
Architectural Support
for

Operating Systems

Emin Gun Sirer

2

OS and Architectures

• What an OS can do is dictated, at least in part, by the
architecture.

• Architecture support can greatly simplify (or
complicate) OS tasks

• Example: PC operating systems have been primitive,
in part because PCs lacked hardware support (e.g.,
for VM)

3

Computer-System Architecture

4

Building a Computer System

CPU

Memory

Data
32

Address
64

• System Bus
– A short interconnect for system

components
– Synchronous, all components

share the same clock
– Has Data, Address, R/W lines

for choosing memory locations

• What happens when the
memory chip capacity is less
than 264 (100 exabytes) ?

R/W
1

Clock
1

5

Building a Computer System

CPU

Memory Bank 0

Data
32

Address
64

• We can divide memory into
banks, and select each bank
using a demultiplexer

• Use the higher order address
bits to differentiate between
memory banks, and enable
the right bank

• How do we interface I/O
devices to the CPU ?

R/W
1

Clock
1

Memory Bank 1

32 1 163

1-to-2
Demux

6

Building a Computer System

CPU

Memory Bank 0

Data
32

Address
64

• Memory-mapped I/O: I/O devices
appear to the CPU as regular
memory addresses

• Reading and writing certain
locations in memory have special
semantics
– E.g. location 0xf000 may hold the

rotational speed of the disk, 0xf0001
the disk head position, …

• Regular loads and stores control
I/O devices

R/W
1

Clock
1

Memory Bank 1

32 1 162

2-to-4
Demux

Disk Controller

7

Building a Computer System

CPU

Memory

DataAddress

• Programmed I/O: a.k.a. “I/O-
mapped I/O”: The CPU has a
special, separate bus for I/O
operations

• Special instructions control
the operations issued on the
I/O bus

• Not very common, most
computer systems use
memory-mapped I/O

R/W Clock

Disk Controller

I/O op
Data

I/O
Clock

8

Building a Computer System

CPU

Memory

DataAddress

• I/O devices operate
independently of the CPU

• CPU can check the status of
the device by polling, but this
may be inefficient

• Need mechanism to interrupt
the CPU

• Typically:
– A line to alert the CPU
– A set of lines to specify priority

R/W Clock

Disk Controller

Interrupt

Priority

9

Direct Memory Access (DMA)

• Used for high-speed I/O devices able to transmit
information at close to memory speeds.

• Device controller transfers blocks of data from buffer
storage directly to main memory without CPU
intervention.

• Only one interrupt is generated per block, rather than
one interrupt per byte.

10

Computer-System Operation

• I/O devices and the CPU can execute concurrently.
• Each device controller is in charge of a particular

device type.
• Each device controller has a local buffer.
• CPU moves data from/to main memory to/from local

buffers
• I/O id to/from the device to local buffer of controller.

11

Problem

• You work at Wintel Corp. as an OS designer. The architects
unveil their latest chip design, the Septium. They have
reengineered the entire instruction set. The Septium runs at 50
GHz, and costs $5.

– They have only tested it with a matrix multiply program. The results are
impressive.

– The new Septium instruction set only supports arithmetic,
jumps/branches, loads/stores.

– The Septium has no interrupts, traps or exceptions, supports only
physical addressing and uses only programmed I/O.

– The technical writers are really happy as well, because the design
specification fits on a single page.

• Your task is to come up with a list of features they will need to
add to the chip design to support a modern PC operating system.
Note that a modern PC OS will at least guarantee the integrity of
users’ data in the face of multiple, potentially malicious users and
concurrent applications.

12

Architectural Support for OSes

• Features that directly support OS needs include:
–1. Protected instructions
–2. System calls
–3. Synchronization (atomic instructions)
–4. Memory protection
–5. I/O control and operation
–6. Interrupts and exceptions
–7. Timer (clock) operation

13

Protected Instructions

• Some instructions need to be restricted to the O.S.
–Users cannot be allowed direct access to some

hardware resources
–Direct access to I/O devices like disks, printers, etc.
–Must control instructions that manipulate memory

management state (page table pointers, TLB load,
etc.)

–Setting of special mode bits
–Halt instruction

14

OS Protection

• How do we restrict users from issuing such instructions ?
– Hardware supports a scheme that allows us to tell apart

the trusted programmer (operating system designer) from
untrusted programmers (regular users).

– Most architectures support at least two modes of
operation: kernel mode and user mode

– The OS executes in kernel mode, user programs execute
in user mode

– Mode is indicated by a status bit in a protected processor
register

• Protected instructions can only be executed in kernel mode.

15

Crossing Protection Boundaries

• For a user to do something “privileged” (e.g., I/O) it must call
an OS procedure.

• How does a user-mode program call a kernel-mode
service?

• There must be a system call instruction that switches from
user to kernel mode

• The system call instruction usually does the following:
– causes an exception, which vectors to a kernel handler
– passes a parameter, saying which system routine to call
– saves caller’s state (PC, SP, other registers, etc.) so it can

be restored
– arch must permit OS to verify caller’s parameters
– must provide a way to return to user mode when done

Protection Modes and Crossing

7

OS Kernel

User Programs

system call

trap to kernel
mode

trap handler system service routine

return to user mode

kernel mode

user mode

17

Partitioning Functionality

• Problem: The user-kernel mode distinction poses a
performance barrier

– Crossing this hardware barrier is costly. System
calls take 10x to 1000x more time than a
procedure call

• Solution: Perform some system functionality in user
mode

– Libraries (DLLs) can reduce the number of
system calls, e.g. by caching results (getpid) or
buffering operations (open/read/write vs. fopen,
fread, fwrite).

18

Memory Protection

• Need to protect a user program from accessing the data in
other user programs

• Need to protect the OS from user programs
• Simplest scheme is base and limit registers:

• Virtual memory and segmentation are similar

base register

limit register
Prog A

Prog B

Prog C base and limit registers
are loaded by the OS
before starting a program

memory

19

Traps and Exceptions

• Traps and exceptions are initiated by the application
• Hardware must detect special conditions: page fault, write to

a read-only page, overflow, trace trap, odd address trap,
privileged instruction trap...

• Must transfer control to handler within the O.S.
• Hardware must save state on fault (PC, etc) so that the

faulting process can be restarted afterwards
• Modern operating systems use VM traps for many functions:

debugging, distributed VM, garbage collection, copy-on-
write...

• Exceptions are a performance optimization, i.e., Conditions
could be detected by inserting extra instructions in the code
(at high cost)

20

Interrupts

• Interrupts are device-initiated
• Interrupts transfer control to the interrupt service

routine, through the interrupt vector, which contains
the addresses of all the service routines.

• Interrupt architecture must save the machine context
at the interrupted instruction.

• Incoming interrupts are often disabled while another
interrupt is being processed to prevent a lost interrupt.

• Most operating systems are interrupt driven.

21

I/O Structure

• I/O issues:
– how to start an I/O (special instructions or memory-mapped I/O)

– I/O completion (interrupts)

• Synchronous I/O: After I/O starts, control returns to user program only
upon I/O completion.

– wait instruction idles the CPU until the next interrupt

– wait loop (contention for memory access).

– At most one I/O request is outstanding at a time, no simultaneous I/O processing.

• Asynchronous I/O: After I/O starts, control returns to user program
without waiting for I/O completion.

– System call – request to the operating system to allow user to wait for I/O
completion.

– Device-status table contains entry for each I/O device indicating its type, address,
and state.

– Operating system indexes into I/O device table to determine device status and to
modify table entry to include interrupt.

22

Two I/O methods

Synchronous Asynchronous

I/O Control (cont)

11

device interrupts

CPU stops current operation, switches to
kernel mode, and saves current PC and

other state on kernel stack

CPU fetches proper vector from
vector table and branches to that

address (the routine to handle
interrupt)

interrupt routine examines device database
and performs action required by interrupt

handler completes operation, restores saved
(interrupted state) and returns to user mode

(or calls scheduler to switch to another
program)

24

Timer Operation

• How does the OS prevent against runaway user programs
(infinite loops)?

• A timer can be set to generate an interrupt in a given time.
• Before it transfers to a user program, the OS loads the timer

with a time to interrupt.
• When the time arrives, the executing program is interrupted

and the OS regains control.
• This ensures that the OS can get the CPU back even if a user

program erroneously or purposely continues to execute
past some allotted time.

• The timer is privileged: only the OS can load it.

25

Synchronization

• Interrupts cause potential problems because an interrupt
can occur at any time -- causing code to execute that
interferes with code that was interrupted

• OS must be able to synchronize concurrent processes
• This requires guaranteeing that certain instruction

sequences (read-modify-write) execute atomically
• One way to guarantee this is to turn off interrupts before the

sequence, execute it, and re-enable interrupts; CPU must
have a way to disable interrupts

– When would this not be sufficient

• Another is to have special instructions that can perform a
read/modify/write in a single bus transaction, or can
atomically test and conditionally set a bit, based on its
previous value

