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Synchronization

• Basic Problem:
If two concurrent processes are accessing a shared variable, 
and that variable is read, modified, and written by those 
processes, then the variable must be controlled to avoid 
erroneous behavior.
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ATM Example

• Suppose each cash machine transaction is 
controlled by a separate process, and the 
withdraw code is:

current_balance = get_balance(acct_ID)
curr_balance = curr_balance - withdraw_amt
put_balance(act_ID,curr_balance)
deliver_bucks(withdraw_amt)

• Now, suppose that you and your SO share an 
account.  You each to to separate cash 
machines and withdraw $100 from your 
balance of $1000.
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ATM Example

you: curr_balance=get_balance(acct_ID)

you: withdraw_amt=read_amount()

you: curr_balance=curr_balance-withdraw_amt

so: curr_balance=get_balance(acct_ID)

so: withdraw_amt=read-amount()

so: curr_balance=curr_balance-withdraw_amt

so: put_balance(acct_ID,curr_balance)

so: deliver_bucks(withdraw_amt)

you: put_balance(acct_ID,curr_balance)

you: deliver_bucks(withdraw_amt)

• What happens?
• Why does it happen?

context switch

context switch
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Problems

• A problem exists because a shared data item 
(curr_balance) was accessed without control by 
processes that read, modified, and then rewrote 
that data.

• We need ways to control access to shared 
variables.
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Critical Sections

• The Too Much Milk or the bank balance 
problem illustrates the difficulty of coordinating 
processes

– Race conditions
– Deadlock / Livelock
– Starvation

• Atomic loads and stores make synchronization 
difficult (but not impossible)

– For two processes,  the simplest correct solution is 
asymmetric

– For three or more processes, the bakery (or post office) 
algorithm requires auxiliary data structures
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Criteria for Critical Sections

• A good solution to the critical section 
problem would have three properties

– Mutual exclusion
– Progress
– Bounded Waiting

• Cannot make any assumptions about 
the relative speeds of processes
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Hardware Primitives

• Modern hardware provides better atomic 
operations than load/store

– Test-And-Set (TAS)
– Swap
– Compare-And-Swap (CAS)
– Load-Linked & Store-Conditional (LL/SC)
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Test-And-Set

• Simple primitive
• Makes programming critical sections 

easy

void TAS(int *location) {

int oldvalue = *location;

*location = 1;

return oldvalue;

}

The entire function is
Atomic

You could implement this on 
hardware by keeping the bus 
locked for both a load and a 
store transaction.
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Critical Sections with TAS

• While(TAS(&lock) == 1) {
/* do nothing */

}
critical section

Lock = 0;

Problem: busy-waiting for the entire duration 
of the critical section
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Semaphores

• Dijkstra, in the THE system, defined a type of 
variable and two synchronization operations that 
can be used to control access to critical sections.

• A semaphore is a variable that is manipulated 
atomically through operations V(s) (signal) and 
P(s) (wait).

• To access a critical section, you must:
P(s) ;wait until semaphore is available; also known as wait()

<critical section code>

V(s) ;signal others to enter; also known as signal()



122/18/2002

Semaphores

• Associated with each semaphore is a queue of 
waiting processes.

• If you execute wait(s) and the semaphore is free, 
you continue; if not, you block on the waiting 
queue.

• A signal(s) unblocks a process if it’s waiting.
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Spinlocks
typedef struct spinlock {

int lock:
} Spinlock;

void acquire(Spinlock *s) {
while(test_and_set(s->lock) == 1)

/* do nothing, or yield */;
}

void release(Spinlock *s) {
atomicclear(s->lock);

}

Signal and Wait must be
atomic
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Semaphores
typedef struct semaphore {

int value:
ProcessList L;

} Semaphore;

void P(Semaphore *S) {
S->value = S->value - 1;
if (S.value < 0) {

add this process to S.L;
block(&S->lock);

}
}

void V(S) {
S->value = S->value + 1;
if (S->value <= 0) {

remove a process P from S.L;
wakeup P

}
}

Signal and Wait must be
atomic
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Semaphores
typedef struct semaphore {

int lock;
int value:
ProcessList L;

} Semaphore;

void P(Semaphore *S) {
while(test_and_set(&S->lock) == 1) /* do nothing */;
S->value = S->value - 1;
if (S.value < 0) {

add this process to S.L;
atomic_clear_and block(&S->lock);

} else
atomicclear(&S->lock);

}

void V(S) {
while(test_and_set(&S->lock) == 1) /* do nothing */;
S->value = S->value + 1;
if (S->value <= 0) {

remove a process P from S.L;
wakeup P

}
atomicclear(&S->lock);

}

Signal and Wait must be
atomic
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Semaphore Types

• In general, there are two types of semaphores:

– a mutex semaphore guarantees mutually exclusive access to 

a resource (only one entry).  The mutex sema is initialized to 

1.

– A counting semaphore represents a resource with many units 

available (as indicated by the count to which it is initialized).  

A counting semaphore lets a process pass as long as more 

instances are available.
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Example: Mutual exclusion 
with Semaphores

Semaphore *traysema = semacreate(1);

void cook() {
while(TRUE) {

Burger *burger = makeburger();
P(traysema);
placeItemOnTray(burger);
V(traysema);

}
}

void customer() {
while(TRUE) {

Burger *burger;

P(traysema);
burger = grabItemFromTray(burger);
V(traysema);

}

}
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Example: Waiting for a 
condition

Semaphore *sema = semacreate(0);

void Bob() {
while(TRUE) {

/* Block until Abe is done with his construction */
P(sema);
removeCarFromAssemblyLine();
…

}
}

void Abe() {
while(TRUE) {

/* Prepare a chassis – this will take a while */
prepareChassis();
placeChassisOnAssemblyLine(); 
V(sema);

}

}
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Example: Mutual exclusion 
with Semaphores

Semaphore *traysema = semacreate(1);
Semaphore *trayfull = semacreate(0);
Semaphore *trayempty = semacreate(1);

void cook() {
while(TRUE) {

Burger *burger;
P(trayempty);
burger = makeburger();
P(traysema);
placeItemOnTray(burger);
V(traysema);
V(trayfull);

}
}

void customer() {
while(TRUE) {

Burger *burger;
P(trayfull);
P(traysema);
burger = grabItemFromTray(burger);
V(traysema);
V(trayempty);

}
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Example: Bounded Buffer Problem

• The Problem:
There is a buffer shared by producer processes, which insert 
into it, and consumer processes, which remove from it.

The processes are concurrent, so we must control their 
access to the (shared) variables that describe the state of the 
buffer.
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Bounded Buffer Sema Implementation

var mutex: semaphore = 1 ;mutual exclusion to shared data
empty: semaphore = n ;count of empty buffers (all empty to start)
full: semaphore = 0 ;count of full buffers (none full to start)

producer:
wait(empty) ; one fewer buffer, block if none available
wait(mutex) ; get access to pointers

<add item to buffer>
signal(mutex) ; done with pointers
signal(full) ; note one more full buffer

consumer:
wait(full) ;wait until there’s a full buffer
wait(mutex) ;get access to pointers

<remove item from buffer>
signal(mutex) ; done with pointers
signal(empty) ; note there’s an empty buffer

<use the item>
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Dining Philosophers
Semaphore *chopsticks[NCHOPSTICKS];

Initialize() {
for(I=0; I<NCHOPSTICKS; ++I) {

chopstick[I] = semacreate(1);
}

}

Philosopher() {
while(TRUE) {

P(chopstick[i]); 
P(chopstick[(i+1) % NCHOPSTICKS]); 

eat();
V(chopstick[i]); 
V(chopstick[(i+1) % NCHOPSTICKS]); 

think();
}

}



232/18/2002

Dining Philosophers

• Deadlock!
• Allow at most N-1 philosophers at the 

table
• Pick up chopsticks in a global critical 

region
• Odd philosophers pick left, then right, 

even philosophers pick right, then left, 
chopstick
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Example: Readers/Writers Problem

• Basic Problem:
– an object is shared among several processes, some which 

only read it, and some which write it.
– We can allow multiple readers at a time, but only one writer at 

a time.
– How do we control access to the object to permit this 

protocol?
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Readers/Writers Sema Implementation

var mutex: semaphore ; controls access to readcount
wrt: semaphore ; control entry to a writer or first reader
readcount: integer ; number of readers

write process:
wait(wrt) ; any writers or readers?

<perform write operation>
signal(wrt) ; allow others

read process:
wait(mutex) ; ensure exclusion

readcount = readcount + 1 ; one more reader
if readcount = 1 then wait(wrt) ; if we’re the first, synch with writers

signal(mutex)
<perform reading>

wait(mutex) ; ensure exclusion
readcount = readcount - 1 ; one fewer reader
if readcount = 0 then signal(wrt) ; no more readers, allow a writer

signal(mutex)
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Readers/Writers Impl. Notes

• Note that:
1. The first reader blocks if there is a writer; any other readers 

who try to enter will then block on mutex.

2. Once a writer exists, all readers will fall through.

3. The last reader to exit signals a waiting writer.

4. When a writer exits, if there is both a reader and writer 
waiting, which goes next depends on the scheduler.


