
Secondary Storage Management

5/14/2001 2

Secondary Storage

• Secondary Storage is usually:
• anything outside of “primary memory”
• storage that does not permit direct instruction execution or data

fetch by load/store instructions
• it’s large
• it’s cheap
• it’s non-volatile
• it’s slow

The Memory Hierarchy
? Memory is arranged as a hierarchy

3

CPU
registers, L1 cache

L2 cache

primary memory

disk storage (secondary memory)

tape or optical storage (tertiary memory)

random access

sequential access

Each level acts as a cache
of data from the level
below.

5/14/2001 4

Physical Disks

• The OS must deal with the mess of physical devices:
• errors
• bad blocks
• missed seeks

• The job of the OS is to hide this mess from higher levels by:
• providing low-level device control
• providing higher-level abstractions: files, database,

• The OS may provide different levels of disk access
• physical disk block (surface, cylinder, sector)
• disk logical block (disk block #)
• file logical (file block, record, or byte #)

5/14/2001 5

Physical Disk Structure

• Disk are made of
metal platters with a
read/write head
flying over it.

• To read from disk,
we must specify:

• cylinder #
• surface #
• sector #
• transfer size
• memory

address
• Transfer time

includes: seek,
latency, and transfer
time

ReadWrite heads

Platters
Spindle

Track

Sector

Seek Time

Rot
Delay

5/14/2001 6

Some Typical Numbers

• Sector size: 512 bytes
• Cylinders per disk (tracks per platter): 6962
• Platters: 3 - 12
• Rotational speed: 10000 RPM
• Storage size: 4 - 80 GB
• Seek time: 5 - 12 ms
• Latency: 3 ms
• Transfer rate: 14 - 20 MB/sec

5/14/2001 7

Disk Structure

• There is no structure to a disk except cylinders and sectors,
anything else is up to the OS.

• The OS imposes some structure on disks.
• Each disk contains:

• 1. data: e.g., user files
• 2. meta-data: OS info describing the disk structure

• For example, the free list is a data structure indicating
which disk blocks are free. It is stored on disk (usually) as a
bit map: each bit corresponds to one disk block.

• The OS may keep the free list bit map in memory and write it
back to disk from time to time.

5/14/2001 8

Dealing with Mechanical Latencies

• Caches
• locality in file access

• RAM disk
• cheap, slow, big memory on the disk.

• RAID
• parallelism

• Clev er layouts and scheduling algorithms
• head scheduling
• meta-information layout

5/14/2001 9

Bad Blocks

• With increasing densities, all disks have some bad
blocks, and some go bad as time goes on.

• The OS can remove that block from its allocation
map.

• On some disks, each cylinder contains a set of
replacement blocks that the device can remap to
replace other “logical” blocks on the same
cylinder that are bad.

5/14/2001 10

The File System

• The file system supports the abstraction of file
objects. It supports creation, deletion, access,
naming, sharing, and protection.

• A file is simply a named collection of data.
• The structure and interpretation of that data is

typically defined by its creator and unknown to the
file system.

• In some systems, though, the file type is known to
the system, to prevent improper file manipulation.

5/14/2001 11

Directories

• Directories support file naming and location.
• Most systems (like unix) support multi-level

directories, where a file name describes its path
from a root through the directories to the file at
the leaf.

• Most systems have a current directory, from
which names can be specified relatively, as
opposed to absolutely from the root of the
directory tree.

Directories

? Conceptually, a directory describes the logical
information about a file, e.g.:

 - file name
 - file type
 - file size
 - location on disk
 - current position of open file
 - protection
 - creation and last access time
 -.... other stuff 13

(this info may or may
not be actually stored
in the directory)

5/14/2001 13

Protection

• Files can be protected in different ways:
• not at all (open system, single-user system)
• protected access: read, write, execute, append, delete
• complete access control list: list of users who have (or are

denied) access, along with access allowed/denied
• simple group schemes: owner, group, everyone

5/14/2001 14

Access Methods

• Some file systems provide different access
methods that specify the data to read in different
ways:

• sequential access: read bytes one at a time, in order
• direct access: random access, given block/byte number
• record access: file is array of fixed- or variable-length

records, read/written sequentially or randomly by record
number

• indexed access: file system contains an index to a
particular field of each record in a file. reads specify a
value for that field, and the system finds the record
through the index.

5/14/2001 15

Meta-Data

• How the meta-data is represented is an OS issue, e.g., the free list
could be a bit map, or a linked list (each free block points to next
one), or something else.

• Disk storage (files) can be allocated in different ways:
• contiguously on disk

• it’s fast and simplifies directory access
• it’s inflexible, causes fragmentation, needs

compaction
• linked structures

• each block contains a pointer to the next
• good only for sequential access

• indexed structures
• store index to all blocks in 1 index block
• good for random access.

5/14/2001 16

Storing Files

• Files can be allocated on disk in different ways, e.g.:
• 1. contiguous allocation

• like memory
• fast and simplifies directory access
• inflexible, causes fragmentation, needs compaction

• 2. linked structure
• each block points to next block, directory points to first
• good for sequential access (bad otherwise)

• 3. indexed structure
• an “index block” contains pointers to many other blocks
• better for random access
• may need multiple index blocks (linked together)

5/14/2001 17

Linked-list Allocation

• Every data block in a file contains a pointer to the next
data block

7

File
Block

0

2

File
Block

1

10

File
Block

2

12

File
Block

3

-1

File
Block

4

3

File
Block

0

11

File
Block

1

14

File
Block

2

-1

File
Block

3

Physical 4 7

6

12102

3 11 14

+ A single pointer to the first
block is sufficient to locate
all the data blocks in a file

- Seeking takes O(N) time
where N is the size of the file

File F1

File F2

5/14/2001 18

MS-DOS Filesystem

• MSDOS uses a file allocation table (FAT)
• Just like a linked-structure, except all the pointer

information is stored in a separate table
• For every block, the FAT keeps track of whether or not it is

allocated, and if so, which block it points to
• There are two copies of the FAT on disk

File
Block

0

File
Block

1

File
Block

2

File
Block

3

File
Block

4

Physical 4 7 162

FAT

714

217

116

-103

-100

0

1

1

-1

6

-1

5

2

1

Physical InUse Next

5/14/2001 19

MS-DOS Filesystem

• Advantage:
• Can seek to any location in a file with a single disk read

• Primary disadv antage: space for FAT
• Want to keep FAT in memory
• 20GB disk, 1 KB block size = 20 million entries
• Each disk location specifier is 3 or 4 bytes
• Need 60 – 80MB of memory for the FAT

• Secondary disadv antage: does not deal with failures well
• Two errors will take out the whole filesystem

5/14/2001 20

UNIX Inodes

• A UNIX Inode is
the
metainformation
for UNIX files.

• Contains control
and allocation
information.

• Each inode
contains 15
block pointers.
• first 12 are

direct blocks
• then single,

double, and
triple indirect

0

12
13
14

single indirect

double indirect

triple indirect

..

..

..

1024 indirect blocks

1024 indirect
indirect blocks

1024 indirect indirect
indirect blocks

4K blockss

5/14/2001 21

UNIX Inodes

• Data blocks are 4K
• First 48K are directly reachable from the inode
• A single-indirect block containing 1024 entries addresses 4K

times 1024 = 4M of data
• A double-indirect block addresses 1024 x 1024 x 4K = 4G
• A triple-indirect block addresses 1024 x 1024 x 1024 x 4K = 4T

• Any block can be found with at most 3 disk accesses

5/14/2001 22

UNIX Directories

• Unix directories are just like regular files
• They contain <filename, inode number> tuples

5lib

4etc

3Usr

…

8gupta

7batkin

6egs

Inode 3
Inode 6

…

11cs414

10mail

9grades

5/14/2001 23

Unix Disk Layout

• Boot block provides information on how to boot the
computer

• Superblock contains the filesystem layout: # of inodes,
block size, start of the list of free blocks

• System V:
• Free blocks are kept in a list
• Superblock contains the list of first 100 superblocks
• When the 100th block is allocated, move its list into superblock

• FFS:
• Bitmap per cylinder
• Each cylinder has its own inodes and data blocks.

Boot Block SuperBlock

INodes Data Blocks

5/14/2001 24

Unix Disk Layout

• How do you look up /usr/egs/mail
• Look up the inode of the “/” directory in the superblock, say 2
• Read inode 2, go to all the data blocks and read the directory
• See if “usr” appears in the “/” directory, if so, find its inode number
• Check “usr” directory for subdirectory “egs”
• Check “egs” directory for file “mail”
• Start reading the first data block of “mail”

Boot Block SuperBlock

INodes Data Blocks

5/14/2001 25

Unix Filesystem and Faults

• Problem 1: Disks used to be one of the most unreliable
components in a computer system
• Prone to developing “bad blocks”
• Modern hardware often detects such faults and has spare

blocks that it can transparently remap in place of the bad
blocks

• The filesystems still need to track bad blocks and avoid using
them

• Inode 1 is a special inode that keeps track of where all the bad
blocks are

• Problem 2: System crashes or power failures can
occur at any time
• Any disk operation can be interrupted at any time

5/14/2001 26

Unix file updates

• Need to ensure that the filesystem is consistent
throughout updates
• Data that is being modified may be lost, but the entire

filesystem should not be jepordized

• A write in Unix inv olv es
• Writing the new data
• Updating the inode
• Updating the free list

• Is there a correct order ? What can go wrong if the FS
does not respect the ordering requirements ?

5/14/2001 27

Unix file updates

• Ordering requirements
• Writing the new data MUST HAPPEN BEFORE
• Updating the inode
• Updating the free list

• Is there a correct order ? What can go wrong if the FS
does not respect the ordering requirements ?

5/14/2001 28

Disk Scheduling

• Because disks are slow and seeks are long and depend on
distance, we can schedule disk accesses, e.g.:

• FCFS (do nothing)
• ok when load is low
• long waiting times for long request queue

• SSTF (shortest seek time first)
• always minimize arm movement. maximize throughput.
• favors middle blocks

• SCAN (elevator) -- continue in same direction until done,
then reverse direction and service in that order

• C-SCAN -- like scan, but go back to 0 at end
• In general, unless there are request queues, it doesn’t matter
• The OS (or database system) may locate files

strategically for performance reasons.

