
Synchronization

22/18/2002

Synchronization

• Basic Problem:
If two concurrent processes are accessing a shared variable,
and that variable is read, modified, and written by those
processes, then the variable must be controlled to avoid
erroneous behavior.

32/18/2002

ATM Example

• Suppose each cash machine transaction is
controlled by a separate process, and the
withdraw code is:

current_balance = get_balance(acct_ID)
curr_balance = curr_balance - withdraw_amt
put_balance(act_ID,curr_balance)
deliver_bucks(withdraw_amt)

• Now, suppose that you and your SO share an
account. You each to to separate cash
machines and withdraw $100 from your
balance of $1000.

42/18/2002

ATM Example

you: curr_balance=get_balance(acct_ID)

you: withdraw_amt=read_amount()

you: curr_balance=curr_balance-withdraw_amt

so: curr_balance=get_balance(acct_ID)

so: withdraw_amt=read-amount()

so: curr_balance=curr_balance-withdraw_amt

so: put_balance(acct_ID,curr_balance)

so: deliver_bucks(withdraw_amt)

you: put_balance(acct_ID,curr_balance)

you: deliver_bucks(withdraw_amt)

• What happens?
• Why does it happen?

context switch

context switch

52/18/2002

Problems

• A problem exists because a shared data item
(curr_balance) was accessed without control by
processes that read, modified, and then rewrote
that data.

• We need ways to control access to shared
variables.

62/18/2002

Critical Sections

• The Too Much Milk or the bank balance
problem illustrates the difficulty of coordinating
processes

– Race conditions
– Deadlock / Livelock
– Starvation

• Atomic loads and stores make synchronization
difficult (but not impossible)

– For two processes, the simplest correct solution is
asymmetric

– For three or more processes, the bakery (or post office)
algorithm requires auxiliary data structures

72/18/2002

Criteria for Critical Sections

• A good solution to the critical section
problem would have three properties

– Mutual exclusion
– Progress
– Bounded Waiting

• Cannot make any assumptions about
the relative speeds of processes

82/18/2002

Hardware Primitives

• Modern hardware provides better atomic
operations than load/store

– Test-And-Set (TAS)
– Swap
– Compare-And-Swap (CAS)
– Load-Linked & Store-Conditional (LL/SC)

92/18/2002

Test-And-Set

• Simple primitive
• Makes programming critical sections

easy

void TAS(int *location) {

int oldvalue = *location;

*location = 1;

return oldvalue;

}

The entire function is
Atomic

You could implement this on
hardware by keeping the bus
locked for both a load and a
store transaction.

102/18/2002

Critical Sections with TAS

• While(TAS(&lock) == 1) {
/* do nothing */

}
critical section

Lock = 0;

Problem: busy-waiting for the entire duration
of the critical section

112/18/2002

Semaphores

• Dijkstra, in the THE system, defined a type of
variable and two synchronization operations that
can be used to control access to critical sections.

• A semaphore is a variable that is manipulated
atomically through operations V(s) (signal) and
P(s) (wait).

• To access a critical section, you must:
P(s) ;wait until semaphore is available; also known as wait()

<critical section code>

V(s) ;signal others to enter; also known as signal()

122/18/2002

Semaphores

• Associated with each semaphore is a queue of
waiting processes.

• If you execute wait(s) and the semaphore is free,
you continue; if not, you block on the waiting
queue.

• A signal(s) unblocks a process if it’s waiting.

132/18/2002

Spinlocks
typedef struct spinlock {

int lock:
} Spinlock;

void acquire(Spinlock *s) {
while(test_and_set(s->lock) == 1)

/* do nothing, or yield */;
}

void release(Spinlock *s) {
atomicclear(s->lock);

}

Signal and Wait must be
atomic

142/18/2002

Semaphores
typedef struct semaphore {

int value:
ProcessList L;

} Semaphore;

void P(Semaphore *S) {
S->value = S->value - 1;
if (S.value < 0) {

add this process to S.L;
block(&S->lock);

}
}

void V(S) {
S->value = S->value + 1;
if (S->value <= 0) {

remove a process P from S.L;
wakeup P

}
}

Signal and Wait must be
atomic

152/18/2002

Semaphores
typedef struct semaphore {

int lock;
int value:
ProcessList L;

} Semaphore;

void P(Semaphore *S) {
while(test_and_set(&S->lock) == 1) /* do nothing */;
S->value = S->value - 1;
if (S.value < 0) {

add this process to S.L;
atomic_clear_and block(&S->lock);

} else
atomicclear(&S->lock);

}

void V(S) {
while(test_and_set(&S->lock) == 1) /* do nothing */;
S->value = S->value + 1;
if (S->value <= 0) {

remove a process P from S.L;
wakeup P

}
atomicclear(&S->lock);

}

Signal and Wait must be
atomic

162/18/2002

Semaphore Types

• In general, there are two types of semaphores:

– a mutex semaphore guarantees mutually exclusive access to

a resource (only one entry). The mutex sema is initialized to

1.

– A counting semaphore represents a resource with many units

available (as indicated by the count to which it is initialized).

A counting semaphore lets a process pass as long as more

instances are available.

172/18/2002

Example: Mutual exclusion
with Semaphores

Semaphore *traysema = semacreate(1);

void cook() {
while(TRUE) {

Burger *burger = makeburger();
P(traysema);
placeItemOnTray(burger);
V(traysema);

}
}

void customer() {
while(TRUE) {

Burger *burger;

P(traysema);
burger = grabItemFromTray(burger);
V(traysema);

}

}

182/18/2002

Example: Waiting for a
condition

Semaphore *sema = semacreate(0);

void Bob() {
while(TRUE) {

/* Block until Abe is done with his construction */
P(sema);
removeCarFromAssemblyLine();
…

}
}

void Abe() {
while(TRUE) {

/* Prepare a chassis – this will take a while */
prepareChassis();
placeChassisOnAssemblyLine();
V(sema);

}

}

192/18/2002

Example: Mutual exclusion
with Semaphores

Semaphore *traysema = semacreate(1);
Semaphore *trayfull = semacreate(0);
Semaphore *trayempty = semacreate(1);

void cook() {
while(TRUE) {

Burger *burger;
P(trayempty);
burger = makeburger();
P(traysema);
placeItemOnTray(burger);
V(traysema);
V(trayfull);

}
}

void customer() {
while(TRUE) {

Burger *burger;
P(trayfull);
P(traysema);
burger = grabItemFromTray(burger);
V(traysema);
V(trayempty);

}

202/18/2002

Example: Bounded Buffer Problem

• The Problem:
There is a buffer shared by producer processes, which insert
into it, and consumer processes, which remove from it.

The processes are concurrent, so we must control their
access to the (shared) variables that describe the state of the
buffer.

212/18/2002

Bounded Buffer Sema Implementation

var mutex: semaphore = 1 ;mutual exclusion to shared data
empty: semaphore = n ;count of empty buffers (all empty to start)
full: semaphore = 0 ;count of full buffers (none full to start)

producer:
wait(empty) ; one fewer buffer, block if none available
wait(mutex) ; get access to pointers

<add item to buffer>
signal(mutex) ; done with pointers
signal(full) ; note one more full buffer

consumer:
wait(full) ;wait until there’s a full buffer
wait(mutex) ;get access to pointers

<remove item from buffer>
signal(mutex) ; done with pointers
signal(empty) ; note there’s an empty buffer

<use the item>

222/18/2002

Dining Philosophers
Semaphore *chopsticks[NCHOPSTICKS];

Initialize() {
for(I=0; I<NCHOPSTICKS; ++I) {

chopstick[I] = semacreate(1);
}

}

Philosopher() {
while(TRUE) {

P(chopstick[i]);
P(chopstick[(i+1) % NCHOPSTICKS]);

eat();
V(chopstick[i]);
V(chopstick[(i+1) % NCHOPSTICKS]);

think();
}

}

232/18/2002

Dining Philosophers

• Deadlock!
• Allow at most N-1 philosophers at the

table
• Pick up chopsticks in a global critical

region
• Odd philosophers pick left, then right,

even philosophers pick right, then left,
chopstick

242/18/2002

Example: Readers/Writers Problem

• Basic Problem:
– an object is shared among several processes, some which

only read it, and some which write it.
– We can allow multiple readers at a time, but only one writer at

a time.
– How do we control access to the object to permit this

protocol?

252/18/2002

Readers/Writers Sema Implementation

var mutex: semaphore ; controls access to readcount
wrt: semaphore ; control entry to a writer or first reader
readcount: integer ; number of readers

write process:
wait(wrt) ; any writers or readers?

<perform write operation>
signal(wrt) ; allow others

read process:
wait(mutex) ; ensure exclusion

readcount = readcount + 1 ; one more reader
if readcount = 1 then wait(wrt) ; if we’re the first, synch with writers

signal(mutex)
<perform reading>

wait(mutex) ; ensure exclusion
readcount = readcount - 1 ; one fewer reader
if readcount = 0 then signal(wrt) ; no more readers, allow a writer

signal(mutex)

262/18/2002

Readers/Writers Impl. Notes

• Note that:
1. The first reader blocks if there is a writer; any other readers

who try to enter will then block on mutex.

2. Once a writer exists, all readers will fall through.

3. The last reader to exit signals a waiting writer.

4. When a writer exits, if there is both a reader and writer
waiting, which goes next depends on the scheduler.

