
3/14/2001 1

VM Page Replacement

Emin Gun Sirer

3/14/2001 2

All Paging Schemes Depend on Locality

• Processes tend to reference pages in localized patterns
• Temporal locality

» locations referenced recently likely to be referenced again

• Spatial locality
» locations near recently referenced locations are likely to be

referenced soon.

» Goal of a paging system is

– stay out of the way when there is plenty of available memory
– don’t bring the system to its knees when there is not.

3/14/2001 3

Demand Paging

• Demand Paging refers to a technique where program pages
are loaded from disk into memory as they are referenced.

• Each reference to a page not previously touched causes a
page fault.

• The fault occurs because the reference found a page table
entry with its valid bit off.

• As a result of the page fault, the OS allocates a new page
frame and reads the faulted page from the disk.

• When the I/O completes, the OS fills in the PTE, sets its
valid bit, and restarts the faulting process.

3/14/2001 4

Paging

• Demand paging
» don’t load page until absolutely necessary

» commonly used in most systems

» doing things one at a time can be slower than batching them.

• Prepaging
» anticipate fault before it happens

» overlap fetch with computation
» hard to predict the future

» some simple schemes (hints from programmer or program
behavior) can work.

– vm_advise
– larger “virtual” page size
– sequential pre-paging from mapped files

3/14/2001 5

High Level

• Imagine that when a program starts, it has:
– no pages in memory
– a page table with all valid bits off

• The first instruction to be executed faults, loading the first
page.

• Instructions fault until the program has enough pages to
execute for a while.

• It continues until the next page fault.
• Faults are expensive, so once the program is running they

should not occur frequently, assuming the program is “well
behaved” (has good locality).

3/14/2001 6

Page Replacement

• When a fault occurs, the OS loads the faulted page from
disk into a page of memory.

• At some point, the process has used all of the page frames
it is allowed to use.

• When this happens, the OS must replace a page for each
page faulted in. That is, it must select a page to throw out
of primary memory to make room.

• How it does this is determined by the page replacement
algorithm.

• The goal of the replacement algorithm is to reduce the fault
rate by selecting the best victim page to remove.

3/14/2001 7

Finding the Best Page

• A good property
» if you put more memory on the machine, then your page fault rate

will go down.

» Increasing the size of the resource pool helps everyone.

• The best page to toss out is the one you’ll never need again
» that way, no faults.

• Never is a long time, so picking the one closest to “never” is t he
next best thing.

» Replacing the page that won’t be used for the longest period of time
absolutely minimizes the number of page faults.

» Example:

3/14/2001 8

Optimal Algorithm

• The optimal algorithm, called Belady’s algorithm,
has the lowest fault rate for any reference string.

•Basic idea: replace the page that will not be used
for the longest time in the future.

•Basic problem: phone calls to psychics are
expensive.

•Basic use: gives us an idea of how well any
implementable algorithm is doing relative to the
best possible algorithm.

» compare the fault rate of any proposed algorithm to Optimal

» if Optimal does not do much better, then your proposed
algorithm is pretty good.

» If your proposed algorithm doesn’t do much better than
Random, go home.

3/14/2001 9

Evaluating Replacement Policies

Effective Access.Time = (1-p)*Tm + p*Td
Tm = time to access main memory
Td = time to fault

Execution time = (roughly) #memory refs * E.A.T.

of physical page frames

execution
time

Random

LRU

Opt

Down in
this
range,
it doesn’t
matter so
much what
you do.

In here,
you can
expect to
have some
effect.

Up here,
forget it.

Few frames Lots of frames

3/14/2001 10

FIFO

• FIFO is an obvious algorithm and simple to implement.
• Basic idea, maintain a list or queue of pages in the

order in which they were paged into memory.

• On replacement, remove the one brought in the
longest time ago.

• Why might it work?

» Maybe the one brought in the
longest ago is one we’re not using now.

• Why it might not work?

» Maybe it’s not.
» We have no real information to tell us if it’s being used or

not.
• FIFO suffers from “Belady’s anomaly”

» the fault rate might actually increase when the algorithm
is given more memory -- a bad property.

This page
was faulted
recently

This page
was faulted
a long time ago.

3/14/2001 11

An Example of Optimal and FIFO in
Action

Reference stream is A B C A B D A D B C

OPTIMAL
A B C A B D A D B C B

toss A or Dtoss C5 Faults

FIFO
A B C A B D A D B C B

toss A

A
B
C
D
A
B
C

toss ?7 Faults

3/14/2001 12

Least Recently Used (LRU)

• Basic idea: we can’t look into the
future, but let’s look at past experience
to make a good guess.

• LRU: on replacement, remove the
page that has not been used for the
longest time in the past.

• Implementation: to really implement
this, we would need to time stamp
every reference, or maintain a stack
that’s updated on every reference.
This would be too costly.

• So, we can’t implement this exactly,
but we can try to approximate it.

» why is an approximate solution totally
acceptable?

This page was
most recently used.

This page
was least
recently
used.

Our “bet” is that pages
which you used recently
are ones which you will
use again (principle of
locality) and, by
implication, those that
you didn’t, you won’t.

3/14/2001 13

Using the Reference Bit

•Various LRU approximations use the PTE reference
bit.

– keep a counter for each page
– at regular intervals, do:
– for every page:

• if ref bit = 0, increment its counter
• if ref bit = 1, zero its counter
• zero the reference bit

– the counter will thus contain the number of intervals since the last
reference to the page.

– the page with the largest counter will be least recently used one.

• If we don’t have a reference bit, we can simulate it using the
VALID bit and taking a few extra faults.

» therefore want impact when there is plenty of memory to be low.

3/14/2001 14

LRU Clock (Not Recently Used)

• Basic idea is to reflect the passage of time in
the actual data structures and sweeping
method.

• Arrange all of physical pages in a big circle
(a clock).

• A clock hand is used to select a good LRU
candidate:

» sweep through the pages in circular order like
a clock.

» if the ref bit is off, it’s a good page.
» else, turn the ref bit off and try next page.

• Arm moves quickly when pages are needed.

• Low overhead when plenty of memory

• If memory is big, “accuracy” of information
degrades.

» add in additional hands

P0 P1

P2

3/14/2001 15

Fixed Space Vs. Variable Space

• In a multiprogramming system, we need a way to
allocate memory to the competing processes.

» Question is: how to determine how much memory to give to each
process?

• In a fixed-space algorithm each process is given a
limit of pages it can use; when it reaches its limit, it
starts replacing new faults with its own pages. This is
called local replacement.

» some processes may do well while others suffer.

• In variable-spaced algorithms, each process can
grow or shrink dynamically, displacing other process’
pages. This is global replacement.

» one process can ruin it for the rest.
3/14/2001 16

Working Set Model

•Peter Denning defined the working set of a program
as a way to model the dynamic locality of a program
in execution.

•Definition:
WS(t,w) = {pages i s.t. i was referenced in the
interval (t,t-w)}

t is a time, w is the working set window, a backward
looking interval,measured in references.

•So, a page is in the WS only if it was referenced in
the last w references.

3/14/2001 17

Working Set Size

• The working set size is the number of pages in the
working set; i.e., the number of pages touched in the interval (t, t-
w).

• The working set size changes with program locality.
» during periods of poor locality, you reference more pages.
» so, within that period of time, you will have a larger working set size.

• For some parameter w, we could keep the working sets of
each process in memory.

•Don’t run process unless working set is in memory.

t

w
time

references

3/14/2001 18

WS

•But, we have two problems:
– how do we select w?
– how do we know when the working set changes?

•So, working set is not used in practice.

3/14/2001 19

Page Fault Frequency

• PFF is a variable space
algorithm that uses a more ad
hoc approach.

• Basic idea:
– monitor the fault rate for each

process
– if the fault rate is above a high

threshold, give it more memory
• should fault less
• but it doesn’t always

– if the rate is below a low threshold,
take away memory

• should fault more
• but it doesn’t always

• Hard to tell between changes
in locality and changes in size
of working set.

TIME

Fault
Rate

3/14/2001 20

What do you do to pages?

• If the page is dirty, you have to write it out to disk.
» record the disk block number for the page in the PTE.

• If the page is clean, you don’t have to do anything.
» just overwrite the page with new data
» make sure you know where the old copy of the page came from

• Want to avoid THRASHING
» When a paging algorithm breaks down

» Most of the OS time spent in ferrying pages to and from disk
» no time spent doing useful work.

» the system is OVERCOMMITTED
– no idea what pages should be resident in order to run effectively

» Solutions include:

– SWAP
– Buy more memory

