
1

UDP, TCP, IP multicast

Dan Williams

In this lecture

• UDP (user datagram protocol)
– Unreliable, packet-based

• TCP (transmission control protocol)
– Reliable, connection oriented, stream-based

• IP multicast

2

Process-to-Process

• We’ve talked about host-to-host packet
delivery with IP

• Now we look at process-to-process
communication
– UDP (user datagram protocol)
– TCP (transmission control protocol)

• Transport Layer Protocols
– OSI model, TCP/IP model

ISO OSI Reference Model
Application

Presentation

Network

Session

Data Link

Transport

Physical

Application

Presentation

Network

Session

Data Link

Transport

Physical

Network

Data Link

Physical

Network

Data Link

Physical

One or more nodes within network

3

TCP/IP Architecture

end-user application process

HTTP, FTP, TELNET, SMTP,
DNS, SNMP

TCP UDP

IP

IEEE802.X/X.25

LAN/WAN

Layers 5-7

Layer 4

Layers 1-3

What we want from transport layer

• Guaranteed message delivery
• Same order message delivery
• Send arbitrarily large messages
• Allow receiver to apply flow control to

sender
• Support multiple application processes on

each host
• Network congestion control

4

Remember Network may

• Drop packets
• Reorder packets
• Deliver duplicate copies of a packet
• Limit packets to some finite size
• Deliver packets after arbitrarily long delay

Note: things sent in the network layer are normally called
packets, whereas things sent in the transport layer are
normally called messages.

UDP

• Simple – don’t add much more than the best
effort given by IP

• Demultiplex messages via port numbers
– port number – number that kernel uses to deliver to

appropriate application
– For instance: HTTP is port 80, SMTP is port 25,

Telnet is port 23, DNS is port 53, FTP is port 21

• Ensure correctness of message with checksum
• No connection established, datagram-based

5

What we get from UDP

• NO guaranteed message delivery
• NO guaranteed same order message

delivery
• NO ability to send arbitrarily large

messages
• NO flow control
• Support multiple application processes on

each host
• NO network congestion control

TCP

• Stream based protocol allows us to send
arbitrarily long messages

• Uses port numbers like UDP to send to
multiple processes on each host

• Full duplex protocol
– Both sides are senders and receivers

• We need each packet to have a sequence
number to ensure reliable/in-order delivery

6

TCP connection establishment

• Three-way handshake
– SYN sent with initial

sequence number of
client

Client (active) Server (passive)

SYN, SeqNum=x

TCP connection establishment

• Three-way handshake
– SYN sent with initial

sequence number of
client

– Server ACKs client’s
sequence number and
sends its own sequence
number for SYN

Client (active) Server (passive)

SYN, SeqNum=x

SYN+ACK, SeqNum=y, Ack=x+1

7

TCP connection establishment

• Three-way handshake
– SYN sent with initial

sequence number of
client

– Server ACKs client’s
sequence number and
sends its own sequence
number for SYN

– Client ACKs server’s
sequence number

– Now we are
synchronized and ready
to communicate Client (active) Server (passive)

SYN, SeqNum=x

SYN+ACK, SeqNum=y, Ack=x+1

ACK, Ack=y+1

TCP connection termination

• Each side needs to independently close its
own half of the connection

• There is a handshake for closing, but I
won’t describe it here

8

Sliding window gives us

• Guaranteed message delivery
• Same order message delivery
• Send arbitrarily large messages
• Allow receiver to apply flow control to

sender
• Support multiple application processes on

each host
• Network congestion control

Sliding Window

……

Last ack received Last byte sent

……

Last byte received Largest acceptable byte

Receiving window

Sending window

5 6 7 8 9 10 11 12

5 6 7 8 9 10 11 12

5
6
7
8

9

Sliding Window

……

Last ack received Last byte sent

……

Last byte received Largest acceptable byte

Receiving window

Sending window

5 6 7 8 9 10 11 12

5 6 7 8 9 10 11 12

5
6
7
8

Ack 5

Sliding Window

……

Last ack received Last byte sent

……

Last byte received Largest acceptable byte

Receiving window

Sending window

5 6 7 8 9 10 11 12

5 6 7 8 9 10 11 12

5
6
7
8

Ack 5

9

10

Sliding Window

……

Last ack received Last byte sent

……

Last byte received Largest acceptable byte

Receiving window

Sending window

5 6 7 8 9 10 11 12

5 6 7 8 9 10 11 12

5
6
7
8

Ack 5

9

Sliding Window

……

Last ack received Last byte sent

……

Last byte received Largest acceptable byte

Receiving window

Sending window

5 6 7 8 9 10 11 12

5 6 7 8 9 10 11 12

5
6
7
8

Ack 5

9

6
7
8
9

TIMEOUT!

11

Sliding Window

……

Last ack received Last byte sent

……

Last byte received Largest acceptable byte

Receiving window

Sending window

5 6 7 8 9 10 11 12

5 6 7 8 9 10 11 12

5
6
7
8

Ack 5

9

6
7
8
9

TIMEOUT!

Ack 9

Sliding Window

……

Last ack received Last byte sent

……

Last byte received Largest acceptable byte

Receiving window

Sending window

5 6 7 8 9 10 11 12

5 6 7 8 9 10 11 12

5
6
7
8

Ack 5

9

6
7
8
9

TIMEOUT!

Ack 9

10
11
12
13

12

Sliding Window with TCP

Sending buffer

Sending Application

TCP

Last byte acked Last byte sent

Last byte written

Receiving buffer

Receiving Application

TCP

Next byte expected Last byte received

Last byte read

Using sliding window for
flow control

• Flow control:
– make sure sender doesn’t send more than

receiver can handle
• Receive window can’t slide if receiving

process isn’t ready to read from buffer
• Send advertised window size with ACK

– Sender limits send window size based on
advertised window size

• If send buffer fills up, TCP blocks sender

13

What about congestion control?

• Introduced 8 years after TCP/IP had
become operational

• Internet suffering from congestion collapse
• Idea:

– Determine how many packets can be safely
transmitted

– ACK is a signal that a packet is out of network
and can safely add another

• How do you find out capacity of network?

Additive Increase
Multiplicative Decrease

• Want to find point of congestion in network
• Maintain congestion window size
• TCP send window = min(congest, advert)
• Interpret dropped packets as congestion

Time (seconds)

KB

TCP sawtooth pattern

14

Why decrease aggressively
increase conservatively?

• Too large window worse than too small
– Too large: dropped packets retransmitted

making congestion worse
– Too small: can’t send as many packets

without receiving an ACK

• What about at the start of connection?
– Takes too long to get a large window

Slow Start

• Double congestion window after every
ACK until we get a loss or threshold is
reached

• Threshold = half of the congestion window
at which a packet was dropped

• Then do additive increase
• Called “slow start” because it starts slower

than TCP without congestion control

15

Slow Start congestion window

-5

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20

transmission number

co
ng

es
tio

n
w

in
do

w
 (K

B
)

Timeout

Threshold

13

Now we can see how RED works

• Recall RED (Random Early Detection)
– Router monitors its own queue length
– Router implicitly notifies sender of congestion

by randomly dropping a packet

• TCP will note this as congestion and
multiplicatively decrease congestion
window

16

What we get from TCP

• Guaranteed message delivery
• Same order message delivery
• Send arbitrarily large messages
• Allow receiver to apply flow control to

sender
• Support multiple application processes on

each host
• Network congestion control

IP multicast

• Host may want to send a packet to
multiple hosts

• Send to a group, not individual hosts
– Reduces overhead for sender
– Reduces bandwidth consumption in network
– Reduces latency in receiver (all see packet at

same time)

17

���������	�
����
����	���

�����������	�
����
����	���

���������	

18

Multicast Group

• Idea:
– Send to group that receivers may join
– Group has specially assigned address

� ����������������������	����	�

� �����������	��� ��!!��!!��!!

� "	#��	������	���$	�������	�
%

� �&���'���������&�	�
�������
������	�	�	�(

�&��

� �������������
�����������	�
�������)�

�
*����#��������+,-

� .���)������
	��
�������

� �	�����������/���)�	����	�
�
�
*�����
�

���	������)

� �	������
	�����	�
�����)0�����

19

�&��

�������

�
���������������	

�&��

�������

�
���	 �
���	 �
���	

20

�&��

�������

�
���	 �
���	 �
���	

,1	������	1���	�����

� 2�
	���
��3����
�)�	1���	����	����

� �
	������������/���)4��������	�
�
�
*���
���������
��

� ���������������
	����	��������	�
�*��	�������
��
����5
����4������

�������������
	��

� 	����#������
	����	���5
�����	�

21

Multicast over Ethernet

• Trivial
• Ethernet is a broadcast medium – every

host hears every packet
• Simply need to receive packets sent to

group address
• Want to extend this between LANs

connected by routers

Naïve Approach

� 6��#�����	������
�����������1��)#�����
#�����������������	�
�
�
*���

� ������		�����	������
���������*��#����
�	�����

� #����#�������	���+,-4�������������'7�������(�

��������

22

Flooding not a good solution

• Not scalable
• LANs which do not have any group

members will still receive multicast
• Need to know which LANs want to receive

multicast message
– Implement in routers
– Create spanning tree

���������������

� 8�	�����9
����������	�����
���������

�
*���4��		�������������

� :���
����*���	

���������
�������)�*)�
������	����

� ,���
����*���)��
�����)���$�������	��
$	�����������1��

23

,�
�������������

,�
�������������

24

THE END

