1/0, we need to make writes go faster

But disk performanceislimited ultimately by disk head
movement

With current file systems, adding a block takes several
writes (to the file and to the metadata), requiring
several disk seeks

LFS: Basic Idea

LFS Data Structures

An alternativeisto use thedisk asalog

A log isadata structurethat iswritten only at the head
If the disk were managed as a log, there would be
effectively no head seeks

The“file" isalways added to sequentially

New data and metadata (inodes, directories) are
accumulated in the buffer cache, then written all at
oncein large blocks (e.g., segments of .5M or 1IM)
Thiswould greatly increase disk thruput

How does thisreally work? How do weread? What

doesthedisk structurelook like? etc.? 3

Segments: log containing data blocks and metadata
inodes: asin Unix, inodes contain physical block
pointersfor files

inode map: atableindicating where each inodeison
the disk

— inode map blocks are written as part of the segment; atableina
fixed checkpoint region on disk points to those blocks

segment summary: info on every block in a segment

segment usage table: info on the amount of “ live” data
in a block

LFSvs. UFS
. node

LFS: read and write

filel file2
@j@jj D dirwory
dirl dir2 . data

Unix File .

System inode map
dirl dir2
. . Blocks written to

create two 1-block

filel

dir2/file2, in UFS and
Log-Structured LFs
File System

file2

Every write causes new blocks to be added to the
current segment buffer in memory; when that segment
isfull, it iswritten to the disk

Reads are no different than in Unix File System, once
we find theinode for afile (in LFS, using theinode
map, which is cached in memory)

Over time, segmentsin the log become fragmented as
we replace old blocks of fileswith new block

Problem: in steady state, we need to have contiguous
free spacein which to write

LFS Failure Recovery

Cleaning

Checkpoint and roll-forward
Recovery is very fast
— No fsck, no need to check the entire disk

— Recover the last checkpoint, and see how much
data written after the checkpoint you can
recover

— Some data written after a checkpoint may be
lost

— Seconds versus hours

Themajor problem for aLFSiscleaning, i.e,
producing contiguous free space on disk

A cleaner process“ cleans’ old segments, i.e., takes
several non-full segments and compacts them, creating
one full segment, plus free space

The cleaner chooses segments on disk based on:

— utilization: how much isto be gained by cleaning them

— age: how likely is the segment to change soon anyway

Cleaner cleans“ cold” segmentsat 75% utilization and
“hot” segmentsat 15% utilization (becauseit’sworth
waiting on “ hot” segmentsfor blocksto be rewritten by

current activity) .

LFS Summary

Basic ideaisto handle reads through caching and
writes by appending lar ge segmentsto a log

Greatly increases disk performance on writes, file
creates, deletes,

Readsthat are not handled by buffer cache are same
performance as normal file system

Requires cleaning demon to produce clean space, which
takes additional CPU time

