ARM9E-S

Technical Reference Manual

ARM

ARM DDI 0165A

ARMO9YE-S
Technical Reference Manual

Copyright © ARM Limited 1999. All rights reserved.

Release information
Change history

Date Issue Change

16th December 1999 A First release

Proprietary notice
ARM, the ARM Powered logo, Thumb and StrongARM are registered trademarks of ARM Limited.

The ARM logo, AMBA, Angel, ARMulator, EmbeddedICE, ModelGen, Multi-ICE, PrimeCell,
ARM7TDMI, ARM7TDMI-S, ARM9TDMI, TDMI, and STRONG are trademarks of ARM Limited.

All other products or services mentioned herein may be trademarks of their respective owners.

Neither the whole nor any part of the information contained in, or the product described in, this document may
be adapted or reproduced in any material form except with the prior written permission of the copyright
holder.

The product described in this document is subject to continuous developments and improvements. All
particulars of the product and its use contained in this document are given by ARM Limited in good faith.
However, all warranties implied or expressed, including but not limited to implied warranties or
merchantability, or fithess for purpose, are excluded.

This document is intended only to assist the reader in the use of the product. ARM Limited shall not be liable
for any loss or damage arising from the use of any information in this document, or any error or omission in
such information, or any incorrect use of the product.

Figure C-2 on page C-4 reprinted with permission IEEE Std 1149.1-1990, IEEE Standard Test Access Port
and Boundary-Scan Architecture Copyright1999, by IEEE. The IEEE disclaims any responsibility or
liability resulting from the placement and use in the described manner.

Document confidentiality status

This document is Open Access. This document has no restriction on distribution.

Product status

The information in this document is Final (information on a developed product).

ARM web address

http://ww. arm com

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Preface

This preface introduces the ARM9E-S and its reference documentation. It contains the
following sections:

. About this document on page iv
. Further reading on page vii
. Feedback on page viii.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. iii

About this document

Intended audience

Using this manual

This document is the technical reference manual for the ARM9E-S.

This document has been written for experienced hardware and software engineers who
may or may not have experience of ARM products.

This document is organized into the following chapters:

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Introduction

Read this chapter for an introduction to the ARM9E-S, and for a
summary of the ARMOE-S instruction set.

Programmer’s Model

Read this chapter for a description of the programmer’s model for the
ARMOE-S.

Memory Interface

Read this chapter for a description of the memory interface, including
descriptions of the instruction and data interfaces.

ARMOE-S Coprocessor Interface

Read this chapter for a description of the coprocessor interface. The
chapter includes timing diagrams for coprocessor operations.

Debug Interface and Embedded| CE-RT

Read this chapter for an overview of the debug interface and the
EmbeddedICE-RT logic.

Instruction Cycle Summary and Interlocks

Read this chapter for a summary of instruction cycle timings and a
description of interlocks.

AC Parameters

Read this chapter for the AC timing parameters of the ARM9E-S.

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Appendix A Sgnal Descriptions
Read this chapter for a description of all the ARM9E-S interface signals.
Appendix B Differences Between the ARM9E-S and the ARM9TDMI

Read this chapter for a description of the differences between the
ARMO9E-S and the ARM9TDMI hard macrocell interface.

Appendix C Debug in Depth
Read this chapter for a detailed description of the debug interface.

Typographical conventions

The following typographical conventions are used in this document:

bold Highlights ARM processor signal nameswithin text, and interface
elements such as menu names. May also be used for emphasisin
descriptive lists where appropriate.

italic Highlights special terminology, cross-references and citations.

typewriter Denotes text that may be entered at the keyboard, such as
commands, file names and program names, and source code.

typewriter Denotes a permitted abbreviation for acommand or option. The
underlined text may be entered instead of the full command or
option name.

typewiter italic
Denotes argumentsto commands or functionswhere the argument
isto be replaced by a specific value.

typewiter bold
Denotes language keywords when used outside example code.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. v

Timing diagram conventions

Thismanual contains a number of timing diagrams. The following key explains the
components used in these diagrams. Any variations are clearly labelled when they
occur. Therefore, no additional meaning should be attached unless specifically stated.

Clock

HIGH to LOW

Transient

HIGH/LOW to HIGH

Bus stable

Bus to high impedance
Bus change

High impedance to stable bus

AN,

Valid (correct) sampling point

Key to timing diagram conventions

Shaded bus and signal areas are undefined, so the bus or signal can assume any value
within the shaded area at that time. The actual level is unimportant and does not affect
normal operation.

Vi Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Further reading

ARM publications

Other publications

This section lists publications by ARM Limited, and by third parties.

If you would like further information on ARM products, or if you have questions not
answered by this document, please contact i nf o@r m comor visit our web site at
http://ww. arm com

This document contains information that is specific to the ARM9E-S. Refer to the
following documents for other relevant information:

. ARM Architecture Reference Manual (ARM DDI 0100).
. ARMOTDMI Data Sheet (ARM DDI 0029).

This section lists relevant documents published by third parties.

. IEEE Std. 1149.1- 199@&andard Test Access Port and Boundary-Scan
Architecture.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. vii

Feedback
ARM Limited welcomes feedback both on the ARM9E-S, and on the documentation.

Feedback on the ARM9E-S

If you have any comments or suggestions about this product, please contact your
supplier giving:

. the product name

. a concise explanation of your comments

Feedback on the ARM9E-S Technical Reference Manual

If you have any comments about this document, please send email to
errata@rm comgiving:

. the document title

. the document number

. the page number(s) to which your comments refer

. a concise explanation of your comments.

General suggestions for additions and improvements are also welcome.

viii Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Contents
ARMO9E-S Technical Reference Manual

Preface

ADOUL thiS AOCUMENT ... iv

T g1 g [T (== To [0 To [P OUPPPR vii

FEEUDACKeeeeiiii e e viii
Chapter 1 Introduction

1.1 ABOUL the ARMOE-S..... ..ottt e aeees

1.2 ARMOE-S ArChitECIUIEeiiiiiieiiiie e

1.3 ARMOE-S block, core, and functional diagrams

1.4 ARMOE-S inStruction Set SUMMAIYcccoiiiiiiiiiniiiiee et e e
Chapter 2 Programmer’s Model

2.1 About the programmer’s MOdel..........ooouuuiiiiiiiiiiie e 2-2

2.2 Processor Operating StAteSoovuiveiiiieeiiiie et 2-3

2.3 MEMOTY FOMMALS ...ttt

2.4 Instruction length

25 DAl TYPES .ot e e e e e e e e

2.6 OPErating MOUESueeiiiie ettt e e e e e e e e e e e s e aneeeaeeeaan

2.7 REQISIEIS ...t

2.8 The program status registers

29 EXCEPLONS ..o

2.10 INEEITUPL TALENCIES ..o

2.11 RESEL...c

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. ix

Chapter 3

Chapter 4

Chapter 5

Memory Interface

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13

About the Memory INtErfaceoee i 3-2
Instruction interface

Instruction interface addressing SIgNalscccevviieriiicciieee 3-4
Instruction interface data timed SIgNAISc.ccceiviieiiiiicis e 3-6
Endian effects for instruction fetChes..........ccccovieiiiiiiiee 3-7
Instruction interface CYCle tYPEScooiiiiiiiiie e 3-8
Data interface

Data interface addressing SIgNAIScceeeeiiiiiieieiieeiee e 3-14
Data interface data timed SignalSccccovviiiiiieeiiieei e 3-17
Data interface CYClE tYPESuiviiiiiiiiiee ettt 3-23
Endian effects for data transfers...........ccccvvviiiiiicer e 3-29
Use of CLKEN to control bus CYCIeS............coiiiiiiiiiiiiiiiiiee e 3-30

ARMOE-S reset BEhaVIOr..........cooivieviicccee e 3-31

ARMO9E-S Coprocessor Interface

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

About the coprocessor INtErface..........cccvvvieiiiiiieeii e 4-2
LDC/STC

MECRIMRC ...ttt e e e e e s et e e e e eaatbe e e e e esntraeeas 4-8
INErIOCKEA MCR ..ottt 4-9
(O TP PO P TP OUP R UPPPPPRPROPN 4-10
Privileged INSITUCLIONS..........uiiiiiiiiiiie e 4-11
Busy-waiting and INtEITUPLSoiuveeiieiiiiiiieee et 4-12
COoProCeESSOr 15 MCRS ...ccciiiiiiiiie ettt 4-13
CONNECHING COPIOCESSOIS ..c.vuveeeitieeeuirteeiieeestte e e st e st e et e s sbeeesnneeeenrneeens 4-14

Debug Interface and EmbeddedICE-RT

5.1
5.2
53
5.4
55
5.6
5.7
5.8
5.9

Overview of the debug interface...........oiiii e 5-2
DEDUG SYSIEMIS ...ceiiieeie et e 5-3
Overview of EmbeddedICE-RTccciiiiiiiiie e 5-6
Disabling EMbeddedICE-RTccccciiiiiiiiniiiciiiee e 5-8
Debug interface SignalS.........cccuveiiieiiiie e 5-9
ARMOE-S core ClOCK dOMAINScuuiiiiiiiiiiiee et 5-14
Determining the core and System Statecccceeeeiiiiiiiii i 5-15
The debug communications channel.............ccooiiiiiiiie e, 5-16
Monitor Mode debuUQ...........uueiiiiii 5-20

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Chapter 6 Instruction Cycle Times

6.1 INstruction cycle COUNt SUMMIAIYooiuiiiiieiiiiiieiie et

6.2 Introduction to detailed instruction cycle timings

6.3 Branch and ARM branch with lINK............ccocoiii e

6.4 Thumb branch With INKoooiiii e

6.5 Branch and eXChangecooiiiiiiiii i

6.6 Thumb Branch, Link and Exchange <immediate>c.cccoocvveiieeeninennn. 6-10

6.7 Data OPEIAtiONS.ueieiie ettt ettt e e et e e e e e e e e

6.8 MRS ettt ettt

6.9 MSR OPEFALIONS ...ttt s

6.10 Multiply and multiply accumulate

6.11 QADD, QDADD, QSUB, QDSUB

6.12 Load regisStercoouueeiieeiiiiieee e .

6.13 Y0 (o (=T oIS (T SRR UP TP

6.14 Load multiple registers

6.15 Store multiple registers

6.16 Data swapcccccceevvvvvneneenn. .

6.17 Software interrupt, undefined instruction and exception entry 6-32

6.18 Coprocessor data processing OPerationcoocuueueeeeeniiiieeeeennnieeeeeens

6.19 Load coprocessor register (from memory)

6.20 Store coprocessor register (to memory)

6.21 Coprocessor register transfer (to ARM)

6.22 Coprocessor register transfer (from ARM)cccooceiviiiiiiiieeiiiieee e 6-39

6.23 COPrOCESSOr ADSENT........iiiiiiiiiie ettt 6-40

6.24 Unexecuted INSIIUCHIONS.......ccoiiiiiiiiiiieie e 6-41
Chapter 7 AC Parameters

7.1 TIMING AIAGIAMS ...ttt e e stneee e e ns 7-2

7.2 AC timing parameter definitioNS............ccoiiiiiiii e 7-7
Appendix A Signal Descriptions

Al Clock INterface SIGNalSooiveiiiiiee it A-2

A.2 Instruction memory interface SigNalS..........ocuvviii i A-3

A3 Data memory interface SigNalS..........cuueiiiiiiiiiiie e A-4

A4 Miscellan@0ouS SIGNAISccoiiiuiiiiie e

A5 Coprocessor interface signals

A.6 DEDUQG SIGNAIS ...
Appendix B Differences Between the ARM9E-S and the ARM9TDMI

B.1 Interface signals............cc......

B.2 ATPG scan interface

B.3 TIMING PArAMELETSceiiiiii ettt et

B.4 ARMOE-S design CONSIAEratioNSccovvieeriiiieriiie it B-7

B.5 ARMOE-S debugger conSIiderations.ccovvviiiiieeiiiee e B-9

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. Xi

Appendix C Debug in Depth

Ci1
C.2
C3
Cc4
C5
C.6
C.7
C.8
C.9
Cc.10
ci11
C.12
C.13
c.14
C.15

Scan chains and JTAG INtErfaCecocvveiiiiiiiee e C-2
Resetting the TAP controller
INSErUCHION FEQISTET ...eiiiiiie et
PUDIIC INSEIUCHIONS......coiiiiiiie e
TeSt dAtA FEGISTEIS ... iutieiiiiiiiee e
ARMOE-S core Clock dOMAINS.........c.eeeiiiiiriiie e
Determining the core and system state
Behavior of the program counter during debug..........cccccoeviiiiiiniiceene C-25
Priorities and exceptions
EmbeddedICE-RT l0giC........ccccvveennee.
Vector catching................
Single-StePPINGgeeeeiieiiee e

Coupling breakpoints and watchpoints...........cccciiiiiiiiie e, C-40
Disabling EmbeddedICE-RT ...ttt C-43
EmbeddedICE-RT tiMiNg.......cccooiiiiiiiieiiieee e C-44

Xii

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

List of Tables

ARMO9E-S Technical Reference Manual

Table 1-1
Table 1-2
Table 1-3
Table 1-4
Table 1-5
Table 1-6
Table 1-7
Table 1-8
Table 1-9
Table 1-10
Table 1-11
Table 1-12
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6

KeY t0 taDIES .. .o
ARM instruction set summary

Addressing mode 2ccceeeeenn.

Addressing mode 2 (privileged)
Addressing MOUE 3coiiiiiiiie s
Addressing mode 4 (108d)cocoieiiieiiiieei e
Addressing mode 4 (store)............

Addressing mode 5
OoprNd2coovvviiieeeeee,

FIEIAS. ...
CoNdition fIEIAS.covviiiiiieii e
Thumb instruction set summary ...
Register mode identifiers ..o
PSR mode bit ValUES..........coeviiiiiiiieiee e
EXCEPLION ENEIY/EXIt....cciiiiieieeiei e
Configuration of exception vector address locations..............cccceeueee. 2-22
Exception vectors
Transfer WidthS.......oocvviii
INTRANS €NCOAING ..vveieiiiie ettt e
Significant address bits..................

32-bit instruction fetches
Halfword accesses..........c.ccceeeneee.

CYCIE EYPES ettt

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. xiii

Table 3-7
Table 3-8
Table 3-9
Table 3-10
Table 3-11
Table 3-12
Table 3-13
Table 3-14
Table 3-15
Table 3-16
Table 4-1
Table 4-2
Table 5-1
Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 6-5
Table 6-6
Table 6-7
Table 6-8
Table 6-9
Table 6-10
Table 6-11
Table 6-12
Table 6-13
Table 6-14
Table 6-15
Table 6-16
Table 6-17
Table 6-18
Table 6-19
Table 6-20
Table 6-21
Table 6-22
Table 6-23
Table 6-24
Table 6-25
Table 6-26
Table 6-27
Table 6-28
Table 6-29
Table 6-30
Table 6-31
Table 6-32
Table 6-33
Table 7-1

BUISE EYPES ..ttt e e e
Transfer widths
DnTRANS encodingc.........
Transfer size encoding
Significant address bits
Word acCcesSses........ocvevverennns

Halfword accesses

Byte accessescccceveeeennn.

CYCIE TYPES .t
BUISE LY PES...ciiiiiiiiiiiiiiiiii i
Handshake signals
Handshake signal connections..............ccooiiiiiieiiiiiiie e
Coprocessor 14 regiSter MAPcoooureeeeaiiieieeeeerieieee e e eireeee e e seeeeeas
Keytotables........cccoooniiiiiiiiie,
ARM instruction cycle counts
Key to cycle timing tablesccviviiiiiii e

Branch and ARM branch with link cycle timing...........cccceviinieciinnen.
Thumb branch with link cycle timing..........ccccooiiiii e
Branch and exchange cycle timing...........ccccoocvveeeen.

Thumb branch, link and exchange cycle timing
Data operation cycle timingccccoccuveeeeiniiiiieeeninen.

MRS CYCIE tIMING ..ceiiiiiiiiiie e
MSR CYCIE tIMING ..eeiiiiiiiiiie e
MUL and MLA cycle timing...........cccveeveneen.

MULS and MLAS cycle timing
SMULL, UMULL, SMLAL and UMLAL cycle timing

SMULLS, UMULLS, SMLALS and UMLALS cycle timing 6-17
SMULxy, SMLAxy, SMULWYy and SMLAWY cycle timing.................. 6-18
SMLALXY CYCIE tIMING +.eiiiiieiiiie et 6-18
QADD, QDADD, QSUB and QDSUB cycle timingccccoceeernerens 6-19
Load register operation cycle timing..........cccceerviiiieiiiiiiieee e 6-22
Cycle timing for load operations resulting in interlocks...................... 6-23
Example sequence LDRB, NOP, ADD cycle timingcccccoevuveeee. 6-23
Example sequence LDRB, STMIA cycle timing

Store register operation cycle timingccoovvveeiiiieiniie e
LDM CYCIE tIMING ..eeiiiiiieiiiie ittt
STM cycle timingcoccvveeeeen.

Data swap cycle timing...........
Exception entry cycle timing
Coprocessor data operation cycle timingcccevieeeviiienieee e,
Load coprocessor register cycle timingcccceevvviniieeniiie s
Store coprocessor register cycle timing.....................

MRC instruction cycle timingcccccoovviienieiniineeen.

MCR instruction cycle timingcccccovvieeeiiiniiieenn.

Coprocessor absent instruction cycle timingc.ccccovvceiieniiieneen.
Unexecuted instruction cycle timingccceevvveeriiiinieciniie e
Target AC timing PArameterscooevuviiriiieeiniie e

Xiv Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Table A-1
Table A-2
Table A-3
Table A-4
Table A-5
Table A-6
Table B-1
Table C-1
Table C-2
Table C-3
Table C-4
Table C-5
Table C-6
Table C-7
Table C-8
Table C-9

Clock interface Signalsc..eeiii it
Instruction memory interface Signalsccccooviiiiiiiiiniiie e
Data memory interface Signalsccccoviieeiiiie e
Miscellaneous signalsc.........

Coprocessor interface signals
DebUQ SIGNAIS ...
ARMOE-S signals and ARM9TDMI hard macrocell equivalents
PUDIIC INSTIUCTIONS ..o
Scan chain number alloCationccccviiiiiiiini e
Scan chain 1 bit Order ...
ARMO9E-S EmbeddedICE-RT logic register mapcccccoceevvveennnnn.
Watchpoint control register for data comparison bit functions
Watchpoint control register for instruction comparison bit functions . C-34
Debug control register bit functions C-35
Interrupt signal control C-35
Debug status register bit functions

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. XV

Xvi Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

List of Figures
ARMO9E-S Technical Reference Manual

Figure 1-1
Figure 1-2
Figure 1-3
Figure 1-4
Figure 1-5
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 3-1
Figure 3-2
Figure 3-3
Figure 3-4
Figure 3-5
Figure 3-6
Figure 3-7
Figure 3-8
Figure 3-9
Figure 3-10
Figure 3-11
Figure 3-12

Five-stage PIPEliNeoooiiiiiiiie e
The instruction pipeline

ARMOE-S block diagram...............

ARMOE-S coreccceviiiiiiees

ARMOE-S functional diagram
Big-endian addresses of bytes within wWordsccccocoeeviiiiiniicinnenn,
Little-endian addresses of bytes within words...
Register organization in ARM state..................
Register organization in Thumb State ...
Mapping of Thumb state registers onto ARM state registers.............. 2-12
Program status register format...........cccocvveieiiiee i
Simple memory Cycle.........ccoveviiiiiennieee.

Nonsequential instruction fetch cycle
Sequential instruction fetch Cycles ...
Merged 1-S CYCIE ...
ARMOTDMI effect of DABORT on following memory access 3-18
ARMO9E-S aborted data memory aCCeSS.......cccvvirueeiiiieeiiiiee e 3-19
Data repliCationcoveiiiiiiiiii e 3-22
SIMPle MEMOIY CYCIEeeiiiiiieiii e 3-23
Nonsequential data memory cycle...................

Back to back memory cycles
Sequential access cycles...............

USE OFf CLKENoiiitiiiiiiit ettt

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. Xvii

Figure 3-13
Figure 4-1
Figure 4-2
Figure 4-3
Figure 4-4
Figure 4-5
Figure 4-6
Figure 4-7
Figure 4-8
Figure 4-9
Figure 5-1
Figure 5-2
Figure 5-3
Figure 5-4
Figure 5-5
Figure 5-6
Figure 5-7
Figure 5-8
Figure 5-9
Figure 7-1
Figure 7-2
Figure 7-3
Figure 7-4
Figure 7-5
Figure 7-6
Figure 7-7
Figure 7-8
Figure C-1
Figure C-2
Figure C-3
Figure C-4
Figure C-5
Figure C-6
Figure C-7
Figure C-8
Figure C-9
Figure C-10
Figure C-11
Figure C-12
Figure C-13

ARMOE-S reset Dehavior...........cccoiiiiiiiic e
ARMOE-S LDC/STC cycle timing

ARMO9E-S coprocessor clocking

ARMO9E-S MCR or MRC transfer timing
ARMOIE-S interlocked MCRcooiiiiiiiiieiiee e
ARMO9E-S late-cancelled CDP...................

ARMOE-S privileged instructions

ARMOE-S busy waiting and interrupts
ARMOE-S coprocessor 15 MCRSccoviiiieiiiiiiieceeceee e
Coprocessor connections
Typical debug system.............
ARMOE-S block diagram
The ARM9E-S, TAP controller and EmbeddedICE-RTccccevvvuneeneee 5-6
Breakpoint timingc.eeeeicee e
Watchpoint entry with data processing instruction
Watchpoint entry with branchcccccooiiininnen
Clock SYNCRIONIZALION........vviiiiiee i
Debug comms channel control registerccuuveeeiiiiiieeeiiniiiieeees
Coprocessor 14 monitor mode debug status register format 5-18
Instruction memory interface timing
Data memory interface timing....................

Clock enable tIMINgGocoeeeiiiie e
Coprocessor interface tiMiNgcccvveeeiiiee e
Exception and configuration timing.............

Debug interface timing
JTAG interface timingcccccceeevviiieeeenn.
DBGSDOUT to DBGTDO relationship
ARMOE-S scan chain arrangementsoccceeeviueeeinieennieee e
Test access port controller state transitions
ID code register fOrmatcocviiiiieiiiiie e
Typical scan chain Cell ...
Debug eXit SEQUENCEoiiuuiieieeiiiiieiee et
Debug State ENEIYeeiiiieiiiiie s
ARMO9E-S EmbeddedICE macrocell OVerviewc.cccocvveniveennnen. C-31
Watchpoint control register for data comparisoncccccveeeeennee. C-32
Watchpoint control register for instruction comparisonc....... C-33
Debug control register format
Debug Status registeroeeeiieeie e
Debug control and status register structure
VECtOr CAtCh FEQISTETeii ittt

Xviii Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Chapter 1
Introduction

This chapter introduces the ARM9E-S. It contains the following sections:

About the ARM9E-Son page 1-2

ARMOE-S architecture on page 1-5

ARMOE-S block, core, and functional diagrams on page 1-7
ARMOE-Sinstruction set summary on page 1-10.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 1-1

Introduction

1.1 About the ARM9E-S

The ARMOE-S is amember of the ARM family of general-purpose 32-bit
microprocessors. The ARM family offers high performance for very low power
consumption and gate count.

The ARM architecture is based on Reduced Instruction Set Computer (RISC)
principles. The reduced instruction set and rel ated decode mechanism are much simpler
than those of Complex Instruction Set Computer (CISC) designs. Thissimplicity gives:

. a high instruction throughput
. an excellent real-time interrupt response
. a small, cost-effective, processor macrocell.

The ARMO9E-S supports the ARMV5TEXP architecture and features an enhanced
multiplier design for improved DSP performance.

The ARM9E-S supports the ARM debug architecture and features support for real-time
debug, which allows critical exception handlers to execute while debugging the system.

1.1.1 Theinstruction pipeline

The ARM9E-S uses a pipeline to increase the speed of the flow of instructions to the
processor. This allows several operations to take place simultaneously, and the
processing and memory systems to operate continuously.

A five-stage pipeline is used, consisting of fetch, decode, execute, memory, and
writeback stages. This is shown in Figure 1-1 on page 1-3.

1-2

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

ARM Thumb

PC PC

PC-4 PC-2

PC-8 PC-4

PC-12 PC-6

PC-16 PC-8

Note

Fe

tch

Decode

Exe

cute

A 4

Memory

y

Writeback

Introduction

Instruction fetched from memory

Decoding of registers used in instruction

Register read

Shift and ALU operation

Data access to/from memory

Write registers back to register bank

Figure 1-1 Five-stage pipeline

Theprogram counter pointsto theinstruction being fetched rather than to theinstruction
being executed.

During normal operation:

one instruction is being fetched from memory

the previous instruction is being decoded

the instruction before that is being executed

the instruction before that is performing data accesses (if applicable)
the instruction before that is writing its data back to the register bank.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 1-3

Introduction

CLK

IA[31:1], INMREQ,
ISEQ

INSTR[31:0]

DA[31:0], DnMREQ,
DSEQ, DMORE \>X X

WDATA[31:0]

RDATA[31:0]

Typical pipeline operation is shown in Figure 1-2.

F D E M W
Instruction RegisterRegister| Shift ALU Data Register
memory access decode read ! memory access write
First Second

multiply cycle | multiply cycle

j\ \ \ \\ \ \ L

]
L]

[T
|

Figure 1-2 The instruction pipeline

1.1.2 Memory access

The ARMOE-S has a Harvard architecture, which features separate address and data
buses for both the 32-bit instruction interface and the 32-bit data interface. This
achieves a significant decrease in Cycles Per Instruction (CPI) by allowing instruction
and data accesses to run concurrently.

Only load, store, coprocessor |oad, coprocessor store, and swap instructions can access
data from memory. Data can be 8-bit bytes, 16-bit halfwords or 32-bit words. Words
must be aligned to 4-byte boundaries. Halfwords must be aligned to 2-byte boundaries.

1.1.3 Forwarding, interlocking and data dependencies

Due to the nature of the five-stage pipeline, it is possible for avalue to be required for
use beforeit has been placed in the register bank by the actions of an earlier instruction.
The ARMOE-S control logic automatically detects these cases and stalls the core or
forwards data as applicable to overcome these hazards. No intervention is required by
software in these cases, although software performance could be improved by
instruction re-ordering in certain situations.

1-4

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Introduction

1.2 ARMO9E-S architecture

The ARMOE-S processor has two instruction sets:
. the 32-bit ARM instruction set used in ARM state
. the 16-bit Thumb instruction set used in Thumb state.

The ARM9YE-S is an implementation of the ARM v5TE architecture. For details of both
the ARM and Thumb instruction sets, refer toARM Architecture Reference Manual.
For full details of the ARM9E-S instruction set, contact ARM.

1.2.1 Instruction compression

A typical 32-bit architecture has the ability to manipulate 32-bit integers with single
instructions, and to address a large address space much more efficiently than a 16-bi
architecture. When processing 32-bit data, a 16-bit architecture takes at least two
instructions to perform the same task as a single 32-bit instruction.

When a 16-bit architecture has only 16-bit instructions, and a 32-bit architecture has
only 32-bit instructions, overall the 16-bit architecture has higher code density, and
greater than half the performance of the 32-bit architecture.

Thumb implements a 16-bit instruction set on a 32-bit architecture, giving higher
performance than on a 16-bit architecture, with higher code density than a 32-bit
architecture.

The ARM9E-S gives you the choice of running in ARM state, or Thumb state, or a mix
of the two. This allows you to optimise both code density and performance to best suit
your application requirements.

1.2.2 The Thumb instruction set

The Thumb instruction set is a subset of the most commonly used 32-bit ARM
instructions. Thumb instructions are each 16 bits long, and have a corresponding 32-b
ARM instruction that has the same effect on the processor model. Thumb instructions
operate with the standard ARM register configuration, allowing excellent
interoperability between ARM and Thumb states.

Thumb has all the advantages of a 32-bit core:
. 32-bit address space

. 32-bit registers

. 32-bit shifter andarithmetic logic unit (ALU)
. 32-bit memory transfer.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 1-5

Introduction

Thumb therefore offersalong branch range, powerful arithmetic operationsand alarge
address space.

Thumb codeis typically 65% of the size of the ARM code, and provides 160% of the
performance of ARM code when running on a processor connected to a 16-bit memory
system. Thumb, therefore, makes the ARM9E-S ideally suited to embedded
applications with restricted memory bandwidth, where code density isimportant.

The availability of both 16-bit Thumb and 32-bit ARM instruction sets, givesdesigners
the flexibility to emphasize performance or code size on a subroutine level, according
to the requirements of their applications. For example, critical loops for applications
such asfast interrupts and DSP a gorithms can be coded using the full ARM instruction
set, and linked with Thumb code.

1-6 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Introduction

1.3 ARMO9E-S block, core, and functional diagrams

The ARMOE-S architecture, core, and functional diagrams are shown in the following
figures:

. the ARM9E-S block diagram is shown in Figure 1-3

. the ARM9E-S core is shown in Figure 1-4 on page 1-8

. the ARM9E-S functional diagram is shown in Figure 1-5 on page 1-9.

Scan chain 2

, ARMOE-S
DBGRNG[1:0] <——— 0 dedICE-RT

DBGEXT[1:0] —»] logic

L/ PANPANPANYAN
DLOCK, DnRW, DMAS[1:0] <:T —

DnTRANS, DnMREQ, DSEQ
DA[31:0]

Coprocessor
A ARMSE-S interface
core signals

WDATA[31:0]
RDATA[31:0]

InMREQ, ISEQ,
ITBIT, INTRANS

IA[31:0]

M N 2\ ﬂ AN
DatabusH

INSTR[31:0]

Scan chain 1

\ 4

ARMO9E-S
TAP controller

A A A A

DBGTCKEN
DBGTMS
DBGNnTRST
DBGTDI
DBGTDO =

Figure 1-3 ARM9E-S block diagram

Refer toDebug Interface and EmbeddedI CE-RT on page 5-1 for a description of the
EmbeddedICE-RT logic.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 1-7

Introduction

IA[31:1] INSTR[31:0]
IAScan IDScan
—
N iner. |
/
/—J_\ IAreg Instruction
= TT T} pipeline
]
U |
Exception ResultMe[31:0] DIN[31:0]
vectors
JVL ll Instruction
| decode
K d
Register bank plus an
PSR Byte rot. data path
program counter) syigen ngA cl‘znt.rfl
PSR 4[31:0] — 9!
A[31:0] Imm| |B[31:0] C[31:0]
[K | | ’, DINFWD[31:0]
i 2 il/ \ﬁgggé‘u/ \ll 11 /
Amux Bmux Cmux
ADatal..] Multiplier BDatal..]

J\L J‘ Shift —
- = 1l
Tt 3%‘?4

MulResultMe[31 :o1ll

| SAT | |SAT(X2)

| Shifter |

u__ 4L

ALUOUtEX[31:0]

DINC
DAreg

DAScan

DA[31:0] WDATA[31:0]

Y

DDScan

RDATA[31:0]

Figure 1-4 ARM9E-S core

Copyright © ARM Limited 1999. All rights reserved.

ARM DDI 0165A

Clock

Interrupts

Miscellaneous
configuration

Instruction
memory
interface

Debug

CLK

4

CLKEN

4

~_ CORECLKENOUT

 CORECLKENIN

A

nIRQ

nFlQ

nRESET

Yvy

CFGHIVECS

CFGDISLTBIT

CFGBIGEND

Yyvy

1A[31:1]

INSTR[31:0]
IABORT

1

InMREQ

ISEQ

ITBIT

INTRANS

A A A A

InM[4:0]

|

DBGIEBKPT

DBGDEWPT

EDBGRQ

Yyvy

DBGACK

-

 DBGEXT[1:0]
DBGEN

DBGRNG[1:0]
DBGCOMMRX

DBGCOMMTX

DBGRAQI

DBGINSTREXEC

DBGINSTRVALID

A A A A A

ARMOE-S

TAPID[31:0]
DBGTAPSM[3:0
~_ DBGSDOUT
~ DBGSDIN _
DBGSCREGmmf'
DBGNTDOEN
DBGIR[3:0]
DBGTCKEN
DBGTMS
DBGTDI
DBGNTRST
DBGTDO

A A A A

\/

DA[31:0] >
WDATA[31:0] >

RDATA[31:0]

__ DABORT

" DnRW
DMAS[1:0]
DnTRANS[1:0]
DnM[4:0]
DnMREQ
DSEQ
DMORE
DLOCK

YyYvYyYvYy

PASS
LATECANCEL
CHSD[1:0]
CHSE[1:0]

vy

Introduction

EmbeddedICE
and scan
interface

Data
memory
interface

Coprocessor
interface

Figure 1-5 ARM9E-S functional diagram

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved.

1-9

Introduction

1.4 ARMO9E-S instruction set summary

This section provides a summary of the ARM and Thumb instruction sets:
. ARM instruction set summary on page 1-12
. Thumb instruction set summary on page 1-21.

A key to the instruction set tables is given in Table 1-1.

The ARM9E-S is an implementation of the ARMV5TE architecture. For a description
of both instruction sets, refer to thRM Ar chitectur e Reference Manual. Contact ARM
for complete descriptions of both instruction sets.

Table 1-1 Key to tables

Symbol

Description

{cond}

Refer to Table 1-11 on page 1-20

<Qpr nd2>

Refer to Table 1-9 on page 1-19

{field}

Refer to Table 1-10 on page 1-19

S

Sets condition codes (optional)

B

Byte operation (optional)

H

Halfword operation (optional)

T

Forces DnTRANS to be active (0). Cannot be used with pre-indexed
addresses

<a_node2>

Refer to Table 1-3 on page 1-15

<a_node2P>

Refer to Table 1-4 on page 1-16

<a_node3>

Refer to Table 1-5 on page 1-17

<a_node4lL>

Refer to Table 1-6 on page 1-17

<a_node4S>

Refer to Table 1-7 on page 1-18

<a_node5>

Refer to Table 1-8 on page 1-18

#32bit_| mm

A 32-bit constant, formed by right-rotating an 8-bit value by an even
number of bits

1-10 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Introduction

Table 1-1 Key to tables (continued)

Symbol Description

<reglist> A comma-separated list of registers, enclosed in braces ({ and })

X Selects HIGH or LOW 16-bits of register Rm.
T selectsthe HIGH 16-hits. (T = top)
B selectsthe LOW 16-bits. (B = bottom)

y Selects HIGH or LOW 16-bits of register Rs.
T selectsthe HIGH 16-bits. (T = top)
B selectsthe LOW 16-bits. (B = bottom)

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 1-11

Introduction

1.4.1 ARMinstruction set summary
The ARM instruction set summary isgiven in Table 1-2.
Table 1-2 ARM instruction set summary

Operation Assembler

Move Move MM cond}{S} Rd, <Oprnd2>
Move NOT MWN cond}{S} Rd, <Oprnd2>
Move SPSR to register MRS{ cond} Rd, SPSR
Move CPSR to register MRS{ cond} Rd, CPSR
Move register to SPSR MSR{ cond} SPSR{field}, Rm
Move register to CPSR MSR{ cond} CPSR{field}, Rm
Move immediate to SPSR flags MBR{ cond} SPSR flg, #32bit_Inmm
Move immediate to CPSR flags MBR{ cond} CPSR flg, #32bit_Inmm

Arithmetic Add ADD{ cond}{S} Rd, Rn, <Oprnd2>
Add with carry ADC{ cond}{S} Rd, Rn, <Oprnd2>
Subtract SUB{cond}{S} Rd, Rn, <Cprnd2>
Subtract with carry SB{ cond}{S} Rd, Rn, <Oprnd2>
Reverse subtract RSB{cond}{S} Rd, Rn, <Oprnd2>
Reverse subtract with carry RSC{cond}{S} Rd, Rn, <Oprnd2>
Multiply MUL{cond}{S} Rd, Rm Rs
Multiply accumulate MLA{cond}{S} Rd, Rm Rs, Rn
Multiply unsigned long UMJLL{cond}{S} RdLo, RdH , Rm Rs
Multiply unsigned accumulatelong UMLAL{cond}{S} RdLo, RdH , Rm Rs
Multiply signed long SMULL{cond}{S} RdLo, RdH, Rm Rs
Multiply signed accumulate long SMLAL{cond}{S} RdLo, RdH , Rm Rs
Compare CwP{cond} Rd, <Qprnd2>
Compare negative CMN\{cond} Rd, <Qprnd2>
Saturating add QADD{ cond} Rd, Rn, Rs

1-12 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Introduction

Table 1-2 ARM instruction set summary (continued)

Operation Assembler
Saturating add with double Q@ADD{ cond} Rd, Rn, Rs
Saturating subtract @UB{cond} Rd, Rn, Rs
Saturating subtract with double Q@sSuB{cond} Rd, Rn, Rs
Multiply 16x16 SMULxy{cond} Rd, Rm Rs
Multiply accumulate 16x16+32 SMULAxy{cond} Rd, Rm Rs, Rn
Multiply 32x16 SMULWk{cond} Rd, Rm Rs
Multiply accumulate 32x16+32 SMLAW{cond} Rd, Rm Rs, Rn
Multiply signed accumulate long SMLALx{cond} RdLo, RdHi, Rm Rs
16x16+64
Count leading zeros CLZ{cond} Rd, Rm
Logical Test TST{cond} Rn, <Qprnd2>
Test equivalence TEQ cond} Rn, <QOprnd2>
AND AND{ cond}{S} Rd, Rn, <Oprnd2>
XOR EOR{ cond}{S} Rd, Rn, <Oprnd2>
OR ORR{cond}{S} Rd, Rn, <Oprnd2>
Bit clear Bl {cond}{S} Rd, Rn, <QOprnd2>
Branch Branch B{ cond} I abel
Branch with link BL{ cond} | abel
Branch and exchange instruction BX{ cond} Rn
Branch, link and exchange BLX{ cond} | abel
instruction
Branch, link and exchange BLX{cond} Rn
instruction
Load Word LDR{cond} Rd, <a_node2>

Word with user mode privilege

LDR{cond} T Rd, <a_node2P>

Byte

LDR{cond}B Rd, <a_npde2>

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved.

1-13

Introduction

Table 1-2 ARM instruction set summary (continued)

Operation Assembler
Byte with user mode privilege LDR{cond} BT Rd, <a_nopde2P>
Byte signed LDR{cond} SB Rd, <a_npde3>
Halfword LDR{cond}H Rd, <a_nonde3>
Halfword signed LDR{ cond} SH Rd, <a_npde3>
Multipleblock Stack operations LDM cond}<a_node4lL> Rd{!}, <reglist>
data operations
Increment before LDM cond} I B Rd{!}, <reglist>{"}
Increment after LDM cond} 1 A Rd{!}, <reglist>{"}
Decrement before LDM cond} DB Rd{!}, <reglist>{"}
Decrement after LDM cond} DA Rd{!}, <reglist>{"}
Stack operations and restore CPSR LDM cond}<a_node4lL> Rd{!}, <regli st +pc>"
User registers LDM cond}<a_node4lL> Rd{!}, <reglist>"
Store Word STR{cond} Rd, <a_npbde2>
Word with user mode privilege STR{cond} T Rd, <a_node2P>
Byte STR{cond} B Rd, <a_nobde2>
Byte with user mode privilege STR{cond} BT Rd, <a_node2P>
Halfword STR{cond}H Rd, <a_node3>
Multipleblock Stack operations STM cond} <a_node4S> Rd{!}, <reglist>
data operations
Increment before STM cond} 1B Rd{!}, <reglist>{"}
Increment after STM cond} 1 A Rd{!}, <reglist>{"}
Decrement before STM cond} DB Rd{!'}, <reglist>{"}
Decrement after STM cond} DA Rd{'}, <reglist>{"}
User registers STM cond} <a_node4S> Rd{!}, <reglist>"
Swap Word SWP{cond} Rd, Rm [Rn]
Byte SWP{cond}B Rd, Rm [Rn]
1-14 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Introduction

Table 1-2 ARM instruction set summary (continued)

Operation Assembler
Coprocessors Data operations CDP{cond} p<cpnunp, <opl> CRd, CRn, CRm
<op2>
Moveto ARM reg from coproc MRC{ cond} p<cpnun®, <opl>, Rd, CRn, CRm
<op2>
Move to coproc from ARM reg MCR{ cond} p<cpnun®, <opl>, Rd, CRn, CRm
<op2>
Load LDC{ cond} p<cpnunr, CRd, <a_node5>
Store STC{cond} p<cpnum>, CRd, <a_node5>
Software SW{cond} 24bit_Imm
Interrupt
Software BKPT<i medi at e>
Breakpoint

Addressing mode 2 is summarized in Table 1-3.

Table 1-3 Addressing mode 2

Addressing mode 2

Immediate offset [Rn, #+/-12bit_Ofset]
Register offset [Rn, +/-Rni
Scaled register offset [Rn, +/-Rm LSL #5bit_shift_imi

[Rn, +/-Rm LSR #5bit_shift_imij

[Rn, +/-Rm ASR #5bit_shift_immj

[Rn, +/-Rm ROR #5bit_shift_imij
[Rn, +/-Rm RRX]

Pre-indexed offset

Immediate [Rn, #+/-12bit_Ofset]!
Register [Rn, +/-Rnm!
Scaled register [Rn, +/-Rm LSL #5bit_shift_immj!

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 1-15

Introduction

Table 1-3 Addressing mode 2 (continued)

[Rn, +/-Rm LSR #5bit_shift_imj!
[Rn, +/-Rm ASR #5bit_shift_imj!
[Rn, +/-Rm ROR #5bit_shift_imj!
[Rn, +/ -Rm RRX]!
Post-indexed offset -

Immediate [Rn], #+/-12bit_Ofset

Register [Rn], +/-Rm

Scaled register [Rn], +/-Rm LSL #5bit_shift_imm
[Rn], +/-Rm LSR #5bit_shift_imm
[Rn], +/ -Rm ASR #5bit_shift_imm
[Rn], +/-Rm ROR #5bit_shift_inm
[Rn], +/-Rm RRX

Addressing mode 2 (privileged) is summarized in Table 1-4.

Table 1-4 Addressing mode 2 (privileged)

Addressing mode 2 (privileged)

Immediate offset [Rn, #+/-12bit_Ofset]
Register offset [Rn, +/-Rnj
Scaled register offset [Rn, +/-Rm LSL #5bit_shift_immi

[Rn, +/-Rm LSR #5bit_shift_immi

[Rn, +/-Rm ASR #5bit_shift_imij

[Rn, +/-Rm ROR #5bit_shift_imij

[Rn, +/-Rm RRX]

Post-indexed offset

Immediate [Rn], #+/-12bit_Offset

Register [R], +-Rm

1-16 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Introduction

Table 1-4 Addressing mode 2 (privileged) (continued)

Scaled register [Rn], +/-Rm LSL #5bit_shift_i mm

[Rn], +/-Rm LSR #5bit_shift_imm

[Rn], +/-Rm ASR #5bit_shift_imm

[Rn], +/-Rm ROR #5bit_shift_inm

[R], + -Rm RRX

Addressing mode 3 is summarized in Table 1-5.

Table 1-5 Addressing mode 3

Addressing mode 3 - signed byte and halfword data transfer

Immediate offset [Rn, #+/-8bit_Ofset]
Pre-indexed [Rn, #+/-8bit_Ofset]!
Post-indexed [Rn], #+/-8bit_Ofset

Register offset [Rn, +/-Rnj
Pre-indexed [Rn, +/-Rnj!

Post-indexed [RN], +/-Rm

Addressing mode 4 (load) is summarized in Table 1-6.

Table 1-6 Addressing mode 4 (load)

Addressing mode 4 (Load)

Addressing mode Stack type

I A Increment after FD Full descending

I B Increment before ED Empty descending
DA Decrement after FA Full ascending
DB Decrement before EA Empty ascending

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 1-17

Introduction

Addressing mode 4 (store) is summarized in Table 1-7.

Table 1-7 Addressing mode 4 (store)

Addressing mode 4 (Store)

Addressing mode Stack type

I A Increment after EA Empty ascending
| B Increment before FA Full ascending
DA Decrement after ED Empty descending
DB Decrement before FD Full descending

Addressing mode 5 (load) is summarized in Table 1-8.

Table 1-8 Addressing mode 5

Addressing mode 5 - coprocessor data transfer

Immediate offset [Rn, #+/-(8bit_Ofset*4)]
Pre-indexed [Rn, #+/-(8bit_Ofset*4)]!
Post-indexed [Rn], #+/-(8bit_Offset*4)

1-18 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Oprnd2 is summarized in Table 1-9.

Introduction

Table 1-9 Oprnd2

Oprnd2

Immediate value

#32bi t _| mm

Logical shift left

Rm LSL #5bit_I nm

Logical shift right

Rm LSR #5bit _| nm

Arithmetic shift right Rm ASR #5bit _I nm
Rotate right Rm ROR #5bit _I nm
Register Rm

Logica shift left Rm LSL Rs

Logical shift right Rm LSR Rs

Arithmetic shift right Rm ASR Rs

Rotate right Rm ROR Rs

Rotate right extended Rm RRX

Fields are summarized in Table 1-10.
Table 1-10 Fields

Suffix Sets
_C Control field mask bit (bit 0)
_X Extension field mask bit (bit 1)
_S Status field mask bit ~ (bit 2)
_f Flags field mask bit (bit 3)

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 1-19

Introduction

Condition fields are summarized in Table 1-11.

Table 1-11 Condition fields

Suffix Description
EQ Equal
NE Not equal

HS/ CS Unsigned higher or same

LO CC Unsigned lower

M Negative

PL Positive or zero
'S Overflow

VC No overflow

HI Unsigned higher
LS Unsigned lower or same
CE Greater or equal
LT Less than

Gr Greater than

LE Less than or equal
AL Always

1-20 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Introduction

1.4.2 Thumb instruction set summary

The Thumb instruction set summary is givenin Table 1-12.

Table 1-12 Thumb instruction set summary

Operation Assembler
Move Immediate MOV Rd, #8bit_Inmm
Highto Low MOV Rd, Hs
Low to High MOV Hd, Rs
High to High MOV Hd, Hs
Arithmetic Add ADD Rd, Rs, #3bit_I|nm
Add Low and Low ADD Rd, Rs, Rn
Add High to Low ADD Rd, Hs
Add Low to High ADD Hd, Rs
Add High to High ADD Hd, Hs
Add Immediate ADD Rd, #8bit | nm
Add Valueto SP ADD SP, #7bit_Imm
ADD SP, #-7bit_Inmm
Add with carry ADC Rd, Rs
Subtract SUB Rd, Rs, Rn
SUB Rd, Rs, #3bit_lmm
Subtract Immediate SUB Rd, #8bit_Imm
Subtract with carry SBC Rd, Rs
Negate NEG Rd, Rs
Multiply MJL Rd, Rs
Compare Low and Low CVWP Rd, Rs
Compare Low and High CVWP Rd, Hs
Compare High and Low CWP Hd, Rs
Compare High and High CWP Hd, Hs
Compare Negative CW Rd, Rs

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 1-21

Introduction

Table 1-12 Thumb instruction set summary (continued)

Operation Assembler
Compare Immediate CWP Rd, #8bit_Imm
Logical AND AND Rd, Rs
XOR EOR Rd, Rs
OR ORR Rd, Rs
Bit clear BIC Rd, Rs
Move NOT MWN Rd, Rs
Test bits TST Rd, Rs
Shift/Rotate Logical shift left LSL Rd, Rs, #5bit_shift_imm
LSL Rd, Rs
Logical shift right LSR Rd, Rs, #5bit_shift_imm
LSR Rd, Rs
Arithmetic shift right ASR Rd, Rs, #5bit_shift_imm
ASR Rd, Rs
Rotate right ROR Rd, Rs
Branch Conditional
If Z set BEQ | abel
If Z clear BNE | abel
If Cset BCS | abel
If Cclear BCC | abel
If N set BM | abel
If N clear BPL | abel
If V set BVS | abel
If V clear BVC | abel
If Csetand Z clear BHI | abel
If Cclear or Z set BLS | abel
If N setand V set, or BCE | abel

If N clear and V clear

1-22 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Introduction

Table 1-12 Thumb instruction set summary (continued)

Operation Assembler
If N setand V clear, or BLT | abel
If N clear and V set
If Z clear, and N and V set, or BGT | abel
If Z clear, and N and V clear
If Z set, or BLE | abel
N set and V clear, or
N clear and V set
Unconditional B | abel
Long branch with link BL | abel
Long branch, link and exchange BLX | abel
instruction
Branch and exchange To addressheldin Lo reg BX Rs
To address held in Hi reg BX Hs
Branch, link and exchange To addressheld in Lo reg BLX Rs
To address held in Hi reg BLX Hs

L oad With immediate offset
Word LDR Rd, [Rb, #7bit_offset]
Halfword LDRH Rd, [Rb, #6bit_offset]
Byte LDRB Rd, [Rb, #5bit_offset]

With register offset

Word LDR Rd, [Rb, Ro]

Halfword LDRH Rd, [Rb, Ro]

Halfword signed LDRSH Rd, [Rb, Ro]

Byte LDRB Rd, [Rb, Ro]

Byte signed LDRSB Rd, [Rb, Ro]

PC-relative LDR Rd, [PC, #10bit_Offset]
SP-relative LDR Rd, [SP, #10bit_Offset]

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 1-23

Introduction

Table 1-12 Thumb instruction set summary (continued)

Operation Assembler
Address
Using PC ADD Rd, PC, #10bit_Offset
Using SP ADD Rd, SP, #10bit_Offset
Multiple LDM A Rb!, <reglist>
Store With immediate offset
Word STR Rd, [Rb, #7bit_offset]
Halfword STRH Rd, [Rb, #6bit_offset]
Byte STRB Rd, [Rb, #5bit_offset]
With register offset
Word STR Rd, [Rb, Ro]
Halfword STRH Rd, [Rb, Ro]
Byte STRB Rd, [Rb, Ro]
SP-relative STR Rd, [SP, #10bit_offset]
Multiple STM A Rb!, <reglist>
Push/Pop Push registers onto stack PUSH <regli st>

Push LR and registers onto stack

PUSH <reglist, LR>

Pop registers from stack

POP <reglist>

Pop registers and PC from stack

POP <reglist, PC

Software Interrupt

SW 8bit_Imm

Softwar e Breakpoint

BKPT<i medi at e>

1-24

Copyright © ARM Limited 1999. All rights reserved.

ARM DDI 0165A

Chapter 2
Programmer’s Model

This chapter describes the ARM9E-S programmer’s model. It contains the following

sections:

About the programmer’s modeth page 2-2
Processor operating states on page 2-3
Memory formats on page 2-4

Instruction length on page 2-5

Data types on page 2-6

Operating modes on page 2-7

Registers on page 2-8

The program status registers on page 2-14
Exceptions on page 2-17

Interrupt latencies on page 2-25

Reset on page 2-26.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved.

2-1

Programmer’s Model

2.1 About the programmer’s model

The ARMOE-S processor core implements ARMV5TEXP architecture, which includes
the 32-bit ARM instruction set and the 16-bit Thumb instruction set. For details of both
the ARM and Thumb instruction sets, refer to the ARM Ar chitecture Reference Manual.
For full details of the ARM9E-S instruction set, contact ARM.

2-2 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Programmer’s Model

2.2 Processor operating states

The ARMOE-S has two operating states:

ARM state 32-hit, word-aligned ARM instructions are executed in this state.
Thumb state 16-bit, halfword-aligned Thumb instructions.
In Thumb state, the program counter (PC) uses bit 1 to select between alternate
halfwords.

Note

Transition between ARM and Thumb states does not affect the processor mode or the
register contents.

2.2.1 Switching state

The operating state of the ARMO9E-S core can be switched between ARM state and
Thumb state using the BX and BLX instructions, and loads to the PC. Switching stateis
described in the ARM Architecture Reference Manual. For full details of the
ARMOE-S instruction set, contact ARM.

All exceptions are entered, handled and exited in ARM state. If an exception occursin
Thumb state, the processor revertsto ARM state. The transition back to Thumb state
occurs automatically on return from the exception handler.

2.2.2 Interworking ARM and Thumb state

The ARMOE-S alows you to mix ARM and Thumb code as you wish. For details see
Chapter 7 Interworking ARM and Thumb in the Software Development Kit User Guide.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 2-3

Programmer’s Model

2.3 Memory formats

The ARMOYE-S views memory as alinear collection of bytes numbered in ascending
order from zero. Bytes 0 to 3 hold the first stored word, bytes 4 to 7 hold the second
stored word, and so on.

The ARMOYE-S can treat words in memory as being stored in either:
. Big-endian format
. Little-endian format.

2.3.1 Big-endian format

In big-endian format, the ARM9E-S stores the most significant byte of a word at the
lowest-numbered byte, and the least significant byte at the highest-numbered byte. So
that byte 0 of the memory system connects to data lines 31 through 24. This is shown
in Figure 2-1.

Bit 31 24 23 16 15 8 7 0 Word address
Higher address

8 9 10 11 8
4 5 6 7 4

0
Lower address 0 ! 2 3

* Most significant byte is at lowest address
« Word is addressed by byte address of most significant byte

Figure 2-1 Big-endian addresses of bytes within words

2.3.2 Little-endian format

In little-endian format, the lowest-numbered byte in a word is the least-significant byte
of the word and the highest-numbered byte is the most significant. So byte 0 of the
memory system connects to data lines 7 through 0. This is shown in Figure 2-2.

Bit 31 24 23 16 15 8 7 0 Word address
Higher address

1" 10 9 8 8
7 6 5 4 4

2 1 0
Lower address 3 0

* Least significant byte is at lowest address
» Word is addressed by byte address of least significant byte

Figure 2-2 Little-endian addresses of bytes within words

2-4 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Programmer’s Model

2.4 Instruction length

Instructions are either:
. 32 bits long (in ARM state)
. 16 bits long (in Thumb state).

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 2-5

Programmer’s Model

2.5 Datatypes

The ARMOE-S supports the following data types:

word (32-bit)
halfword (16-bit)
byte (8-bit).

You must align these as follows:

word quantities must be aligned to four-byte boundaries
halfword quantities must be aligned to two-byte boundaries
byte quantities can be placed on any byte boundary.

2-6

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Programmer’s Model

2.6 Operating modes
The ARMO9E-S has seven modes of operation:

. User mode is the usual ARM program execution state, and is used for executing
most application programs.

. Fast interrupt (FIQ) mode is used for handling fast interrupts.

. Interrupt (IRQ) mode is used for general-purpose interrupt handling.

. Supervisor mode is a protected mode for the operating system.

. Abort mode is entered after a data or instruction Prefetch Abort.

. System mode is a privileged user mode for the operating system.

. Undefined mode is entered when an undefined instruction exception occurs.

Modes other than User mode are collectively knowpraéleged modes. Privileged
modes are used to service interrupts or exceptions, or to access protected resources.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 2-7

Programmer’s Model

2.7

2.7.1

Registers

The ARMO9E-S has atotal of 37 registers:
» 31 general-purpose 32-bit registers
* 6 32-bit status registers.

These registers are not all accessible at the same time. The processor state and operating
mode determine which registers are available to the programmer.

The ARM state register set

In ARM state, 16 general registers and one or two status registers are accessible at any
one time. In privileged modes, mode-specific banked registers become available.
Figure 2-3 on page 2-10 shows which registers are available in each mode.

The ARM state register set contains 16 directly-accessible registers, r0 to r15. A further
register, theCurrent Program Status Register (CPSR), contains condition code flags

and the current mode bits. Registers r0 to r13 are general-purpose registers used to hold
either data or address values. Registers r14, r15 and the CPSR have the following
special functions:

Link register Register r14 is used as the subroutinkregister (LR).

Register r14 receives a copy of r15 wheBranch with Link (BL
or BLX) instruction is executed.

At all other times r14 can be treated as a general-purpose register.
The corresponding banked registers r14_svc, r14 _irq, r14_fiq,
r14_abt and r14_und are similarly used to hold the return values
of r15 when interrupts and exceptions arise, or vBtear BLX
instructions are executed within interrupt or exception routines.

Program counter Register r15 holds the PC.

In ARM state, bits [1:0] of r15 are zero. Bits [31:2] contain the PC.
In Thumb state, bit [0] is zero. Bits [31:1] contain the PC.

In privileged modes, another register, 8aed Program Satus Register (SPSR), is
accessible. This contains the condition code flags and the mode bits saved as a result of
the exception which caused entry to the current mode.

2-8

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Programmer’s Model

Banked registers have amode identifier which indicates which User mode register they
are mapped to. These mode identifiers are shown in Table 2-1.

Table 2-1 Register mode identifiers

Mode Mode identifier
User us@

Fast interrupt fig

Interrupt irq

Supervisor svec

Abort abt

System usf

Undefined und

a.The usr identifier is usually

omitted from register names. It is
only used in descriptions where
the User/System mode register is
specifically accessed from another
operating mode.

FIQ mode has seven banked registers mapped to r8—r14 (r8_fig—r14 fiq). As a result
many FIQ handlers do not need to save any registers.

The Supervisor, Abort, IRQ, and Undefined modes each have alternative mode-specifit
registers mapped to r13 and r14, allowing a private stack pointer and link register for
each mode.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 2-9

Programmer’s Model

Figure 2-3 showsthe ARM state registers.

ARM state general registers and program counter

System and User FIQ Supervisor Abort IRQ Undefined
r0 r0 r0 r0 r0 r0
r1 r1 r1 r1 r1 r1
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3
r4 r4 r4 r4 r4 r4
r5 r5 r5 r5 r5 r5
ré ré ré ré ré ré
r7 r7 r7 r7 r7 r7
r8 r8_fiq r8 r8 r8 r8
r9 r9_fiq r9 r9 r9 r9
r10 r10_fiq r10 r10 r10 r10
r11 r11_fiq r11 r11 r11 r11
r12 r12_fiq r12 r12 r12 r12
r13 r13_fiq r13_svc r13_abt r13_irq r13_und
r14 r14_fiq r14_svc r14_abt r14_irq r14_und
r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC) r15 (PC)
ARM state program status registers
CPSR CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR _irq SPSR_und

Indicates that the normal register used by the User or System mode

has been replaced by an alternative register specific to the exception mode.

Figure 2-3 Register organization in ARM state

2-10

Copyright © ARM Limited 1999. All rights reserved.

ARM DDI 0165A

Programmer’s Model

2.7.2 The Thumb state register set

The Thumb state register set is a subset of the ARM state set. The programmer has
direct access to:

. eight general registers, rO—r7 (for details of high register access in Thumb state
seeAccessing high registersin Thumb state on page 2-13).

. the PC

. astack pointer, SP, (ARM register r13)

. an LR (ARM register r14)

. the CPSR.

There are banked SPs, LRs, and SPSRs for each privileged mode. This register set i
shown in Figure 2-4.

Thumb state general registers and program counter

System and User FlQ Supervisor Abort IRQ Undefined
r0 r0 r0 r0 r0 r0
r1 r1 r1 r1 r1 r1
r2 r2 r2 r2 r2 r2
r3 r3 r3 r3 r3 r3
r4 r4 r4 r4 r4 r4
r5 r5 r5 r5 r5 r5
ré ré ré ré ré ré
r7 r7 r7 r7 r7 r7
SP SP_fiq SP_svc SP_abt SP_irq SP_und
LR LR_fiq LR_svc LR_abt LR_irq LR_und
PC PC PC PC PC PC
Thumb state program status registers
S CPSR CPSR CPSR CPSR CPSR
SPSR_fiq SPSR_svc SPSR_abt SPSR_irq SPSR_und

Indicates that the normal register used by the User or System mode
has been replaced by an alternative register specific to the exception mode.

Figure 2-4 Register organization in Thumb state

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 2-11

Programmer’s Model

2.7.3 The relationship between ARM state and Thumb state registers

The Thumb state registers relate to the ARM state registers in the following way:

. Thumb state rO—r7 and ARM state rO—r7 are identical.

. Thumb state CPSR and SPSRs and ARM state CPSR and SPSRs are identical.
. Thumb state SP maps onto ARM state r13.

. Thumb state LR maps onto ARM state r14.

. The Thumb state PC maps onto the ARM state PC (r15).

These relationships are shown in Figure 2-5.

Thumb state ARM state
r0 _—> r0 -
r1 —_ r1
r2 _ r2
14
r3 I EE— r3 2
@
r4 —_— r4 g
r5 EEE— rS 2
-
6 —_— ré
r7 —_—> r7
r8 -
r9]
r10 o
r1 _g
r12 g
Stack pointer (SP) —_— Stack pointer (r13))
Link register (LR) R Link register (r14) =
Program counter (PC) _— Program counter (r15) —
CPSR _—> CPSR
SPSR —_— SPSR

Figure 2-5 Mapping of Thumb state registers onto ARM state registers

Note

Registers rO—r7 are known as the low registers. Registers r8-r15 are known as the high
registers.

2-12 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Programmer’s Model

2.7.4 Accessing high registers in Thumb state

In Thumb state, the high registers (r8—r15) are not part of the standard register set. With
assembly language programming you have limited access to them, but can use them f

fast temporary storage.

You can use special variants of ¥Mav instruction to transfer a value from a low

register (in the range rO—r7) to a high register, and from a high register to a low register
The CWP instruction allows you to compare high register values with low register
values. TheADD instruction allows you to add high register values to low register
values. For more details, refer to #hieM Architecture Reference Manual .

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 2-13

Programmer’s Model

2.8 The program status registers

28.1

The ARMOE-S contains a CPSR, and five SPSRs for exception handlersto use. The
program status registers:

. hold information about the most recently performed ALU operation
. control the enabling and disabling of interrupts
. set the processor operating mode.

The arrangement of bits in the status registers is shown in Figure 2-6.

Condition code flags Reserved Control bits
[[[\
31 30 29 28 27 26 9 8 7 6 5 4 3 2 1 0
(N[zlelv]al- |- -[-]-[1][F]T|mems[ma]mt]mo)
L Sticky overflow \—C‘Mode bits
Overflow L Statebit
L Carry/Borrow/Extend FIQ disable
L Zero IRQ disable
L Negativel/Less than

Figure 2-6 Program status register format

Note

The unused bits of the status registers may be used in future ARM architectures, and
should not be modified by software. The unused bits of the status registers are readable,
to allow the processor state to be preserved (for example, during process context
switches) and writeable, to allow the processor state to be restored. To maintain
compatibility with future ARM processors, and as good practice, you are strongly
advised to use a read-modify-write strategy when changing the CPSR.

The condition code flags

The N, Z, C, and V bits are the condition code flags. They can be set by arithmetic and
logical operations, and also by MSR and LDM instructions. The ARM9E-S tests these
flags to determine whether to execute an instruction.

All instructions can execute conditionally on the state of the N, Z, C and V bits in ARM
state. In Thumb state, only the Branch instruction can be executed conditionally. For
more information about conditional execution, refer toR® Architecture Reference
Manual.

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Programmer’s Model

The Q flag

The Sticky Overflow (Q) flag can be set by certain multiply and fractional arithmetic

instructions. The Q flag is sticky in that, once set by an instruction, it remains set until
explicitly cleared by an MSR instruction writing to CPSR. Instructions cannot execute
conditionally on the status of the Q flag. To determine the status of the Q flag you must
read the PSR into aregister and extract the Q flag from this.

2.8.2 The control bits

The bottom eight bits of a PSR are known collectively asthe control bits. They are the:
. interrupt disable bits

. T bit

. mode bits.

The control bits change when an exception occurs. When the processor is operating i
a privileged mode, software can manipulate these bits.
Interrupt disable bits

The | and F bits are the interrupt disable bits:
. when the | bit is set, IRQ interrupts are disabled
. when the F bit is set, FIQ interrupts are disabled.

T bit

The T bit reflects the operating state:
. when the T bit is set, the processor is executing in Thumb state
. when the T bit is clear, the processor is executing in ARM state.

The operating state is reflected by tR&I T external signal.

Caution

Never use aiWBR instruction to force a change to the state of the T bit in the CPSR. If
you do this, the processor enters an unpredictable state.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 2-15

Programmer’s Model

Mode bits

TheM4, M3, M2, M1, and MO bits (M[4:0]) arethe mode bits. These bits determinethe
processor operating mode as shown in Table 2-2. Not all combinations of the mode bits
define avalid processor mode, so take care to use only those bit combinations shown.

Table 2-2 PSR mode bit values

M[4:0] Mode Visible Thumb state registers Visible ARM state registers

10000 User r0-r7, r8-r12 SP, LR, PC, CPSR r0-r14, PC, CPSR

10001 FIQ ro—r7, r8_fig-r12_fi§ SP_fig, LR_fiq PC, ro—r7, r8_fig—r14_fig, PC, CPSR, SPSR_fiq
CPSR, SPSR_fiq

10010 IRQ r0-r7, r8-r12 SP_irg, LR_irg, PC, CPSR, r0-r12,r13_irq, r14_irq, PC, CPSR, SPSR_irq
SPSR_irq

10011 Supervisor o7, r8-ri SP svc, LR svc, PC, CPSR, r0-r12,r13_svc, rl4_svc, PC, CPSR,
SPSR_SVC - - SPSR_SVC

10111 Abort r0—r7, r8-r12 SP abt, LR abt, PC, CPSR, r0—rl12, r13_abt, r14_abt, PC, CPSR,
SPSR_abt - SPSR_abt

11011 Undefined (07, r8-r12 SP und, LR und, PC, CPSR, "0-r12, r13_und, r14_und, PC, CPSR,
SPSR_und - SPSR_und

11111 System ro—r7, r8-r12 SP, LR, PC, CPSR r0-r14, PC, CPSR

a.Access to theseregistersis limited in Thumb state.

—— Caution

Anillegal value programmed into M[4:0] causes the processor to enter an
unrecoverable state. If this occurs, apply reset.

2.8.3 Reserved bits

Theremaining bitsin the PSRs are unused, but are reserved. When changing a PSR flag
or control bits, make sure that these reserved bitsare not altered. Y ou should ensure that
your program does not rely on reserved bits containing specific values because future
processors may use some or al of the reserved bits.

2-16 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Programmer’s Model

2.9 Exceptions

Exceptions arise whenever the normal flow of a program has to be halted temporarily,
for example to service an interrupt from a peripheral. Before attempting to handle an
exception, the ARM9E-S preserves the current processor state so that the origina
program can resume when the handler routine has finished.

If two or more exceptions arise simultaneously, the exceptions are dealt with in the
fixed order given in Exception priorities on page 2-23.

This section provides detail s of the ARM9E-S exception handling:
. Exception entry/exit summary

. Entering an exception on page 2-18

. Leaving an exception on page 2-18.

2.9.1 Exception entry/exit summary

Table 2-3 summarizes the PC value preserved in the relevant r14 on exception entry,
and the recommended instruction for exiting the exception handler.

Table 2-3 Exception entry/exit

. Previous state
Exception

¢ Return instruction Notes

or entry ARM r14 x Thumb ri4 x

SWiI MOVS PC, Rl4_svc PC+4 PC+2 Where the PC is the address of the
SWI, undefined instruction, or

UNDEF MVS PC, R14_und PC+4 PC+2 instruction that had the Prefetch

PABT SUBS PC, Rl4_abt, #4 PC +4 PC+4 Abort.

FIQ SUBS PC, R14 fiq, #4 PC+4 PC+4 Where the PC is the address of the

- instruction that was not executed

IRQ SUBS PC. Rl4_irg, #4 PC+4 PC+4 because the FIQ or IRQ took
priority.

DABT SUBS PC, R14_abt, #8 PC+8 PC+8 Where the PC is the address of the
Load or Store instruction that
generated the Data Abort.

RESET NA - - The value saved in r14_svc upon
reset is UNPREDI CTABLE.

BKPT SUBS PC, R14_abt, #4 PC+4 PC+4 Software breakpoint.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 2-17

Programmer’s Model

2.9.2

293

Entering an exception
When handling an exception the ARM9E-S:

1. Preservesthe address of the next instruction in the appropriate LR. When the
exception entry is from:
. ARM state, the ARM9E-S copies the address of the next instruction into
the LR (current PC + 4 or PC + 8 depending on the exception).
. Thumb state, the ARM9OE-S writes the value of the PC into the LR, offset
by a value (current PC + 4 or PC + 8 depending on the exception) that
causes the program to resume from the correct place on return.

The exception handler does not need to determine the state when entering an
exception. For example, in the case of a SMMS PC, r14_svc always

returns to the next instruction regardless of whether the SWI was executed in
ARM or Thumb state.

2. Copies the CPSR into the appropriate SPSR.
3. Forces the CPSR mode bits to a value which depends on the exception.
4. Forces the PC to fetch the next instruction from the relevant exception vector.

The ARM9E-S may also set the interrupt disable flags to prevent otherwise
unmanageable nesting of exceptions.

Note

Exceptions are always entered, handled and exited in ARM state. When the processor
is in Thumb state and an exception occurs, the switch to ARM state takes place
automatically when the exception vector address is loaded into the PC.

Leaving an exception

When an exception has completed, the exception handler must move the LR, minus an
offset to the PC. The offset varies according to the type of exception, as shown in Table
2-3 on page 2-17.

If the S bit is set and rd = r15, the core copies the SPSR back to the CPSR and clears
the interrupt disable flags that were set on entry.

Note

The action of restoring the CPSR from the SPSR automatically resets the T bit to the
value it held immediately prior to the exception. The | and F bits are automatically
restored to the value they held immediately prior to the exception.

2-18

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Programmer’s Model

2.9.4 Fastinterrupt request

The Fast Interrupt Request (FIQ) exception supportsfast interrupts. In ARM state, FIQ
mode has eight private registers to reduce, or even remove the need for register saving
(thus minimizing the overhead of context switching).

An FlQisexternaly generated by taking the nFI Q signal input LOW. The nFIQ input
isregistered internally to the ARMOE-S. It isthe output of thisregister that is used by
the ARM9E-S control logic.

I rrespective of whether exception entry isfrom ARM state or from Thumb state, an FIQ
handler returns from the interrupt by executing:

SUBS PC, R14_fi q, #4

FIQ exceptions can be disabled within a privileged mode by setting the CPSR F flag.
When the F flag is clear, the ARM9E-S checks for aLOW level on the output of the
nFIQ register at the end of each instruction.

FIQsand IRQs are disabled when an FIQ occurs. Nested interrupts are allowed but it is
up to the programmer to save any corruptible registers and to re-enable FIQs and
interrupts.

295 Interrupt request

2.9.6 Abort

The Interrupt Request (IRQ) exceptionisanormal interrupt caused by aLOW level on
the nIRQ input. IRQ has alower priority than FIQ, and is masked on entry to an FIQ
sequence. You can disable IRQ at any time, by setting the | bit in the CPSR from a
privileged mode.

Irrespective of whether exception entry isfrom ARM state or Thumb state, an IRQ
handler returns from the interrupt by executing:

SUBS PC, R14_irq, #4

IRQ exceptions can be disabled within a privileged mode by setting the CPSR | flag.
When the | flag is clear, the ARM9E-S checks for aLOW level on the output of the
nIRQ register at the end of each instruction.

FIQs and IRQs are disabled when an IRQ occurs. Nested interruptsare allowed but it is
up to the programmer to save any corruptible registers and to re-enable FIQs and
interrupts.

An abort indicates that the current memory access cannot be completed. An abort is
signalled by one of the two external abort input pins, IABORT and DABORT.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 2-19

Programmer’s Model

There are two types of abort:

. Prefetch Abort on page 2-20. This is signalled by an assertion ohABORT
input pin and checked at the end of each instruction fetch.

. Data Abort on page 2-20. This is signalled by an assertion oD&ARBORT
input pin and checked at the end of each data access, both read and write.

IRQs are disbled when an abort occurs.

Prefetch Abort

When a Prefetch Abort occurs, the ARM9E-S marks the prefetched instruction as
invalid, but does not take the exception until the instruction reaches the execute stage
of the pipeline. If the instruction is not executed, for example because a branch occurs
while it is in the pipeline, the abort does not take place.

After dealing with the cause of the abort, the handler executes the following instruction
irrespective of the processor operating state:

SUBS PC, R14_abt , #4

This action restores both the PC and the CPSR, and retries the aborted instruction.

Data Abort

The ARM9YE-S implements thmse restored Data Abort model, which differs from the
base updated Data Abort model implemented by the ARM7TDMI-S.

The difference in the Data Abort model affects only a very small section of operating
system code, in the Data Abort handler. It does not affect user code.

With thebase restored Data Abort model, when a Data Abort exception occurs during

the execution of a memory access instruction, the base register is always restored by the
processor hardware to the value it contaibefdre the instruction was executed. This
removes the need for the Data Abort handlenteind any base register update, which

may have been specified by the aborted instruction. This greatly simplifies the software
Data Abort handler.

The abort mechanism allows the implementation of a demand-paged virtual memory
system. In such a system, the processor is allowed to generate arbitrary addresses. When
the data at an address is unavailablelviimory Management Unit (MMU) signals an

abort. The abort handler must then work out the cause of the abort, make the requested
data available, and retry the aborted instruction. The application program needs no
knowledge of the amount of memory available to it, and its state is not affected by the
abort.

2-20

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Programmer’s Model

After dealing with the cause of the abort, the handler must execute the following return
instruction irrespective of the processor operating state at the point of entry:
SUBS PC, Rl4_abt , #8

This action restores both the PC and the CPSR, and retries the aborted instruction.

2.9.7 Software interrupt instruction

Y ou can use the Software Interrupt Instruction (SW) to enter Supervisor mode, usually
to request a particular supervisor function. A SWI handler returns by executing the
following instruction, irrespective of the processor operating state:

MOVS PC, R14_svc

Thisaction restores the PC and CPSR, and returnsto the instruction following the SW .
The SWI handler reads the opcode to extract the SWI function number.

IRQs are disbled when a software interrupt occurs.

2.9.8 Undefined instruction

When an instruction is encountered that neither the ARM9E-S, nor any coprocessor in
the system can handle, the ARM 9E-Stakes the undefined instruction trap. Software can
use this mechanism to extend the ARM instruction set by emulating undefined
COprocessor instructions.

After emulating the failed instruction, the trap handler executes the following
instruction, irrespective of the processor operating state:
MOVS PC, R14_und

This action restores the CPSR and returns to the next instruction after the undefined
instruction.

IRQs are disbled when an undefined instruction trap occurs. For more information
about undefined instructions, refer to the ARM Architecture Reference Manual.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 2-21

Programmer’s Model

2.9.9 Breakpoint instruction (BKPT)

A breakpoint instruction operates as though the instruction caused a Prefetch Abort.

A breakpoint instruction will not cause the ARM9E-S to take the Prefetch Abort
exception until the instruction reaches the execute stage of the pipeline. If the
instruction is not executed, for example because a branch occurs whileit isin the
pipeline, the breakpoint does not take place.

After dealing with the breakpoint, the handler executes the following instruction
irrespective of the processor operating state:
SUBS PC, Rl4_abt , #4

Thisaction restores both the PC and the CPSR, and retries the breakpointed instruction.

Note

If the Embeddedl CE-RT logic is configured into stopping mode, a breakpoint
instruction will causethe ARM9E-Sto enter debug state. See Debug control register on
page C-35.

2.9.10 Exception vectors

The location of the exception vector addresses can be configured, using the input
CFGHIVECS, as shown in Table 2-4.

Table 2-4 Configuration of exception vector address locations

Value of Exception vector
CFGHIVECS base location

0 0x0000 0000

1 OxFFFF 0000

2-22

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Programmer’s Model

Table 2-5 shows the exception vector addresses and entry conditions for the different
exception types.

Table 2-5 Exception vectors

Exception Offset from Mode on entry I bit on F bit on
vector base entry entry

Reset 0x00 Supervisor Disabled Disabled
Undefined instruction 0x04 Undefined Disabled Unchanged
Software interrupt 0x08 Supervisor Disabled Unchanged
Abort (prefetch) 0x0C Abort Disabled Unchanged
Abort (data) 0x10 Abort Disabled Unchanged
Reserved 0x14 Reserved - -

IRQ 0x18 IRQ Disabled Unchanged
FIQ 0x1C FIQ Disabled Disabled

2.9.11 Exception priorities

When multiple exceptions arise at the sametime, afixed priority system determinesthe
order in which they are handled:

Reset (highest priority).

Data abort.

FIQ.

IRQ.

Prefetch abort.

BKPT, undefined instruction and SWI (lowest priority).

o Ok WDN PP

Some exceptions cannot occur together:

. The BKPT or undefined instruction and SWI exceptions are mutually exclusive.
Each corresponds to a particular (non-overlapping) decoding of the current
instruction.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 2-23

Programmer’s Model

. When FIQs are enabled, and a Data Abort occurs at the same time as an FIQ, the
ARMBO9E-S enters the Data Abort handler, and proceeds immediately to the FIQ
vector.

A normal return from the FIQ causes the Data Abort handler to resume
execution.

Data Aborts must have higher priority than FIQs to ensure that the transfer error
does not escape detection. You must add the time for this exception entry to the
worst-case FIQ latency calculations in a system that uses aborts to support
virtual memory.

The FIQ handler must not access any memory which can generate a Data Abort,
because the initial Data Abort exception condition would be lost.

2-24 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Programmer’s Model

2.10 Interrupt latencies

The calculations for maximum and minimum latency are described below.

2.10.1 Maximum interrupt latencies

The processor samples the interrupt input pins on the rising-edge of the system clock,
CLK. This sampled signal is then examined whenever a new instruction is scheduled
to enter the execute stage of the pipeline. If an interrupt is asserted at the same time that
amulti-cycle instruction is schedul ed to begin execution, the interrupt exception entry
will not commence until the instruction has compl eted.

The worst-case interrupt latency occurs when the longest L DMinstruction incurs aData
Abort. The processor must enter the Data Abort handler before taking the interrupt so
that the exception exit can occur correctly. This causes the worst-case latency of 24
cycles:

1

Thelongest LDMinstruction is one which loads al of the registers, including the
PC. Counting the first execute cycle as cycle 1, the LDMtakes 16 execute cycles
plus one final memory cycle (occupying cycle 17).

If aData Abort happens, the processor will detect thisin cycle 18 and prepare for
Data Abort exception entry in cycle 19.

Cycles 20 and 21 are the fetch and decode cycles of the Data Abort entry
respectively.

During cycle 22, the processor prepares for FIQ/IRQ exception entry, issuing
fetch and decode cyclesin cycles 23 and 24.

Therefore, the first instruction in the FIQ/IRQ routine will enter the execute
stage of the pipelinein cycle 25, giving aworst-case latency of 24 cycles.

2.10.2 Minimum interrupt latencies

Theminimum latency for FIQ or IRQ isthe shortest time the request can be sampled by
theinput register (onecycle), plusthe exception entry time (3 cycles). Thefirst interrupt
instruction enters the execute pipeline stage four cycles after the interrupt is asserted.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 2-25

Programmer’s Model

2.11 Reset

When the nRESET signal is driven LOW areset occurs, and the ARM9E-S abandons
the executing instruction.

When nRESET isdriven HIGH again the ARMOYE-S:

1. Forces CPSR[4:0] to 10011 (Supervisor mode), setsthe | and F bitsin the CPSR,
and clearsthe CPSR T bit. Other bitsin the CPSR are indeterminate.

2. Forces the PC to fetch the next instruction from the reset vector address.
3. Reverts to ARM state, and resumes execution.
After reset, all register values except the PC and CPSR are indeterminate.

Refer to ARM9E-Sreset behavior on page 3-31 for more details of the ARM9E-S reset
behavior.

2-26

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Chapter 3

Memory Interface

This chapter describes the ARM9E-S memory interface. It contains the following
sections:

. About the memory interface on page 3-2

. Instruction interface on page 3-3

. Instruction interface addressing signals on page 3-4
. Instruction interface data timed signals on page 3-6
. Endian effects for instruction fetches on page 3-7

. Instruction interface cycle types on page 3-8

. Data interface on page 3-13

. Data interface addressing signals on page 3-14

. Data interface data timed signals on page 3-17

. Data interface cycle types on page 3-23

. Endian effects for data transfers on page 3-29

. Use of CLKEN to control bus cycles on page 3-30
. ARMOE-Sreset behavior on page 3-31.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 3-1

Memory Interface

3.1 About the memory interface

The ARMOE-S has aHarvard bus architecture with separate instruction and data
interfaces. Thisallows concurrent instruction and data accesses, and greatly reducesthe
cycles per instruction (CPI) of the processor. For optimal performance, single-cycle
memory accesses for both interfaces are required, although the core can be wait-stated
for nonsequential accesses, or slower memory systems.

For both instruction and data interfaces, the ARM9E-S processor core uses pipelined
addressing, which means that the address and control signals are generated the cycle
before the data transfer takes place. All memory accesses are timed with the clock
CLK.

For each interface there are different types of memory access:
. Nonsequential

. Sequential

. Internal

. Coprocessor transfer (for the data interface).

The ARM9E-S can operate in both big-endian and little-endian memory configurations
and this is selected by ti@#GBIGEND input. The endian configuration affects both
interfaces, so you must take care when designing the memory interface logic to allow
correct operation of the processor core.

For system programming purposes, it is normally necessary to provide some
mechanism whereby the data interface can access instruction memory. There are two
main reasons for this:

. The use of in-line data for literal pools is very common. This data is fetched
using the data interface but is normally contained in the instruction memory
space.

. To enable debug using the JTAG interface it must be possible to download code
into the instruction memory. This code has to be written to memory through the
data interface, because the instruction interface is read-only. In this case it is
essential for the data interface to have access to the instruction memory.

A typical implementation of an ARM9E-S based cached processor has Harvard caches
and a unified memory structure beyond the caches, thereby giving the data interface
access to the instruction memory space. However, for an SRAM-based system this
technique cannot be used, and an alternative method must be employed.

It is not necessary for the instruction interface to have access to the data memory area
unless the processor needs to execute code from data memory.

3-2 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Memory Interface

3.2 Instruction interface

The ARMO9E-S requests instructions for execution using the instruction memory
interface. A new instruction isfetched over the instruction bus whenever an instruction
enters the execute stage of the pipeline.

Instruction fetches take place in the fetch stage of the pipeline.

3.2.1 Instruction interface signals
The signals in the ARM9E-S instruction interface can be grouped into four categories:

. clocking and clock control signals:

. CLK
. CLKEN
. NRESET.
. address class signals:
. [A[31:1]
. ITBIT
. INTRANS
. InM[4:0].
. memory request signals:
« InMREQ
. ISEQ.

. data timed signals:
. INSTR[31:0]
. IABORT.

Each of these signal groups shares a common timing relationship to the bus interface
cycle. All signals in the ARM9E-S instruction interface are generated from, or sampled
by, the rising edge cZLK.

Bus cycles can be extended using@heK EN signal. This signal is introduced irse
of CLKEN to control bus cycles on page 3-30. All other sections of this chapter describe
a simple system in whicBLKEN is permanently HIGH.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 3-3

Memory Interface

3.3 Instruction interface addressing signals
The address class signals for the instruction memory interface are:
. IA[31:1]
. ITBIT
. INTRANS on page 3-5
. InM[4:0] on page 3-5.
3.3.1 IA[31:1]
IA[31:1] is the 31-bit address bus which specifies the address for the transfer. All
addresses are byte addresses, so a burst of 32-bit instruction fetches results in the
address bus incrementing by 4 for each cycle.
Note
The ARMO9E-S does not produt®[0] as all instruction accesses are halfword-aligned
(that is,I A[Q] = 0).
The address bus provides 4GB of linear addressing space. When a word access is
signalled the memory system should igniok§l].
3.3.2 ITBIT
Thel TBIT signal encodes the size of the instruction fetch. The ARM9E-S can request
word-sized instructions (when in ARM state) or halfword-sized instructions (when in
Thumb state). This is encoded I0iBI T as shown in Table 3-1.
Table 3-1 Transfer widths
ITBIT Transfer width
1 Halfword
0 Word
The size of transfer does not change during a burst of S cycles.
3-4 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

3.3.3 InTRANS

3.34 InM[4:0]

Memory Interface

TheInTRANS signal encodes information about the transfer. A memory management
unit uses this signal to determine whether an accessis from a privileged mode. This
signal can therefore be used to implement an access permission scheme. The encoding
of INTRANS isshown in Table 3-2.

Table 3-2 INTRANS encoding

INTRANS Mode
0 User
1 Privileged

InM[4:0] indicates the operating mode of the ARMOE-S. This bus corresponds to the
bottom 5 bits of the CPSR, the outputs are inverted with respect to the CPSR.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 3-5

Memory Interface

3.4 Instruction interface data timed signals

The data timed signals for the instruction memory interface are:
. INSTR[31:0]
. |ABORT.

3.4.1 INSTR[31:0]
INSTR[31:0Q] is the read data bus, and is used by the ARM9E-S to fetch opcodes. The
INSTR[31:0] signal is sampled on the rising edgeCafK at the end of the bus cycle.

3.4.2 |ABORT
IABORT indicates that an instruction fetch failed to complete successfABORT
is sampled at the end of the bus cycle during active memory cycles (S cycles and N
cycles).
If IABORT is asserted on an opcode fetch, the abort is tracked down the pipeline, and
the Prefetch Abort trap is taken if the instruction is executed.
IABORT can be used by a memory management system to implement, for example, a
basic memory protection scheme, or a demand-paged virtual memory system.
For more details about aborts, gd®rt on page 2-19.

3-6

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Memory Interface

3.5 Endian effects for instruction fetches

The ARMOE-S will perform 32-bit or 16-bit instruction fetches depending on whether
the processor isin ARM or Thumb state. The processor state can be determined
externally by the value of the ITBIT signal. When thissignal is LOW, the processor is
in ARM state, and 32-bit instructions are fetched. When I TBI T isHIGH, the processor
isin Thumb state and 16-bit instructions are fetched.

The address produced by the ARM9E-S is always halfword aligned. However, the
memory system should ignore bit 1of the address, depending on the size of the
instruction reguest. The significant address bits are listed in Table 3-3.

Table 3-3 Significant address bits

. Significant
ITBIT Width address bits
1 Halfword IA[31:1]
0 Word IA[31:2]

When ahalfword instruction fetch is performed, a 32-bit memory system can return the
complete 32-bit word, and the ARM9E-S extracts the valid halfword field from it. The
field extracted depends on the state of the CFGBI GEND signal, which determinesthe
endianness of the system. See Memory formats on page 2-4.

Thefields extracted by the ARMOE-S are shown in Table 3-4.

Table 3-4 32-bit instruction fetches

Little-endian Big-endian
ITBIT IALL] CFGBIGEND =0 CFGBIGEND =1
0 X INSTR[31:0] INSTR[31:0]

When connecting 8-bit or 16-bit memory systemsto the ARM9E-S, ensurethat the data
is presented to the correct byte lanes on the ARM9E-S as shown in Table 3-5 below.

Table 3-5 Halfword accesses

Little-endian Big-endian
ITBIT AL CFGBIGEND =0 CFGBIGEND =1
1 0 INSTR[15:0] INSTR[31:16]
1 1 INSTR[31:16] INSTR[15:0]

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 3-7

Memory Interface

3.6 Instruction interface cycle types

The ARMOE-S instruction interface is pipelined. The address class signals and the
memory request signals are broadcast in the bus cycle ahead of the bus cycle to which
they refer. This gives the maximum time for amemory cycleto decode the address, and
respond to the access request.

A single memory cycle is shown in Figure 3-1.

CLK N —\ —\ —
Address class
signals (/ \PX Address X
InMREQ,
ISEQ \.X Cycle type X
INSTR[31:0] Ins:jr:cation
Bus cycle

Figure 3-1 Simple memory cycle

The ARM9E-Sinstruction interface can perform three different types of memory cycle.
Theseareindicated by the state of theInMREQ and | SEQ signals. Memory cycletypes
are encoded on the INMREQ and | SEQ signals as shown in Table 3-6.

Table 3-6 Cycle types

INMREQ ISEQ Cycle type Description

0 0 N cycle Nonsequential cycle
0 1 Scycle Sequential cycle

1 0 | cycle Internal cycle

1 1 - Reserved

A memory controller for the ARM9E-S should commit to an instruction memory access
only onan N cycleor an Scycle.

3-8

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Memory Interface

The ARMOE-S instruction interface has three types of memory cycle:

Nonsequential cycleDuring this the ARM9E-S core requests a transfer to or from an

Sequential cycle

Internal cycle

address which is unrelated to the address used in the preceding
cycle

During this the ARM9E-S core requests a transfer to or from an
addresswhich is either oneword, or one halfword greater than the
address used in the preceding cycle

During thisthe ARM9E-S core does not require atransfer because
itisperforming aninternal function, and no useful prefetching can
be performed at the same time

3.6.1 Nonsequential instruction fetches

A nonsequential instruction fetch is the simplest form of an ARM9E-S instruction
interface cycle, and occurswhen the ARM9E-S requestsatransfer to or from an address
which isunrelated to the address used in the preceding cycle. The memory controller
must initiate a memory access to satisfy this request.

The address class signals and the InMREQ,I SEQ = N cycle signals are broadcast on
the instruction interface bus. At the end of the next bus cycle the instruction is
transferred to the CPU from memory. Thisis shown in Figure 3-2.

CLK

Address class

J
X Address X

| R

signals

InMREQ,

ISEQ X N cycle X

INSTR[31:0] Insg:c;ion
< Noyde

Figure 3-2 Nonsequential instruction fetch cycle

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 3-9

Memory Interface

3.6.2 Sequential instruction fetches

Sequential instruction fetches are used to perform burst transfers on the bus. This
information can be used to optimize the design of amemory controller interfacing to a
burst memory device, such asa DRAM.

During asequential cycle, the ARM9E-S requests amemory location whichis part of a
sequential burst. If thisisthefirst cyclein the burst, the address may be the same asthe
previous internal cycle. Otherwise the address is incremented from the previous
instruction fetch that was performed:

. for a burst of word accesses, the address is incremented by 4 bytes
. for a burst of halfword access, the address is incremented by 2 bytes.

The types of bursts are shown in Table 3-7.

Table 3-7 Burst types

Burst type _Address Cause
increment
Word read 4 bytes ARM code fetches
Halfword read 2 bytes Thumb code fetches

All accesses in a burst are of the same width, direction and protection type. For more

details, seénstruction interface addressing signals on page 3-4.
Bursts of byte accesses are not possible with the instruction memory interface.

A burst always starts with an N cycle, or a merged I-S cycleMseged |-Scycles on

page 3-11), and continues with S cycles. A burst comprises transfers of the same type
or size. ThéA[31:1] signal increments during the burst. The other address class signals

are unaffected by a burst.

An example of a burst access is shown in Figure 3-3 on page 3-11.

3-10

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

3.6.3

3.6.4

Memory Interface

CLK J—\——\——\—

A_ddress class X ddroo X et X

signals

InMREQ,

ISEQ X N cycle X S cycle X

INSTR[31:0] Instruction Instruction

data 1 data 2

N cycle S cycle

PP

Figure 3-3 Sequential instruction fetch cycles

Internal cycles

During an internal cycle, the ARM9E-S does not require an instruction fetch, because
aninternal function is being performed, and no useful prefetching can be performed at
the same time.

Where possible the ARM9E-S broadcasts the address for the next access, so that decode
can start, but the memory controller must not commit to amemory access. Thisis
further described in Merged |-Scycles.

Merged I-S cycles

Where possible, the ARM9E-S performs an optimization on the busto allow extratime
for memory decode. When this happens, the address of the next memory cycleis
broadcast during an internal cycle on this bus. This allows the memory controller to
decode the address, but it must not initiate amemory access during thiscycle. Ina
merged I-Scycle, the next cycleisasequential cycleto the same memory location. This
commitsto the access, and the memory controller must initiate the memory access. This
is shown in Figure 3-4 on page 3-12.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 3-11

Memory Interface

CLK

Address class
signals

InMREQ,
ISEQ

INSTR[31:0]

B A Wy L W N U R W
X Address X Address + 2 X
x | cycle X S cycle X S cycle X
Instruction Instruction
datg 1 data 2
| cycle Merged S cycle
4P ——p
S cycle

Figure 3-4 Merged I-S cycle

There is an exception to the merged I-S behavior in the case of a coprocessor 15 MCR.
In this case the | A busis used to transmit data to CP15 (see Coprocessor 15 MCRs on

page 4-13).

Note

When designing amemory controller, make surethat the design will also work when an
| cycleisfollowed by an N cycleto adifferent address. This sequence may occur during
exceptions, or during writes to the program counter. It is essential that the memory
controller does not commit to the memory cycle during an | cycle.

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

3.7 Datainterface

Memory Interface

The ARM9E-S requests data using the data memory interface.

Datatransfers take place in the memory stage of the pipeline. The operation of the data
interface is very similar to the instruction interface.

3.7.1 Datainterface signals

The signals in the ARM9E-S bus interface can be grouped into four categories:

Each of these signal groups shares a common timing relationship to the bus interface
cycle. All signals in the ARM9OE-S data interface are generated from, or sampled by the

clocking and clock control signals:

. CLK

. CLKEN

. NRESET.
address class signals:
. DA[31:0]

. DnTRANS

. DnRW

. DnM[4:0]

. DMAS[1:0]

. DLOCK.
memory request signals:
. DnMREQ

. DSEQ

. DMORE.

data timed signals:
. WDATA[31:0]
. RDATA[31:0]
. DABORT.

rising edge ofCLK.

Bus cycles can be extended using@heK EN signal. This signal is introduced irse

of CLKEN to control bus cycles on page 3-30. All other sections of this chapter describe

a simple system in whicBLKEN is permanently HIGH.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 3-13

Memory Interface

3.8 Data interface addressing signals

The address class signals are:

. DA[31:0]

. DnRW

. DMAS 1:0] on page 3-15
. DnTRANS on page 3-15
. DLOCK on page 3-16

. DnM[4:0] on page 3-16.

3.8.1 DA[31:0]

DA[31:0] is the 32-bit address bus which specifies the address for the transfer. All
addresses are byte addresses, so a burst of word accesses results in the address bus
incrementing by 4 for each cycle.

The address bus provides 4GB of linear addressing space. When a word access is
signalled the memory system should ignore the bottom twoldkEl: 0], and when a
halfword access is signalled the memory system should ignore the bottBrA [0,

3.8.2 DnRW

DnRW specifies the direction of the transfBnRW indicates an ARM9E-S write

cycle when HIGH, and an ARM9E-S read cycle when LOW. A burst of S cycles is
always either a read burst, or a write burst, because the direction cannot be changed in
the middle of a burst.

3-14 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Memory Interface

3.8.3 DMAS[1:0]

The DM AS[1:0] bus encodesthe size of the transfer. The ARM9E-S can transfer word,
halfword, and byte quantities. Thisis encoded on DM AS[1:0] as shown in Table 3-8.

Table 3-8 Transfer widths

DMAS1:0] Transfer width
00 Byte

01 Halfword

10 Word

11 Reserved

The size of transfer does not change during a burst of S cycles. Bursts of halfword or
byte accesses are not possible on the ARM9E-S data interface.

Note

A writable memory system for the ARM9E-S must have individual byte write enables.
Both the C compiler and the ARM debug tool chain (for example, Multi-1CE) assume
that arbitrary bytesin the memory can be written. If individual byte write capability is
not provided, it may not be possible to use these tools.

3.84 DnTRANS

The DnTRANS bus encodes information about the transfer. A memory management
unit uses this signal to determine whether an accessis from a privileged mode. This
signal can therefore be used to implement an access permission scheme. The encoding
of DnTRANS s shown in Table 3-9.

Table 3-9 DnTRANSencoding

DnTRANS Mode
0 User
1 Privileged

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 3-15

Memory Interface

3.8.5 DLOCK

DL OCK isusedtoindicateto an arbiter that an atomic operation is being performed on
the bus. DLOCK isnormally LOW, but is set HIGH to indicate that a SWP or SWPB
instruction is being performed. These instructions perform an atomic read/write
operation, and can be used to implement semaphores.

If DLOCK isassertedin acycle, then thisindicates that there will be another accessin
the next cycle which must belocked to thefirst. In the cae of amulti-master system, the
ARM should not be degranted the bus when alocked transaction is being performed.

3.8.6 DnM[4:0]

DnM[4:0] indicates the operating mode of the ARM9E-S. This bus corresponds to the
bottom five bits of the CPSR, unless aforced user mode access is being performed, in
which case DnM[4:0] indicates user mode. These bits are inverted with respect to the
CPSR.

3-16 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Memory Interface

3.9 Data interface data timed signals

The datatimed signals are:
. WDATA[31:0]

. RDATA[31:0]

. DABORT.

3.9.1 WDATA[31:0]

3.9.2 RDATA[31:0]

3.9.3 DABORT

WDATA[31:0] is the write data bus. All data written out from the ARM9E-S is
broadcast on this bus. Data transfers from the ARM9E-S to a coprocessor also use th
bus during C cycles. In normal circumstances, a memory system must sample the
WDATA[31:0] bus on the rising edge 6L K at the end of a write bus cycle. The value
onWDATA[31:0] is valid only during write cycles.

RDATA[31:0] is the read data bus, and is used by the ARM9E-S to fetch data. The
RDATA[31:0] signal is sampled on the rising edge&afK at the end of the bus cycle.
RDATA[31:0Q] is also used during C cycles to transfer data from a coprocessor to the
ARMOE-S.

DABORT indicates that a memory transaction failed to complete successfully.
DABORT is sampled at the end of the bus cycle during active memory cycles (S cycles
and N cycles).

If DABORT is asserted on a data access, it causes the ARM9E-S to take the data abc
trap.

DABORT can be used by a memory management system to implement, for example, ¢
basic memory protection scheme, or a demand-paged virtual memory system.

The ARM9E-S design differs from ARM9TDMI in the following respect. ARM9TDMI
features a combinational path fradABORT to DnMREQ, DSEQ andDMORE.

This path is present so that an aborted memory access can cancel memory accesses
requested by following instructions.

An example of this is shown in Figure 3-5 on page 3-18, where a load instruction
follows an aborted store.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 3-17

Memory Interface

oLk _/\ ;\ S R W

Address class X
signals

Write address X Read address X

DnRW | | J
DnMREQ BN

\
g
S PO v

DMORE

> \

|
P
Y

WDATA[31:0] X

(Write) rite data X

J
DABORT 1 / |

Write cycle | cycle
(aborted)

Figure 3-5 ARM9TDMI effect of DABORT on following memory access

ThisDABORT to DnMREQ, DSEQ and DM ORE path has been removed from the
ARMOE-S design because:

. a combinational input to output path is undesirable in an ASIC design flow
. the path is critical in ARM9TDMI.

Due to this modification, the memory system connected to ARM9E-S is responsible for
ignoring a data memory request made during the cycle of an aborted data transfer. This
is necessary to prevent a following memory access from corrupting memory after an
aborted access. The memory system should ighokéREQ, DSEQ andDM ORE in

this case.

3-18

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Memory Interface

Figure 3-6 showsthe ARM9E-S behavior for an aborted STRinstruction followed by an
LDMinstruction. While the STRinstruction is cancelled, amemory request is made in
the first cycle of the LDMbefore the Data Abort exception is taken.

CLK

Address class
signals

DnRW

DnMREQ

DSEQ

DMORE

WDATA[31:0]
(Write)

DABORT

L

L

L

_/
[wessrod | ressssoed |
1 \ /
1A A / L
1A A A [
1A [T [
[wewa] |
1A J \
~—faborted >+ lgrorsiby

memory system)

Figure 3-6 ARMYE-S aborted data memory access

For more detail s about aborts, see Abort on page 2-19.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved.

3-19

Memory Interface

3.9.4 Byte and halfword accesses

The ARMOE-S indicates the size of atransfer using the DM AS[1:0] signals. These are
encoded as shown in Table 3-10.

Table 3-10 Transfer size encoding

DMASI[1:0] Transfer width
00 Byte

01 Halfword

10 Word

11 Reserved

All writable memory in an ARM9E-S based system should support the writing of
individual bytesto allow the use of the C compiler and the ARM debug tool chain (for
example, Multi-ICE).

The address produced by the ARM9E-S is always byte aligned. However, the memory
system should ignore the insignificant bits of the address. The significant address bits
arelistedin Table 3-11.

Table 3-11 Significant address bits

Significant

DMAS[1:0] Width ~ddress bits

00 Byte DA[31:0]
01 Hafword DA[31:1]
10 Word DA[31:2]

Reads

When a halfword or byte read is performed, a 32-bit memory system can return the
complete 32-bit word, and the ARM9E-S extracts the valid halfword or bytefield from
it. The fields extracted depend on the state of the CFGBIGEND signal, which
determines the endianness of the system (see Memory formats on page 2-4).

3-20 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Memory Interface

Thefields extracted by the ARMOE-S are shown in Table 3-12.

Table 3-12 Word accesses

) . Little-endian Big-endian
DMASI[1:0] DA[1:0] CFGBIGEND =0 CFGBIGEND =1
10 XX RDATA[3L:0] RDATA[31:0]

When performing aword load, the ARM9E-S may rotate the datareturned internally if
the address used is unaligned. Refer to the ARM Architectural Reference Manual for

more details.

When connecting 8-bit to 16-bit memory systems to the ARM9E-S, make sure that the
datais presented to the correct byte lanes on the ARM9E-S as shown in Table 3-13 and

Table 3-14.
Table 3-13 Halfword accesses
. . Little-endian Big-endian
DMASI[1:0] DA[1:0] CFGBIGEND =0 CFGBIGEND =1
01 0X RDATA[15:0] RDATA[31:16]
01 1X RDATA[31:16] RDATA[15:0]
Table 3-14 Byte accesses
. . Little-endian Big-endian
DMAS[1:0] DA[L:0] CFGBIGEND =0 CFGBIGEND =1
00 00 RDATA[7:0] RDATA[31:24]
00 01 RDATA[15:8] RDATA[23:16]
00 10 RDATA[23:16] RDATA[15:8]
00 1 RDATA[31:24] RDATA[7:0]

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 3-21

Memory Interface

Writes

When the ARM9E-S performs a byte or halfword write, the data being written is
replicated across the bus, asillustrated in Figure 3-7. The memory system can use the
most convenient copy of the data. A writable memory system must be capable of
performing awriteto any single bytein the memory system. This capability isrequired
by the ARM C compiler and the Debug tool chain.

Byte writes
ARMO9E-S Memory interface
—> 5 WDATA[31:24]
P> £ WDATA[23:16]
—> @ WDATA[15:8]
Register(7:0] ~ § —— £ WDATA[7:0]
Halfword writes
ARMOE-S Memory interface
A
— 2 WDATA[31:16]
D
A A
Register[15:0] 8 — 8 WDATA[15:0]
D D

Figure 3-7 Data replication

3-22 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Memory Interface

3.10 Data interface cycle types

The ARMOE-S datainterface is pipelined, and so the address class signals and the
memory request signals are broadcast in the bus cycle ahead of the bus cycle to which
they refer. This givesthe maximum time for amemory controller to decode the address,
and respond to the access request.

A single memory cycleis shown in Figure 3-8.
oLk Jj \—\ U R S

Address class X
. Address
signals

DnMREQ,
DSEQ, \’X Cycle type X
DMORE

WDATA[31:0] |

(Write) Write data X

RDATA[31:0]

(Read) X Read dataX

Bus cycle

Figure 3-8 Simple memory cycle

The ARMOE-S data interface can perform four different types of memory cycle. These
areindicated by the state of the DnM REQ and DSEQ signals. Memory cycletypesare
encoded on the DnMREQ and DSEQ signals as shown in Table 3-15.

Table 3-15 Cycle types

DnMREQ DSEQ Cycle type Description

0 0 N cycle Nonsequential cycle

0 1 Scycle Sequential cycle

1 0 | cycle Internal cycle

1 1 Ccycle Coprocessor register transfer cycle

A memory controller for the ARM9E-S should commit to a data memory access only
onan N cycleor an S cycle.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 3-23

Memory Interface

The ARMOE-S data interface has four types of memory cycle:

Nonsequential cycleDuring this the ARM9E-S core requests a transfer to or from an
address which is unrelated to the address used in the preceding
cycle.

Sequential cycle During thisthe ARM9E-S core requests atransfer to or from an
address which is one word greater than the address used in the
preceding cycle.

Internal cycle During thisthe ARM9E-S core does not require atransfer because
it is performing an internal function.

Coprocessor register transfer cycle
During thisthe ARM9E-S core uses the data bus to communicate
with acoprocessor, but does not require any action by the memory
system.

3.10.1 Nonsequential cycles

A nonsequential cycleis the simplest form of an ARM9E-S data interface cycle, and
occurs when the ARM9E-S requests atransfer to or from an address which isunrelated
to the address used in the preceding cycle. The memory controller must initiate a
memory access to satisfy this request.

The address class signals and the DnMREQ and DSEQ = N cycl e are broadcast on
the data bus. At the end of the next bus cycle the datais transferred between the CPU
and the memory. Thisis shown in Figure 3-9 on page 3-25.

3-24 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Memory Interface

CLK A U T

Address class X
signals

Address X

DnMREQ,
DSEQ, X N cycle X
DMORE

WDATA[31:0] X

(Write) Write data X

RDATA[31:0] X Read|data)(
(Read)

N cycle

Figure 3-9 Nonsequential data memory cycle

The ARM9E-S can perform back to back, nonsequential memory cycles. This happens,
for example, when an STRinstruction and an LDR instruction are executed in
succession, as shown in Figure 3-10.

CLK _,—\——\— | S
':Ig:raelzs . X Write address X Read address X
DnRW [\ /
DnMREQ,
DSEQ, X N cycle X N cycle X
DMORE
WDATA[31:0] .
(Wri te) X Write data X
RDATA[31:0] X Read datax
(Read)
Write cycle Read cycle

P

Figure 3-10 Back to back memory cycles

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 3-25

Memory Interface

If you are designing a memory controller for the ARM9E-S, and your memory system
isunableto copewith this case, usethe CLK EN signal to extend the bus cycleto allow
sufficient cycles for the memory system (see Use of CLKEN to control bus cycleson
page 3-30).

3.10.2 Sequential cycles

Sequential cycles are used to perform burst transfers on the bus. This information can
be used to optimize the design of a memory controller interfacing to a burst memory
device, such asaDRAM.

During asequential cycle, the ARM9E-S requests amemory location whichis part of a
sequential burst. If thisisthefirst cyclein the burst, the address may be the ssme asthe
previous internal cycle. Otherwise the address isincremented from the previous cycle.
For a burst of word accesses, the address is incremented by 4 bytes.

Bursts of halfword or byte accesses are not possible on the ARM9E-S data interface.

A burst always starts with an N cycle and continues with S cycles. A burst comprises
transfers of the sametype. The DA[31:0] signal increments during the burst. The other
address class signals are unaffected by a burst.

The types of bursts are shown in Table 3-16.

Table 3-16 Burst types

Burst type Address increment Cause
Word read 4 bytes LDMinstruction
Word write 4 bytes STMinstruction

All accessesin aburst are of the same width, direction and protection type. For more
details, see Instruction interface addressing signals on page 3-4.

3-26 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Memory Interface

An example of aburst accessis shown in Figure 3-11.

CLK S
gldg?'lrael:s class X Address X Address + 4 x

DnMREQ __\ A /

DSEQ 1 / \

DMORE 1] \ /

‘(I\\IIVI?':?Z)A[31 :0] X Write data 1 X Write data 2 X
RDATA[31:0] Read Rehd

(Read) data 1 data 2

N cycle S cycle
—— P>

Figure 3-11 Sequential access cycles

The DM ORE signd isactive during load and store multiple instructions and only ever
goes HIGH when DnMREQ is LOW. Thissignal effectively givesthe same
information as DSEQ), but acycle ahead. Thisinformation isprovided to allow external
logic more time to decode sequential cycles.

3.10.3 Internal cycles
During an internal cycle, the ARM9E-S does not require a memory access, as an
internal function is being performed.

3.10.4 Merged I-S cycles

The ARMOE-S does not perform merged |-S cycles on the data memory interface.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 3-27

Memory Interface

3.10.5 Coprocessor register transfer cycles

During a coprocessor register transfer cycle, the ARMOE-S uses the data interface to
transfer datato or from a coprocessor. A memory cycleisnot required and the memory
controller does not initiate a transaction.

The coprocessor interface is described in Chapter 4 ARM9E-S Coprocessor Interface.

3-28 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Memory Interface

3.11 Endian effects for data transfers

3.11.1 Writes

3.11.2 Reads

The ARMOE-S supports 32-bit, 16-bit and 8-bit data memory access sizes. The endian
configuration of the processor, set by CFGBIGEND, affects only non-word transfers
(16-bit and 8-bit transfers).

For data writes by the processor, the write data is duplicated on the data bus. So for a
16-bit data store, one copy of the data appears on the upper half of the write data bus,
WDATA[31:16], and the same data appears on the lower half, WDATA[15:0]. For
8-bit writes four copies are output, one on each byte lane:

- WDATA[3L:24]
- WDATA[23:16]
« WDATA[15:§]
- WDATA[7:0].

This considerably eases the memory control logic design and helps overcome any
endian effects.

For data reads, the processor will read a specific part of the read data bus. This is
determined by:

. the endian configuration
. the size of the transfer
. bits 1 and 0 of the data address bus.

Table 3-13 on page 3-21 shows which bits of the data bus are read for 16-bit reads, an
Table 3-14 on page 3-21 shows which bits are read for 8-bit transfers.

For simplicity of design, 32-bits of data can be read from memory and the processor will
ignore any unwanted bits.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 3-29

Memory Interface

3.12 Use of CLKEN to control bus cycles

CLK

CLKEN

Address class
signals

DnMREQ,
DSEQ,
DMORE

RDATA[31:0]
(Read)

B A U L S U R S S

The pipelined nature of the ARM9E-S bus interface means that thereis a distinction
between clock cycles and bus cycles. CLK EN can be used to stretch abus cycle, so that
it lasts for many clock cycles. The CLKEN input extends the timing of bus cyclesin
increments of complete CLK cycles:

. whenCLKEN is HIGH on the rising edge &L K, a bus cycle completes
. whenCLKEN is sampled LOW, the bus cycle is extended.

TheCLKEN input extends bus cycles on both the instruction and data interfaces when
asserted.

In the pipeline, the address class signals and the memory request signals are ahead of
the data transfer by oreis cycle. In a system usifgL KEN this may be more than
oneCLK cycle. This is illustrated in Figure 3-12, which shasK EN being used to

extend a nonsequential cycle. In the example, the first N cycle is followed by another

N cycle to an unrelated address, and the address for the second access is broadcast
before the first access completes.

Y U v v Y D U v

X Address 1 X Address 2 X ext address

ainll

X N cycle X N cycle X Next cycle type

Py
@
oy
aQ
Py
0]

ad
data 1 data 2

First bus cycle Second bus cycle
- a0

Figure 3-12 Use of CLKEN

Note

When designing a memory controller, you are strongly advised to sample the values of
INMREQ, ISEQ, DnMREQ, DSEQ, DMORE, and the address class signals only
whenCLKEN is HIGH. This ensures that the state of the memory controller is not
accidentally updated during a waited cycle.

3-30

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Memory Interface

3.13 ARMO9E-S reset behavior

CLK

nRESET

InMREQ

ISEQ

1A[31:1]

INSTR[31:0]

DnMREQ

DSEQ

DMORE

DnRW

DA[31:0]

When nRESET isdriven LOW, the currently executing instruction terminates
abnormally. INMREQ, I SEQ, DnMREQ, DSEQ and DM ORE will asynchronously
change to indicate an internal cycle.

When nRESET isdriven HIGH, the ARM9E-S starts requesting instructions from
memory again once the nRESET signal has been registered, and the first memory
access will start two cycles|ater.

The nRESET signal is sampled on the rising-edge of CLK . The behavior of the
memory interfaces coming out of reset is shown in Figure 3-13.

F D E M w

VA \ \ \ \ \ \ [

{1 () an
\
[
[
X
X

Figure 3-13 ARMO9E-S reset behavior

Note

It is recommended that NRESET be asserted for three cycles to ensure correct reset
behavior. NnRESET is an asynchronous reset input and must be held stable during
normal operation. Glitches on NnRESET will result in the ARM9E-S being reset
abnormally.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 3-31

Memory Interface

3-32 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Chapter 4
ARMO9E-S Coprocessor Interface

This chapter describes the ARM9E-S coprocessor interface. It contains the following
sections:

. About the coprocessor interface on page 4-2
. LDC/STC on page 4-4

. MCR/MRC on page 4-8

. Interlocked MCR on page 4-9

. CDP on page 4-10

. Privileged instructions on page 4-11

. Busy-waiting and interrupts on page 4-12

. Coprocessor 15 MCRs on page 4-13

. Connecting coprocessors on page 4-14.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 4-1

ARMOYE-S Coprocessor Interface

4.1

41.1

4.1.2

About the coprocessor interface

The ARMOE-S supports the connection of coprocessors. All types of ARM
coprocessors are supported. Coprocessors determine the instructions they need to
execute using a pipeline follower in the coprocessor. As each instruction arrives from
memory, it enters both the ARM pipeline and the coprocessor pipeline. The coprocessor
determines when an instruction is being fetched by the ARM9E-S, so that the
instruction can be loaded into the coprocessor, and the pipeline follower advanced.

The coprocessor can be run either in step with the ARM9E-S pipeline, or one cycle
behind, depending on the timing priorities. The implications of the two approaches are
discussed in:

. Coprocessor pipeline operatesin step with the ARM9E-S

. Coprocessor pipeline one cycle behind the ARM9YE-S.

Coprocessor pipeline operates in step with the ARM9E-S

In this case, the pipeline follower inside the coprocessor matches that of the ARM9E-S
exactly. This complicates the timing of key signals such aENB& R andCLKEN

inputs, because these now become more heavily loaded and therefore incur more delay.
For this reason, this method is only recommended for tightly integrated coprocessors
such as CP15, the system coprocessor.

Coprocessor pipeline one cycle behind the ARM9E-S

This method is recommended for external coprocessors. A coprocessor interface block
pipelines the instruction and control signals so that the loading is reduced on these
critical signals. This means that the pipeline in the coprocessor operates one cycle
behind the ARM9E-S pipeline. The disadvantage of this is that outputs of the
coprocessor are still expected in the correct pipeline stage, as seen from the ARM9E-S.
The most critical signal in this situation is likely to®E SD[1:0], the coprocessor

decode handshake signal. This must return the availability of the coprocessor by the end
of the decode cycle, as seen by the ARM9E-S. This is equivalent to the fetch cycle of
the coprocessor pipeline, and therefore there is not much time to generate this signal.
This means that the design may need to insert wait states for external coprocessor
accesses.

There are three classes of coprocessor instructions:
. LDC/STC

. MCR/MRC

. CDP.

4-2

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

ARMO9E-S Coprocessor Interface

Examples of how a coprocessor should execute these instruction classes are given in:
. LDC/STC on page 4-4

. MCR/MRC on page 4-8

. Interlocked MCR on page 4-9

. CDP on page 4-10.

Note

For the sake of clarity, all timing diagrams assume a system where the coprocessor
pipeline operates in step with the ARM9E-S.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 4-3

ARMOYE-S Coprocessor Interface

4.2 LDC/STC
The number of words transferred is determined by how the coprocessor drives the
CHSD[1:0] and CHSE[1:0] buses. In the example, four words of data are transferred.
Figure 4-1 shows the ARM9E-S LDC/ STC cycle timing.
ARM processor pipeline - Decode -l E’(‘gg‘;e > E’(‘gg‘)‘e > E?g%’)te >a ffi‘é“Tt)e <& Memory -a— Wiite — >
ck)\ \ \ \ \ \ \ \ [
InMREQ ___\ A i \
INsTRE31:0] ——{_ |) {1)
PASS / \
LATECANCEL \ /
CHSD[1:0] o)
CHSE[1:0] {0 Y o Y\ UastT | ighored |
Coproc CPDOUT[3S1_i_(2 X | XX XX X
Goproe PPN o S S I S S S
DnMREQ V \ A A A I/ V
DMORE A I V V \ A A
DA[31:0] | RS O D

Figure 4-1 ARM9E-S LDC/STC cycle timing

Aswith all other instructions, the ARM9E-S processor core performs the main decode
using the rising edge of the clock during the decode stage. From this, the core commits
to executing the instruction, and so performs an instruction fetch. The coprocessor
instruction pipeline keeps in step with the ARM9E-S by monitoring InMREQ.

4-4 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

ARMO9E-S Coprocessor Interface

Attherising edgeof CLK, if CLKEN isHIGH, and INMREQ isLOW, an instruction
fetchistaking place, and INSTR[31:0] will contain the fetched instruction on the next
rising edge of the clock, when CLKEN isHIGH. This means that:

. the last instruction fetched should enter the decode stage of the coprocessor
pipeline

. the instruction in the decode stage of the coprocessor pipeline should enter its
execute stage

. the fetched instruction should be sampled.

In all other cases, the ARM9E-S pipeline is stalled, and the coprocessor pipeline shoul
not advance.

Figure 4-2 shows the timing for these signals, and indicates when the coprocessor
pipeline should advance its state. In this timing diagram, Coproc clock shows the
effective clock applied to the pipeline follower in the coprocessor. It is derived such that
the coprocessor state should only advance on r&3ling edges wheLKEN is

HIGH. The method of implementing this is dependent on the design style used, such a
clock gating or register recirculating.

For efficient coprocessor design, an unmodified versid®lLdf should be applied to
the execution stage of the coprocessor. This will allow the coprocessor to continue
executing an instruction even when the ARM9E-S pipeline is stalled.

CLK

CLKEN

Coproc
clock

1 %
T
(i

(N
—

Figure 4-2 ARM9E-S coprocessor clocking

During the execute stage, the condition codes are compared with the flags to determin
whether the instruction really executes or not. The olRABS is asserted (HIGH) if

the instruction in the execute stage of the coprocessor pipeline:

. is a coprocessor instruction

. has passed its condition codes.

If a coprocessor instruction busy-waP# SSis asserted on every cycle until the
coprocessor instruction is executed. If an interrupt occurs during busy-wBitiSS,
is driven LOW, and the coprocessor will stop execution of the coprocessor instruction

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 4-5

ARMOYE-S Coprocessor Interface

A further output, LATECANCEL, isused to cancel acoprocessor instruction whenthe
instruction preceding it caused adata abort. Thisisvalid on therising edge of CLK on
the cycle that follows the first execute cycle of a coprocessor instruction. Thisisthe
only cycleinwhich LATECANCEL can be asserted (see CDP on page 4-10 for an
example of LATECANCEL behavior).

Ontherising edge of the clock, the ARM9E-S processor core examines the coprocessor
handshake signals CHSD[1:0] or CHSE[1:0Q]:

. If a new instruction is entering the execute stage in the next cycle, the core
examinesCHSD[1:0].

. If the currently executing coprocessor instruction requires another execute cycle,
the core examineSHSE[1:0].

The handshake signals encode one of four states:

ABSENT If there is no coprocessor attached that can execute the coprocessor
instruction, the handshake signals indicate the ABSENT state. In this
case, the ARM9OE-S processor core takes the undefined instruction trap.

WAIT If there is a coprocessor attached that can handle the instruction, but not
immediately, the coprocessor handshake signals are driven to indicate
that the ARM9E-S processor core should stall until the coprocessor can
catch up. This is known as thasy-wait condition. In this case, the
ARMOE-S processor core loops in an idle state waitingCteB6E[1: 0]
to be driven to another state, or for an interrupt to occur.

If CHSE[1:0] changes to ABSENT, the undefined instruction trap will
be taken. ICHSE[1:0] changes to GO or LAST, the instruction will
proceed as described below.

If an interrupt occurs, the ARM9E-S processor core is forced out of the
busy-wait state. This is indicated to the coprocessor bRAIBS signal
going LOW. The instruction will be restarted later and so the coprocessor
must not commit to the instruction (it must not change any of the
coprocessor’s state) until it has s&&SS HIGH, when the handshake
signals indicate the GO or LAST condition.

GO The GO state indicates that the coprocessor can execute the instruction
immediately, and that it requires another cycle of execution. Both the
ARMOE-S processor core and the coprocessor must also consider the
state of thd®ASS signal before actually committing to the instruction.
For anLDC or STC instruction, the coprocessor instruction drives the
handshake signals with GO when two or more words still need to be
transferred. When only one further word is to be transferred, the

4-6 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

LAST

ARMO9E-S Coprocessor Interface

coprocessor drives the handshake signals with LAST.

During the execute stage, the ARM9E-S processor core outputs the
addressfor theLDCor STC. Alsointhiscycle, DnMREQ isdriven LOW,
indicating to the memory system that a memory accessisrequired at the
data end of the device. Thetiming for the dataon RDATA[31:0] for an
LDC and WDATA[31:0] for an STCis shown in Figure 4-1 on page 4-4.

An LDC or STC can be used for more than one item of data. If thisisthe
case, possibly after busy waiting, the coprocessor drives the coprocessor
handshake signal s with a number of GO states, and in the penultimate
cycledrives LAST (LAST indicating that the next transfer is the final
one). If there was only one transfer, the sequence would be
[WAIT,[WAIT,...]],LAST.

4.2.1 Coprocessor handshake encoding

Table 4-1 shows how the handshake signals CHSD[1:0] and CHSE[1:0] are encoded.

Table 4-1 Handshake signals

Handshake CHSD[1:0],
signal CHSE[1:0]
ABSENT 10
WAIT 00
GO 01
LAST 11

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 4-7

ARMOYE-S Coprocessor Interface

43 MCR/MRC

These cycleslook very similar to STC or LDC. An exampleis shown in Figure 4-3.

ARM processor pipeline & Decode >t~ E)((g%J)te > M(eGm(;J)ry < (Kg?r) >
clk |\ \ \ \ \ [
INSTR[31:0] cPRT} {) L)
ImMREQ \ /
PASS / \
CHSDI[1:0] dasT
CHSE[1:0] __lghored
WDATA([31:0] \
(MCR)
RDATA[31:0] T
(MRC)

Figure 4-3 ARM9E-S MCR or MRC transfer timing

First INMREQ isdriven LOW to denote that the instruction on INSTR[31:0] is
entering the decode stage of the pipeline. This causes the coprocessor to decode the new
instruction and drive CHSD[1:0] as required.

In the next cycle INMREQ isdriven LOW to denote that the instruction has now been
issued to the execute stage. If the condition codes pass, and hence the instructionisto
be executed, the PASS signal is driven HIGH and the CHSDJ[1:0] handshake busis
examined by the core (it isignored in all other cases).

For any successive execute cycles the CHSE[1:0] handshake busis examined. When
the LAST condition isobserved, theinstruction is committed. In the case of an MCR, the
WDATA[31:0] busisdriven with the register data. In the case of an MRC,
RDATA[31:0] issampled at the end of the ARM9E-S memory stage and written to the
destination register during the next cycle.

4-8

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

ARMO9E-S Coprocessor Interface

4.4 Interlocked MCR

CLK

INSTR[31:0]

If the datafor an MCR operation is not available insidethe ARMOE-S pipeline during its
first decode cycle, the ARMOE-S pipelinewill interlock for one or more cyclesuntil the
datais available. An example of thisiswhere the register being transferred is the
destination from a preceding LDR instruction. In this situation the MCR instruction will
enter the decode stage of the coprocessor pipeline, and remain there for anumber of
cycles before entering the execute stage.

Figure 4-4 gives an example of an interlocked MCR.

ARM processor pipeline *(i?ti?‘l?cif’* Decode - %),(ve:#;e -t I?EZ‘;#? - Memory - Write -
1)))
| S S
MCR/MRC

INMREQ

PASS

LATECANCEL

CHSD[1:0]

CHSE[1:0]

WDATA[31:0]
(MCR)

RDATA[31:0]
(MRC)

N VN /A VO S/ \

/ \
\ [
o war [war)
(" UasT [ighorea)
X

X

Figure 4-4 ARMOE-S interlocked MCR

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 4-9

ARMOYE-S Coprocessor Interface

45 CDP
CDP instructions normally execute in asingle cycle. Like al the previous cycles,
INMREQ isdriven LOW to signal when an instruction is entering the decode stage and
again when it reaches the execute stage of the pipeline:
. if the coprocessor can accept the instruction for executio®ABS signal is
driven HIGH during the execute cycle
. if the coprocessor can execute the instruction immediately it dBi&D[1:0]
with LAST
. if the instruction requires a busy-wait cycle, the coprocessor dii&ED[1:0]
with WAIT and thenCHSE[1:0] with LAST.
Figure 4-5 shows @P which is cancelled due to the previous instruction causing a data
abort. TheCDP instruction enters the execute stage of the pipeline and is signalled to
execute byPASS. In the following cycld. ATECANCEL is asserted. This causes the
coprocessor to terminate execution of @ instruction and prevents tiag®dP
instruction from causing state changes to the coprocessor.
LDR with Data Abort (<@~ Execute - Memory B> Exception»&Exception
entry start continues
CDP: ARM processor pipeline - Decode - Execute It | | >
CDP: Coprocessor pipeline - Decode - Execute - Memory >
(latecancelled)
ck \ \ \ \ \ [
INSTR[31:0] {cPRT) 1) 1)
InMREQ | N\ /
PASS / \
LATECANCEL / \
CHSDI[1:0] X dast
CHSE[1:0] { ighored Y
DABORT [\
Figure 4-5 ARMOYE-S late-cancelled CDP
4-10 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

ARMO9E-S Coprocessor Interface

4.6 Privileged instructions

The coprocessor may restrict certain instructions for use in privileged modes only. To
do this, the coprocessor will haveto track the INnTRANS output. Figure 4-6 shows how
INTRANS changes after a mode change.

Mode change - Execute - Execute < Execute 9 Memory I Write P
(Cycle 2) (Cycle 3)
CDP: ARM processor pipeline <@~ Decode -~ Decode - Decode - Execute - Memory Pt Write P
clk \ \ \ \ \ \ (N
INSTR[31:0] — Jerry
INMREQ A [\\ /
oo Old Mode Y[New Mode
PASS / \
LATECANCEL \ /
CHSDI[1:0] X ighored)} ighored Y UasT
CHSE[1:0] { ighored Y

Figure 4-6 ARM9E-S privileged instructions

Thefirst two CHSD responses are ignored by the ARM9E-S becauseit isonly thefinal
CHSD response, as the instruction moves from decode into execute, that counts. This
allows the coprocessor to change its response as INTRANS/INM changes.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 4-11

ARMOYE-S Coprocessor Interface

4.7 Busy-waiting and interrupts

CLK

INSTR[31:0]

INMREQ

PASS

LATECANCEL

CHSD[1:0]

The coprocessor is permitted to stall, or busy-wait, the processor during the execution
of a coprocessor instruction if, for example, it is still busy with an earlier coprocessor
instruction. To do so, the coprocessor associated with the decode stage instruction
drives WAIT onto CHSD[1:0]. When the instruction concerned enters the execute
stage of the pipeline the coprocessor can drive WAIT onto CHSE[1:0] for as many
cycles as necessary to keep the instruction in the busy-wait loop.

For interrupt latency reasons the coprocessor may be interrupted while busy-waiting,
thus causing the instruction to be abandoned. Abandoning execution is done through
PASS. The coprocessor must monitor the state of PASS during every busy-wait cycle.

If itis HIGH, the instruction should still be executed. If it is LOW, theinstruction
should be abandoned. Figure 4-7 shows a busy-waited coprocessor instruction being
abandoned due to an interrupt:

ARM processor pipeline <@~ Execute - Execute - Execute @ Execute @ Execute -P>r<Exception
(WAIT) (WAIT) (WAIT) Interrupted Entry
Coprocessor pipeline @ Decode - Execute - Execute - Execute = Execute & Aban- P
(WAIT) (WAIT) (WAIT) (WAIT) doned
/F?\ [) [T
P/ - 7
/ \ /
X AT
X AT N AT Y ighored

CHSE[1:0]

Figure 4-7 ARMYE-S busy waiting and interrupts

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

4.8 Coprocessor 15 MCRs

ARM processor pipeline

CLK

INSTR[31:0]

INMREQ

ISEQ

DnMREQ

DSEQ

PASS

LATECANCEL

CHSD[1:0]

CHSE[1:0]

WDATA[31:0]
(MCR)

1A[31:1]

DA[31:0]

ARMO9E-S Coprocessor Interface

Coprocessor 15istypically reserved for useasasystem control coprocessor. For an MCR
to coprocessor 15, it is possible to transfer the coprocessor data to the coprocessor on
the 1A and DA buses. To do this the coprocessor should drive GO on the coprocessor
handshake signals for anumber of cycles. For each cyclethat the coprocessor responds
with GO on the handshake signal s the coprocessor datawill be driven onto | A and DA

as shown in Figure 4-8.

<@ Decode <@~ Execute - Execute P Execute - Memory Pt Write P
(GO) (GO) (LAST)
\ \ \ \ \ \ \ \
[[T\ [\ [T\
J— S - S
MCR
A Al i \
\ /
/ \
/ \
/ \
\ /
o |
) co X Uast Y ighored Y
X Coproc Data X
) Instr X Coprpc Data Y nstr+4 [Y
X Coproc Data X

Figure 4-8 ARM9E-S coprocessor 15 MCRs

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved.

4-13

ARMOYE-S Coprocessor Interface

4.9 Connecting coprocessors

A coprocessor in an ARMO9E-S system needs to have 32-bit connections to:
. data from memory (instruction stream ariaf)

. write data from the ARM9E-SVCR)

. read data to the ARM9OE-$KC).

49.1 Connecting a single coprocessor

An example of how to connect a coprocessor into an ARM9E-S system is shown in
Figure 4-9.

asel

RDATA

o Memory
ARMOE-S system

WDATA 1

csel

A A
H 1 0/
- bsel
z 3
o [a]
o o
@] @]
A
Coprocessor

The logic is as follows:

on RISING CLK
asel not (DnMREQ and DSEQ) and (not DnRW)
bsel (not DnMREQ) and (not PASS)
csel DnMREQ and DSEQ

Figure 4-9 Coprocessor connections

Note

TheRDATA enable term is specially constructed to select the coprocessor output data
during MRC andSTC operations. This is to allow the connection of the ARM ETM
module to the ARM9E-RDATA andWDATA buses while still allowing tracing of

MRC andSTC data.

4-14 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

ARMO9E-S Coprocessor Interface

4.9.2 Connecting multiple coprocessors

If you have multiple coprocessors in your system, connect the handshake signals as
shown in Table 4-2.

Table 4-2 Handshake signal connections

Signal Connection

PASS, LATECANCEL Connect these signalsto all coprocessors present in the system.

CHSD, CHSE Combine theindividual bit 1 of CHSD, CHSE by ANDing.
Combine the individual bit 0 of CHSD, CHSE by ORing.
Connect the CHSD, CHSE inputs to the ARM9YE-S.

Y ou must also multiplex the output data from the coprocessors.
The handshaking arrangement for a two coprocessor system is shown in Example 4-1.

Example 4-1

In the case of two coprocessors which have handshaking signalsCHSD1, CHSE1 and
CHSD2, CHSE?2 respectively, the following connections are made:

ARMOYE-S CP1 CP2

CHSD[1]<= CHSD1[1] AND CHSD2[1]
CHSD[0]<= CHSD1[0] OR CHSD2[0]
CHSE[1]<= CHSE1[1] AND CHSE2[1]
CHSE[0]<= CHSE1[0] OR CHSEZ2[0]

4.9.3 If you are not using an external coprocessor

If you are implementing a system which does not include any external coprocessors,
you must tie both CHSD and CHSE to 10 (ABSENT). Thisindicates that no external
coprocessors are present in the system. If any coprocessor instructions are received,
they causethe processor to take the undefined instruction trap, allowing the coprocessor
instructions to be emulated in software if required.

The coprocessor-specific outputs from the ARM9E-S should be |eft unconnected:
. PASS
. LATECANCEL

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 4-15

ARMOYE-S Coprocessor Interface

49.4

Undefined instructions

The ARMOE-S implements full ARM architecture v5TE undefined instruction
handling. This means that any instruction defined in the ARM Architecture Reference
Manual as UNDEFI NED, automatically causes the ARM9E-S to take the undefined

instruction trap. Any coprocessor instructions that are not accepted by a coprocessor
also result in the ARM9E-S taking the undefined instruction trap.

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Chapter 5
Debug Interface and EmbeddedICE-RT

This chapter describes the ARM9E-S debug interface in the following sections:
. Overview of the debug interface on page 5-2

. Debug systems on page 5-3

. Debug interface signals on page 5-9

. ARMO9E-S core clock domains on page 5-14

. Determining the core and system state on page 5-15.

This chapter also describes the ARM9E-S EmbeddedICE-RT logic in the following
sections:

. Overview of Embeddedl CE-RT on page 5-6
. Disabling Embedded| CE-RT on page 5-8
. The debug communications channel on page 5-16.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 5-1

Debug Interface and EmbeddedICE-RT

5.1

Overview of the debug interface

The ARMOE-S debug interface is based on |EEE Std. 1149.1-1990, Standard Test
Access Port and Boundary-Scan Architecture. Refer to this standard for an explanation
of the terms used in this chapter and for a description of the TAP controller states.

The ARMOE-S contains hardware extensions for advanced debugging features. These
make it easier to develop application software, operating systems, and the hardware
itself. ARM9E-S supports two modes of debug operation:

. halt mode

. monitor mode.

Halt mode debug

In halt mode debug, the debug extensions allow the core to be forceldhingstate.

In debug state, the core is stopped and isolated from the rest of the system. This allows
the internal state of the core, and the external state of the system, to be examined while
all other system activity continues as normal. When debug has been completed, the core
and system state can be restored, and program execution resumed.

Monitor mode debug

On a breakpoint or watchpoint, an Instruction Abort or Data Abort will be generated
instead of entering halt mode debug. When used in conjunction with a debug monitor
program activated by the abort exception entry, it is possible to debug the ARM9E-S
while allowing the execution of critical interrupt service routines. The debug monitor
program would typically communicate with the debug host over the ARM9E-S debug
communication channel. Monitor mode debug is describ&tbimitor mode debug on

page 5-20.

5-2

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug Interface and EmbeddedICE-RT

5.2 Debug systems

The ARM9E-S forms one component of a debug system that interfaces from the
high-level debugging performed by the user to the low-level interface supported by the
ARMOE-S. Figure 5-1 shows atypical debug system.

Debug

host Host computer running ARM or third-party toolkit

>

Protocol

For example, Multi-ICE
converter

>

Debug

target Development system containing ARM9E-S

Figure 5-1 Typical debug system

A debug system typically has three parts:

. The debug host

. The protocol converter

. The ARM9E-S on page 5-4 (the debug target).

The debug host and the protocol converter are system-dependent.

5.2.1 The debug host

The debug host is a computer running a software debugger, such as armsd. The debt
host allows you to issue high-level commands such as setting breakpoints or examinin
the contents of memory.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 5-3

Debug Interface and EmbeddedICE-RT

5.2.2 The protocol converter

An interface, such as an RS232 or parallel connection, connects the debug host to the
ARMO9E-S devel opment system. The messages broadcast over this connection must be
converted to the interface signals of the ARM9E-S. The protocol converter performs
this conversion.

5.2.3 The ARM9YE-S

The ARMOE-S has hardware extensions that ease debugging at the lowest level. The
debug extensions:

. allow you to stall program execution by the core
. examine the core internal state

. examine the state of the memory system

. resume program execution.

The major blocks of the ARM9E-S are:
ARMO9E-Score This is the CPU core, with hardware support for debug.

Embeddedl CE-RT logic
This is a set of registers and comparators used to generate debug
exceptions (such as breakpoints). This unit is described in
Overview of Embedded| CE-RT on page 5-6.

TAP controller This controls the action of the scan chains using a JTAG serial
interface.

These blocks are shown in Figure 5-2 on page 5-5.

5-4 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug Interface and EmbeddedICE-RT

ARMOE-S
EmbeddedICE-RT

Scan chain 1

Scan chain 2

|7

A

ARMOE-S
core

\ 4

ARMO9E-S
TAP controller

Figure 5-2 ARM9E-S block diagram

In halt mode debug a request on one of the external debug interface signals, or on an
internal functional unit known asthe Embeddedl CE-RT logic, forcesthe ARM9E-Sinto
debug state. The events which activate debug are:

. a breakpoint (a given instruction fetch)
. a watchpoint (a data access)

. an external debug request

. scanned debug requdatdebug request scanned into the EmbeddedICE-RT

delay control register).

The internal state of the ARM9E-S is examined using the JTAG serial interface, which
allows instructions to be serially inserted into the core pipeline without using the
external data bus. So, for example, when in debug ststtereanultiple (STM can be
inserted into the instruction pipeline, and this exports the contents of the ARM9E-S
registers. This data can be serially shifted out without affecting the rest of the system.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved.

5-5

Debug Interface and EmbeddedICE-RT

5.3 Overview of EmbeddedICE-RT

The ARM9E-S Embedded| CE-RT logic providesintegrated on-chip debug support for
the ARMOE-S core.

Embeddedl CE-RT is programmed serially using the ARM9E-S TAP controller. Figure
5-3 illustrates the relationship between the core, Embedded CE-RT, and the TAP
controller, showing only the signals that are pertinent to Embedded| CE-RT.

DBGEXTI[1:0]

DBGCOMMRX

DBGCOMMTX
DBGRNG[1:0] _

Processor EmbeddedICE-RT DBGACK >

DBGIEBKPT

A

EDBGRQ

A

DBGDEWPT

A

DBGEN

A

DBGTCKEN

DBGTMS

DBGTDI
DBGTDO >

AAA

TAP

CLK

DBGNTRST

Figure 5-3 The ARM9E-S, TAP controller and EmbeddedICE-RT

The Embeddedl CE-RT logic comprises:
. two real-time watchpoint units

. two independent registers, the debug control register and the debug status
register
. debug comms channel.

The debug control register and the debug status register provide overall control of
EmbeddedICE-RT operation.

5-6 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug Interface and EmbeddedICE-RT

Y ou can program one or both watchpoint units to halt the execution of instructions by
the core. Execution halts when the values programmed into Embeddedl CE-RT match
the values currently appearing on the address bus, data bus, and various control signals.

Note
Y ou can mask any hit so that its value does not affect the comparison.

Each watchpoint unit can be configured to be either a watchpoint (monitoring data
accesses) or abreakpoint (monitoring instruction fetches). Watchpoints and breakpoints
can be data-dependent in halt mode debug.

The EmbeddedI CE-RT logic can be configured into a mode of operation where
watchpoints or breakpoints generate Data or Prefetch Aborts respectively. This alows
area-time (RT) debug monitor system to debug the ARM while still allowing critical
fast interrupt requests to be serviced.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 5-7

Debug Interface and EmbeddedICE-RT

5.4 Disabling EmbeddedICE-RT

Y ou can disable EmbeddedI CE-RT by setting the DBGEN input LOW.

——— Caution
Hard wiring the DBGEN input LOW permanently disables all debug functionality.

When DBGEN isLOW, itinhibitsDBGDEWPT, DBGIEBK PT and EDBGRQ tothe
core, and DBGACK from the ARMOE-S will always be LOW.

5-8

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug Interface and EmbeddedICE-RT

5.5 Debug interface signals

There are four primary external signals associated with the debug interface:

. DBGIEBKPT, DBGDEWPT, andEDBGRQ are system requests for the
ARMO9E-S to enter debug state

. DBGACK is used by the ARM9E-S to flag back to the system that it is in debug
state.

5.,5.1 Entry into debug state on breakpoint

An instruction being fetched from memory is sampled at the end of a cycle. To apply a
breakpoint to that instruction, the breakpoint signal must be asserted by the end of th
same cycle. This is shown in Figure 5-4.

F1 D1 E1 M1 W1
F2 D2 E2 M2 W2
Breakpointed instruction FB DB (EB) (MB) (WB)
F3 (D3) (E3) (M3)
(F4) (D4) (E4)
Ddebug Edebug1 Edebug2
ck O\ \ \ \ \ \ \ [
1A[31:1]) X
STRE31:0] {0
DBGIEBKPT [T\
DBGACK /

Figure 5-4 Breakpoint timing

External logic, such as additional breakpoint comparators, can be built to extend the
breakpoint functionality of the EmbeddedICE-RT logic. Their output should be applied
to theDBGIEBKPT input. This signal is simply ORed with the internally-generated
Breakpoint signal before being applied to the ARM9E-S core control logic.

Note —

The timing of theDBGIEBKPT input makes it unlikely that data-dependent external
breakpoints will be possible.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 5-9

Debug Interface and EmbeddedICE-RT

55.2

Breakpoints

A breakpointed instruction is allowed to enter the execute stage of the pipeline, but any
state change as aresult of theinstruction is prevented. All instructions prior to the
breakpointed instruction complete as normal.

Note

If abreakpointed instruction does not reach the execute stage, for instance, if an earlier
instruction is abranch, then both the breakpointed instruction and breakpoint status are
discarded and the ARM does not enter debug state.

The decode cycle of the debug entry sequence occurs during the execute cycle of the
breakpointed instruction. The latched Breakpoint signal forces the processor to start
the debug sequence.

In Figure 5-4 on page 5-9 instruction B is breakpointed. The debug entry sequenceis
initiated when instruction B enters the execute stage. The ARM compl etes the debug
entry sequence and asserts DBGACK two cycles later.

and exceptions

A breakpointed instruction could have a Prefetch Abort associated with it. If so, the
Prefetch Abort takes priority and the breakpoint isignored. (If thereisaPrefetch Abort,
instruction data may be invalid, the breakpoint may have been data-dependent, and as
the data may be incorrect, the breakpoint may have been triggered incorrectly.)

SW and undefined instructions are treated in the same way as any other instruction
which could have a breakpoint set on it. Therefore, the breakpoint takes priority over
the SW or undefined instruction.

On aninstruction boundary, if there is a breakpointed instruction and an interrupt
(nIRQ or nFI1Q), the interrupt is taken and the breakpointed instruction is discarded.
When the interrupt has been serviced, the execution flow is returned to the original
program. This meansthat the instruction which was previously breakpointed isfetched
again, and if the breakpoint is still set, the processor enters debug state when it reaches
the execute stage of the pipeline.

When the processor has entered debug state, it isimportant that further interrupts do not
affect the instructions executed. For this reason, as soon as the processor enters debug
state, interrupts are disabled, although the state of the | and F bitsin the Program Satus
Register (PSR) are not affected.

5-10

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug Interface and EmbeddedICE-RT

5.5.3 Watchpoints

Entry into debug state following a watchpointed memory accessisimprecise. Thisis
necessary because of the nature of the pipeline.

External logic, such as external watchpoint comparators, can be built to extend the
functionality of the EmbeddedI CE-RT logic. Their output must be applied to the
DBGDEWPT input. This signal is simply ORed with the internally-generated
Watchpoint signal before being applied to the ARM9E-S core control logic.

Note

The timing of the DBGDEWPT input makesiit unlikely that data-dependent external
watchpoints will be possible.

After awatchpointed access, the next instruction in the processor pipelineis always
allowed to compl ete execution. Where thisinstruction isasingle-cycle data-processing
instruction, entry into debug state is delayed for one cycle while the instruction
completes. The timing of debug entry following awatchpointed load in this case is
shown in Figure 5-5.

F1 D1 E1 M1 Wi
F2 D2 E2 M2 w2
Fldr Didr Eldr Midr Widr
FDp DDp EDp MDp WDp
F5 D5 E5 M5 w5
Ddebug Edebug1 Edebug2
CLK \ [\
InMREQ \ I\ I\ I\ \ A\ 7
.) 5 THR) o) 5 I = 5
INsTRE31:0] ——(1) =, {LPR/ L.9p / L} L6/ -, L8)
DA[31:0]) X
WDATA[31:0] X){
RDATA[31:0])
DBGDEWPT [T\
DBGACK /

Figure 5-5 Watchpoint entry with data processing instruction

Although instruction 5 enters the execute stage, it is not executed, and thereis no state
update as aresult of thisinstruction.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 5-11

Debug Interface and EmbeddedICE-RT

Once the debugging session is complete, normal continuation involves areturn to
instruction 5, the next instruction in the code sequence which has not yet been executed.

Theinstruction following the instruction which generated the watchpoint could have
modified the Program Counter (PC). If this has happened, it will not be possible to
determine the instruction which caused the watchpoint. A timing diagram showing
debug entry after a watchpoint where the next instruction is a branch is shown in

Figure 5-6.
Fldr Didr Eldr Midr Widr
FB DB EB MB wB
FT DT ET
Ddebug Edebug1 Edebug?2
ek L\
INMREQ A\ JA\ A A\ A\ A\ A\ |
IA[31:1] XX XX XX XX XX XX XX
INSTRi31:0] ——(LDR) (&} {2 (D {1} {T34) {Tte) {Tie}
DA[31:0] X){
WDATA[31:0] X X
RDATA[31:0] an;
DBGDEWPT [T\
DBGACK [

Figure 5-6 Watchpoint entry with branch

However, it isaways possible to restart the processor. When the processor has entered
debug state, the ARM9E-S core can be interrogated to determineits state. In the case of
awatchpoint, the PC containsavaluethat isfiveinstructions on from the address of the
next instruction to be executed. Therefore, if on entry to debug state, in ARM state, the
instruction SuB PC, PC, #20 isscanned in and the processor restarted, execution flow
returns to the next instruction in the code sequence.

5-12 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug Interface and EmbeddedICE-RT

5.5.4 Watchpoints and exceptions

If thereisan abort with the dataaccess aswell asawatchpoint, the watchpoint condition
islatched, the exception entry sequence is performed, and then the processor enters
debug state. If thereis an interrupt pending, the ARM9E-S allows the exception entry
seguence to occur and then enters debug state.

5.5.5 Debug request

A debug request can take place through the Embeddedl CE-RT logic or by asserting the
EDBGRQ signal. Therequest isregistered and passed to the processor. Debug request
takes priority over any pending interrupt. Following registering, the core enters debug
state when the instruction at the execution stage of the pipeline has completely finished
executing (once memory and write stages of the pipeline have completed). While
waiting for the instruction to finish executing, no more instructions are issued to the
execute stage of the pipeline.

When a debug request occurs, the ARM9E-S will enter debug state even if the
Embedded| CE-RT is configured for monitor mode debug.

5.5.6 Actions of the ARM9E-S in debug state

Once the ARMOE-S isin debug state, both memory interfaces indicate internal cycles.
This alows the rest of the memory system to ignore the ARM9E-S and function as
normal. Because the rest of the system continues operation, the ARM9E-S ignores
aborts and interrupts.

The CFGBIGEND signal should not be changed by the system whilein debug state. If
it changes, not only is there a synchronization problem, but the view of the ARM9E-S
seen by the programmer changes without the knowledge of the debugger. ThenRESET
signal must also be held stable during debug. If the system applies reset to the
ARMOE-S (nRESET isdriven LOW), the state of the ARM9E-S changes without the
knowledge of the debugger.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 5-13

Debug Interface and EmbeddedICE-RT

5.6 ARMO9E-S core clock domains

The ARMOE-S has asingle clock, CLK, that is qualified by two clock enables:
. CLKEN controls access to the memory system
. DBGTCKEN controls debug operations.

During normal operatiorGCL KEN conditionsCLK to clock the core. When the
ARMOE-S is in debug stat®BGTCKEN conditionsCLK to clock the core.

5.6.1 Clocks and synchronization

If the system and test clocks are asynchronous, they must be synchronized externally to
the ARM9E-S macrocell. The ARM Multi-ICE debug agent directly supports one or
more cores within an ASIC design. To synchronize off-chip debug clocking with the
ARMBO9E-S macrocell requires a three-stage synchronizer. The off-chip device (for
example, Multi-ICE) issuesBCK signal, and waits for theTCK (ReturnedT CK)

signal to come back. Synchronization is maintained because the off-chip device does
not progress to the neXICK until afterRTCK is received. Figure 5-7 shows this
synchronization.

DO DBGTDO
~
RTCK “‘ \ DBGTCKEN,, |
4 L/
)
TCK N J
1> D Q D Q D Q L/
[[] ®
CLK | | N
i [
™S TCK synchronizer S EN . DBGTMS= S
L~ g::
CLK
TDI N o EN q|_DBGTDI
L~ o
CLK
Multi-ICE
interface Input sample and hold
pads —__ CLK |

Figure 5-7 Clock synchronization

5-14 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug Interface and EmbeddedICE-RT

5.7 Determining the core and system state

When the ARMOE-S is in debug state, you can examine the core and system state by
forcing the load and store multiples into the instruction pipeline.

Before you can examine the core and system state, the debugger must determine
whether the processor entered debug from Thumb state or ARM state, by examining
bit 4 of the Embeddedl CE-RT debug status register. If bit 4 is HIGH, the core has
entered debug from Thumb state.

For more details about determining the core state, see Determining the core and system
state on page C-19.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 5-15

Debug Interface and EmbeddedICE-RT

5.8 The debug communications channel

The ARM9E-S Embedded| CE-RT logic contains a communications channel for
passing information between the target and the host debugger. Thisisimplemented as
coprocessor 14.

The communications channel comprises:
. a 32-bit wide comms data read register
. a 32-bit wide comms data write register

. a 6-bit wide comms control register for synchronized handshaking between the
processor and the asynchronous debugger.

These registers are located in fixed locations in the EmbeddedICE-RT logic register
map (as shown in Table C-4 on page C-29) and are accessed from the processor using
MCR andMRC instructions to coprocessor 14.

In addition to the comms channel registers, the processor can access a 1-bit debug status
register for use in the monitor mode debug configuration.

5.8.1 Debug comms channel registers
Coprocessor 14 contains 4 registers, allocated as shown in Table 5-1.
Table 5-1 Coprocessor 14 register map
Register name Register Notes
number
Comms channel control Cco Read only
Comms channel data read C1 For reads
Comms channel data write C1 For writes
Comms channel monitor mode debug status Cc2 Read/write
Seen from the debugger, the registers are accessed using the scan chain in the usual way.
Seen from the processor, these registers are accessed using coprocessor register transfer
instructions.
5-16 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug Interface and EmbeddedICE-RT

5.8.2 Debug comms channel control register

The debug comms channel control register is read-only. It controls synchronized
handshaking between the processor and the debugger. The debug comms channel status
register is shown in Figure 5-8.

313029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1 0

o/oj1/10/0/0/0/O|OfO|OfO/O|O|O|O|O|O(O|O|O|0O|O|O|O[O0|O|O0|O0|W|R

Figure 5-8 Debug comms channel control register

The function of each register bit is described below:

Bits 31:28 Contain afixed pattern that denotes the Embedded| CE version
number (in this case 0011).

Bits 27:2 Are reserved.

Bit 1 Denotes whether the comms data write register is available (from

the viewpoint of the processor).
Seen from the processor, if the comms data write register is free
(W=0), new data can be written.

If the register is not free (W=1), the processor must poll until
w=0.

Seen from the debugger, when W=1, some new data has been
written that can then be scanned out.

Bit 0 Denoteswhether thereis new datain the comms dataread register.
Seen from the processor, if R=1, thereis some new datawhich can
be read using an MRC instruction.

Seen from the debugger, if R=0, the comms data read register is
free, and new data may be placed there through the scan chain. If
R=1, this denotes that data previously placed there through the
scan chain has not been collected by the processor, and so the
debugger must wait.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 5-17

Debug Interface and EmbeddedICE-RT

5.8.3

Y ou should use the following instructions to access these registers:
VRC p14, 0, Rd, cO, cO

This returns the debug comms control register into Rd.

MCR pl14, 0, Rn, cl1, cO

Thiswrites the value in Rn to the comms data write register.

VMRC p14, 0, Rd, c1, cO

This returns the debug data read register into Rd.

Note

The Thumb instruction set does not support coprocessor instructions, therefore the
processor must be in ARM state before you can access the debug comms channel.

Comms channel monitor mode debug status register

The coprocessor 14 monitor mode debug status register is provided for use by a debug
monitor when the ARMOE-S is configured into the monitor mode debug mode.

The coprocessor 14 monitor mode debug status register is a 1-bit wide read/write
register having the format shown in Table 5-1.

313029282726252423222120191817161514131211109 8 7 6 56 4 3 2 1 0

0,0/0/0/0/0/O0O|jO/O|O|O|O|O|/O|O|O|O|O|O|OfO|O|O|O|O|O|O|O|O|O]|O

DbgAbt bit J

Figure 5-9 Coprocessor 14 monitor mode debug status register format

Bit 0 of the register, the DbgAbt bit, indicates whether the processor took a prefetch or
dataabort in the past because of abreakpoint or watchpoint. If the ARM9E-S coretakes
aprefetch abort as aresult of a breakpoint or watchpoint, then the bit will be set. If on
aparticular instruction or datafetch, both the debug abort and external abort signalsare
asserted, the external abort takes priority and the DbgAbt bit isnot set. Y ou can read or
write the DbgAbt bit using MRC or MCR instructions.

A typical use of thisbit isby amonitor mode debug aware abort handler. Thisexamines
the DbgAbt bit to determine whether the abort was externally or internally generated. If
the DbgADbt bit is set, the abort handler initiates communication with the debugger over
the comms channel.

5-18

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug Interface and EmbeddedICE-RT

5.8.4 Communications using the comms channel

Messages can be sent and received using the comms channel.

Sending a message to the debugger

Before the processor can send amessage to the debugger, it must check that the comms
datawrite register isfree for use by finding out whether the W bit of the debug comms
control register isclear.

The processor reads the debug comms control register to check the status of the W hit.
. If the W bit is clear, the comms data write register is clear.

. If the W bit is set, previously written data has not been read by the debugger. The
processor must continue to poll the control register until the W bit is clear.

When the W bit is clear, a message is written by a register transfer to coprocessor 14
As the data transfer occurs from the processor to the comms data write register, the V
bit is set in the debug comms control register.

The debugger sees both the R and W bits when it polls the debug comms control registt
through the JTAG interface. When the debugger sees that the W bit is set, it can reac
the comms data write register, and scan the data out. The action of reading this data
register clears the debug comms control register W bit. At this point, the
communications process can begin again.

Receiving a message from the debugger

Transferring a message from the debugger to the processor is similar to sending a
message to the debugger. In this case, the debugger polls the R bit of the debug comr
control register.

. If the R bit is LOW, the comms data read register is free, and data can be placec
there for the processor to read.

. If the R bit is set, previously deposited data has not yet been collected, so the
debugger must wait.

When the comms data read register is free, data is written there via the JTAG interface
The action of this write sets the R bit in the debug comms control register.

The processor polls the debug comms control register. If the R bit is set, there is data
that can be read using an MRC instruction to coprocessor 14. The action of this load
clears the R bit in the debug comms control register. When the debugger polls this
register and sees that the R bit is clear, the data has been taken, and the process can
be repeated.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 5-19

Debug Interface and EmbeddedICE-RT

5.9 Monitor mode debug

ARMO9E-S containslogic which allows the debugging of a system without stopping the
coreentirely. Thisallowsthe continued servicing of critical interrupt routineswhilethe
coreis being interrogated by the debugger. Setting bit 4 of the debug control register
enabl es the monitor mode debug features of ARM9E-S. When this bit is set, the
EmbeddedI CE-RT logicis configured so that a breakpoint or watchpoint will causethe
ARM to enter abort mode, taking the prefetch or data abort vectors respectively. There
are anumber of restrictions to be aware of when the ARM is configured for monitor
mode debugging:

. Breakpoints and watchpoints can not be data-dependent. No support is provided
for use of the range and chain functionality. Breakpoints and watchpoints can
only be based on:

— instruction or data addresses

— external watchpoint conditioneDBGEXTERN)

— user or privileged mode acceSnT RANS/INTRANYS)
— read/write access (watchpoints)

— access size (breakpoinfEBI T, watchpointdDMAS[1:0]).

. The single-step hardware must not be enabled.
. External breakpoints or watchpoints are not supported.

. The vector catching hardware may be used but must not be configured to catch
the Prefetch or Data Abort exceptions.

. No support is provided to mix halt mode debug and monitor mode debug
functionality. When the core is configured into the monitor mode, asserting the
externaEDBGRQ signal results in unpredictable behavior. Setting the internal
debug requediit results in unpredictable behavior.

The fact that an abort has been generated by the monitor mode is recorded in the
monitor mode debug status register in coprocessor 14 ¢sams channel monitor
mode debug status register on page 5-18).

Because the monitor mode debug bit does not put the ARM9E-S into debug state, it now
becomes necessary to change the contents of the watchpoint registers while external
memory accesses are taking place, rather than being changed when in debug state. In
the event that the watchpoint registers are written to during an access, all matches from
the affected watchpoint unit using the register being updated will be disabled for the
cycle of the update.

5-20 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug Interface and EmbeddedICE-RT

If there is a possibility of false matches occurring during changes to the watchpoint
registers, caused by old datain some registers and new data in others, then the user
should:

1. Disablethe watchpoint unit using the control register for that watchpoint unit.
2. Changethe other registers.

3. Re-enable the watchpoint unit by rewriting the control register.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 5-21

Debug Interface and EmbeddedICE-RT

5-22 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Chapter 6

Instruction Cycle Times

This chapter gives the instruction cycle timings and illustrates interlock conditions
present in the ARM9E-S design. It contains the following sections:

. Introduction to detailed instruction cycle timings on page 6-6
. Instruction cycle count summary on page 6-3

. Branch and ARM branch with link on page 6-7

. Thumb branch with link on page 6-8

. Branch and exchange on page 6-9

. Thumb Branch, Link and Exchange <immediate> on page 6-10
. Data operations on page 6-11

. MRS on page 6-13

. MSR operations on page 6-14

. Multiply and multiply accumulate on page 6-15

. QADD, QDADD, QSUB, QDSUB on page 6-19

. Load register on page 6-20

. Soreregister on page 6-25

. Load multiple registers on page 6-26

. Sore multiple registers on page 6-29

. Data swap on page 6-30

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 6-1

Instruction Cycle Times

. Software interrupt, undefined instruction and exception entry on page 6-32
. Coprocessor data processing operation on page 6-33

. Load coprocessor register (from memory) on page 6-34

. Sore coprocessor register (to memory) on page 6-36

. Coprocessor register transfer (to ARM) on page 6-38

. Coprocessor register transfer (from ARM) on page 6-39

. Coprocessor absent on page 6-40

. Unexecuted instructions on page 6-41.

6-2 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Instruction Cycle Times

6.1 Instruction cycle count summary

Table 6-1 shows the key to the other tablesin this chapter.

Table 6-1 Key to tables

Symbol Meaning

b The number of busy-wait states during coprocessor accesses.
n The number of words transferred in an LDM/STM/LDC/STC.
C Coprocessor register transfer cycle (C-cycle).

| Internal cycle (I-cycle).

N Nonsequential cycle (N-cycle).

S Sequential cycle (S-cycle).

Table 6-2 summarizes the ARM9E-S instruction cycle counts and bus activity when
executing the ARM instruction set.

Table 6-2 ARM instruction cycle counts

Instruction Cycles Instruction Data Comment

bus bus

CLz 1 1S 1 All cases.

Data Op 1 1S 1l Normal case, PC not destination.

Data Op 2 1S+1l 2l With register controlled shift, PC not
destination.

Data Op 3 2S5+1IN 3l PC destination register.

Data Op 4 2S+IN+1I 4 With register controlled shift, PC destination
register.

LDR 1 1S IN Normal case, not loading PC.

LDR 2 1S+1l IN+1I Not loading PC and following instruction uses
loaded word (1 cycle load-use interlock).

LDR 3 1S+21 IN+2I Loaded byte, half-word, or unaligned word
used by following instruction (2 cycle load-use
interlock).

LDR 5 25+21+1IN IN+4 PC is destination register.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 6-3

Instruction Cycle Times

Table 6-2 ARM instruction cycle counts (continued)

Instruction Cycles Lnus;ruction Eia Comment
STR 1 1S IN All cases.
LDM 2 1S+l 1S+11 Loading 1 register, not the PC.
LDM n 1S+(n-1)I IN+(n-1)S Loading n registers, n > 1, not loading the PC.
LDM n+4 2S+IN+(n+1)l IN+(n-1)S+4l Loading n registersincluding the PC, n > 0.
LDM 5 2S+21+1N IN+4l Load PC.
ST™M 2 1S+1l IN+1I Storing 1 register.
ST™M n 1S+(n-1)I IN+(n-1)S Storing n registers, n> 1.
SWp 2 1S+l 2N Normal case.
SWP 3 1S+2I 2N+1l Loaded word used by following instruction.
B, BL, BX, BLX 3 2S5+1IN 3l All cases.
SW , Undefined 3 25+1IN 3l All cases.
Coprocessor absent b+4 2S+1IN+11+bl 4l +bl All cases.
CDP b+1 1S+bl (1+b)! All cases.
LDC, STC b+n 1S+(b+n-1)I bl+1IN+(n-1)S All cases.
MCR b+1 1S+bl bl+1C All cases.
MRC b+1 1S+bl bl+1C Normal case.
VRC b+2 1S+(b+1)I (b+1)1+1C Following instruction uses transferred data.
VRC (dest = PC) b+4 1S+(b+3)I (b+3)I1+1C Destination is PC.
VRS 2 1S+l 2l All cases.
VBR 1 1S 1 If only flags are updated (mask_f).
VBR 3 1S+21 3l If any bits other than just the flags are updated
(&l masks other than mask_f).
MUL, MLA 2 1S+l 2 Normal case.
6-4 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Instruction Cycle Times

Table 6-2 ARM instruction cycle counts (continued)

Instruction Cycles Instruction Data Comment

bus bus

MJL, MLA 3 1S+2I 3l Following instruction uses the result in its first
execute cycle or itsfirst memory cycle. Does
not apply to amultiply accumulate using result
for accumulate operand.

MULS, MLAS 4 1S+3| 4 All cases, setsflags.

QADD, QDADD, 1 1S 1l Normal case.

QSUB, QDSUB

QADD, QDADD, 2 1S+11 2l Following instruction uses the result in its first

QSUB, QDSUB execute cycle.

SMULL, UMULL, 3 1S+2| 3l Normal case.

SMLAL, UMLAL

SMULL, UMULL, 4 1S+3l 4] Following instruction uses RdHi result in its

SMLAL, UMLAL first execute cycle or itsfirst memory cycle.
Does not apply to amultiply accumulate using
result for accumul ate operand.

SMULLS, UMULLS, 5 1S+4l 51 All cases, setsflags.

SMLALS, UMLALS

SMULxy, SMLAXy 1 1S 1 Normal case.

SMULxy, SMLAXyY 2 1s+1l 2l Following instruction uses the result in its first
execute or itsfirst memory cycle. Does not
apply to amultiply accumulate using result for
accumulate operand.

SMULWK, SMLAV 1 1S 1 Normal case.

SMULWK, SMLAWK 2 1S+11 2l Following instruction uses the result in its first
execute or itsfirst memory cycle. Does not
apply to amultiply accumulate using result for
accumulate operand.

SMLALXy 2 1S+1l 2l Normal case.

SMLALXxy 3 1S+2l 3l Following instruction uses RdHi result in its

first execute cycle or itsfirst memory cycle.
Does not apply to amultiply accumulate using
result for accumul ate operand.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 6-5

Instruction Cycle Times

6.2 Introduction to detailed instruction cycle timings

The pipelined architecture of ARMO9E-S overlaps the execution of several instructions
in different pipeline stages. The tablesin this section show the number of cycles
required by an instruction, once that instruction has reached the execute stage of the
pipeline. Theinstruction cycle count isthe number of cyclesthat an instruction occupies
the execute stage of the pipeline. The other pipeline stages (Fetch, Decode, Memory,
Writeback) are only occupied for one cycle by any instruction (in this model, interlock
cycles are grouped in with the instruction generating the data that creates the interlock
condition, not the instruction dependent on the data).

The request, address and control signals on both the instruction and data interfaces are
pipelined so that they are generated in the cycle before the one to which they apply, and
are shown as such in the following tables.

Theinstruction address, 1 A[31:1], isincremented for prefetching instructions in most
cases. The increment varies with the instruction length:

. 4 bytes in ARM state
. 2 bytes in Thumb state.

The letter i is used to indicate the instruction length.

Note
All cycle counts in this chapter assume zero-wait-state memory access. In a system
whereCLKEN is used to add wait states, the cycle counts must be adjusted
accordingly.

Table 6-3 shows the key to the cycle timing tables, Table 6-4 to Table 6-33.

Table 6-3 Key to cycle timing tables

Symbol Meaning

pc The address of the branch instruction.
pc’ The branch target address.

(pc) The memory contents of that address.

i 4 when in ARM state, or 2 when in Thumb state.

- Indicates that the signal is not active, and therefore not valid in this cycle.

A blank entry in the table indicates that the status of the signal is not
determined by the instruction in that cycle. The status of the signal will
be determined either by the preceding or succeeding instruction.

6-6 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Instruction Cycle Times

6.3 Branch and ARM branch with link

Any ARM or Thumb branch, and an ARM branch with link operation takes three
cycles:

1. During thefirst cycle, a branch instruction calculates the branch destination
while performing a prefetch from the current PC. This prefetch is performed in
all case, because by the time the decision to take the branch has been reached, it
is already too late to prevent the prefetch. If the previous instruction requested a
data memory access, the datais transferred in this cycle.

2. During the second cycle, the ARM9E-S performs a fetch from the branch
destination. If thelink bit is set, the return address to be stored inr14 is
calculated.

3. During thethird cycle, the ARM9E-S performs a fetch from the destination + i,
refilling the instruction pipeline.

Table 6-4 Branch and ARM branch with link cycle timing

Cycle 1A :g'\é'gEQ’ INSTR DA Bg'\E"gEQ' \'TV%AATTAA/
1 pc’ N cycle (pc + 2i) - I cycle
2 pc’ +i S cycle (pc) - I cycle -
3 pc’ + 2i S cycle (pc’ +1i) - | cycle -
(pc’ + 2i) -

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 6-7

Instruction Cycle Times

6.4 Thumb branch with link

A Thumb Branch with Link (BL) operation comprises two consecutive Thumb
instructions, and takes four cycles:

1. Thefirstinstruction acts as a simple data operation. It takes a single cycle to add
the PC to the upper part of the offset, and stores the result in r14. If the previous
instruction requested a data memory access, the datais transferred in this cycle.

2. Thesecond instruction acts similarly to the ARM BL instruction over three
cycles:
a Duringthefirst cycle, the ARMOE-S calculates the final branch target
address while performing a prefetch from the current PC.

b. During the second cycle, the ARM9E-S performs afetch from the branch
destination, while cal culating the return address to be stored in r14.

c. Duringthethird cycle, the ARM9E-S performs afetch from the
destination + 2, refilling the instruction pipeline.

Table 6-5 shows the cycle timings of the compl ete operation.

Table 6-5 Thumb branch with link cycle timing

Cycle 1A :g'l\z"gEQ’ INSTR DA Bg'l\z"gEQ’ \F;VDDAATTAX

1 pc+3i Scycle (pcH) - | cycle

2 pc’ N cycle (pc+3i) - I cycle -

3 pc'+i S cycle (pc) - I cycle -

4 pc'+i S cycle (pc'+i) - I cycle -
(pc’+i) -

6-8 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Instruction Cycle Times

6.5 Branch and exchange

A Branch and Exchange (BX), Branch, Link and Exchangeregister (BLX <r egi st er >)
or ARM BLX <i nmmedi at e> operation takes three cycles, and is similar to a Branch:

1

During thefirst cycle, the ARM9E-S extracts the branch destination and the new
core state while performing a prefetch from the current PC. This prefetch is
performed in al cases, because by the time the decision to take the branch has
been reached, it is already too late to prevent the prefetch. In the case of BX and
BLX<r egi st er >, the branch destination new state comes from the register. In
the case of BLX<i nmedi at e> the destination is calculated as a PC offset; the
state is always changed. If the previous instruction requested a memory access
(and thereis no interlock in the case of BX, BLX <r egi st er >), the datais
transferred in this cycle.

During the second cycle, the ARM9E-S performs a fetch from the branch
destination, using the new instruction width, dependent on the state that has been
selected. If the link bit is set, the return address to be stored in r14 is calcul ated.

During the third cycle, the ARM9E-S performs a fetch from the destination +2
or +4 dependent on the new specified state, refilling the instruction pipeline.

Table 6-6 shows the cycle timings, where:

is the instruction width before the BX/ BLX instruction
is the instruction width after thBX/ BLX instruction

is the state of théTBI T signal after th&X/ BLX instruction.

Table 6-6 Branch and exchange cycle timing

Cycle IA :g'l\z"gEQ' INSTR ITBIT DA Bg'l\z"gEQ’ @%’?‘ATTAA/
pc’ N cycle (pc + 2i) t - I cycle
pc’ + i S cycle (pc) t - I cycle -
pc’' +2i" Scycle (pc’ +1) t - | cycle -
(pc’ + 2i") -

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 6-9

Instruction Cycle Times

6.6 Thumb Branch, Link and Exchange <immediate>

A Thumb Branch, Link and Exchange immediate (BLX <i nmedi at e>) operation is

similar to a Thumb BL operation. It comprisestwo consecutive Thumb instructions, and
takes four cycles:

1. Thefirstinstruction acts as a simple data operation. It takes a single cycle to add
the PC to the upper part of the offset, and stores the result in r14. If the previous
instruction requested a data memory access, the datais transferred in this cycle.

2. Thesecond instruction acts similarly to the ARM BLX instruction:

a Duringthefirst cycle, the ARM9E-S calculates the final branch target
address while performing a prefetch from the current PC.

b. During the second cycle, the ARMOE-S performs afetch from the branch
destination, using the new instruction width, dependent on the state that
has been selected. The return address to be stored in r14 is calcul ated.

c. Duringthethird cycle, the ARM9E-S performs afetch from the
destination + 4, refilling the instruction pipeline.

Table 6-7 shows the cycle timings of the compl ete operation.

Table 6-7 Thumb branch, link and exchange cycle timing

Cycle IA :g'l\z"gEQ’ INSTR ITBIT DA Bg'\E"gEQ' \'TVDDTTAA/
1 pc+3i Scycle (pc+2i) t - | cycle

2 pc’ N cycle (pc+3i) t - I cycle -

3 pc'+i S cycle (pc) t - I cycle -

4 pc'+2i Scycle (pc'+i) t - | cycle -

(pc'+2i) -

6-10 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Instruction Cycle Times

6.7 Data operations

A normal data operation executes in a single execute cycle except where the shift is
determined by the contents of aregister. A normal data operation will require up to two
operands, which are read from the register file onto the A and B buses.

The ALU combines the A bus operand with the (shifted) B bus operand according to
the operation specified in theinstruction. The ARM9E-S pipelinesthisresult and writes
it into the destination register, when required. Compare and test operations do not write
aresult asthey only affect the status flags.

An instruction prefetch occurs at the same time as the data operation, and the PC is
incremented.

When aregister specified shift isused, an additional execute cycleisneeded to read the
shifting register operand. The instruction prefetch occurs during thisfirst cycle.

The PC may be one or more of the register operands. When the PC is the destination,
the external bus activity is affected. When the ARM9E-Swritesthe result to the PC, the
contents of theinstruction pipeline areinvalidated, and the ARM9E-Stakesthe address
for the next instruction prefetch fromthe ALU rather than the incremented address. The
ARMOE-S refillstheinstruction pipeline before any further instruction execution takes
place. Exceptions are locked out whilst the pipelineis refilling.

Note
Shifted register with destination equals PC is not possible in Thumb state.

The data operation cycle timings are shown in Table 6-8.

Table 6-8 Data operation cycle timing

Cycle IA :g'l\z"gEQ’ INSTR DA Bg'\E"SEQ' \'TV%AATTAA/
Normal 1 pct+3i Scycle (pc+2i) - | cycle
(pc+3i) -
dest=pc 1 pc N cycle (pc+2i) - | cycle
2 pc+i S cycle (pc?) - | cycle -
3 pc'+2i S cycle (pc’+i) - I cycle -
(pc'+ 2i) -

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 6-11

Instruction Cycle Times

Table 6-8 Data operation cycle timing (continued)

Cycle IA :gI\E/IgEQ, INSTR DA Bg'\E"gEQ' SV%/\ATTAA/
shift(Rs) 1 pct3i | cycle (pc+2i) - | cycle
2 pct3i Scycle - - I cycle -
(pc+3i) -
shift (Rs) 1 pct3i | cycle (pc+2i) - | cycle
dest=pe 2 pc N cycle - - I cycle -
3 pC+i S cycle (pc) - | cycle -
4 pc'+2i S cycle (pc'+i) - I cycle -
(pc+2i) -

6-12 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Instruction Cycle Times

6.8 MRS

An MRS operation always takes two cycles to execute. Thefirst cycle allows any
pending state changes to the PSR to be made. The second cycle passes the PSR register
through the ALU so that it may be written to the destination register.

Note
The MRS instruction can only be executed when in ARM state.

Table 6-9 shows the MRS cycle timing.

Table 6-9 MRS cycle timing

Cycle 1A :g'\é'gEQ' INSTR DA thélgEQ, \F;V%AATT/X
1 pc+3i I cycle (pc+2i) - | cycle
2 pc+3i Scycle - - | cycle -

(pc+3i) -

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 6-13

Instruction Cycle Times

6.9 MSR operations

An VSR operation will take one cycle to executeif it only updates the status flags of the
CPSR and three cyclesif it updates other parts of the PSR.

Note

MBR instructions can only be executed in ARM state.

Table 6-10 shows the cycle timings for MSR operations.

Table 6-10 MSR cycle timing

Cycle IA :g'\é'SEQ’ INSTR DA Bgl\élgEQ, \F;V%AATTAA/
MSRflags 1 pc+3i Scycle (pc+2i) - | cycle
(pc+3i) -
MSRother 1 pc+3i | cycle (pc+2i) - | cycle
2 pct3i | cycle - - | cycle -
3 pct3i Scycle - - | cycle -
(pc+3i) -

6-14 Copyright © ARM Limited 1999. All rights reserved.

ARM DDI 0165A

Instruction Cycle Times

6.10 Multiply and multiply accumulate

6.10.1 Interlocks

The multiply instructions make use of special hardware that implements integer
multiplication. All cycles except the last areinternal.

During thefirst (execute) stage of amultiply instruction, the multiplier and multiplicand
operands are read onto the A and B buses, on which the multiplier unit is connected.
Thefirst stage of the multiplier performs Booth recoding and partial product
summation, using 16 bits of the multiplier operand each cycle.

During the second (memory) stage of amultiply instruction, the partial product result
from the execute stage is added with an optional accumulate term (read onto the C bus)
and a possible feedback term from a previous multiply step for multiplications which
require additional cycles.

Note
In Thumb state, only the MULS and MLAS operations are possible.

The multiply unit in ARM9E-S operates in both the execute and memory stage of the
pipeline. Because of this, the multiplier result will not be available until the end of the
memory stage of the pipeline. If the following instruction requires the use of the
multiplier result, then it must beinterlocked so that the correct valueis available. This
appliesto all instructions which require the multiply result for thefirst execute cycle or
first memory cycle of the instruction except for multiply accumulate instructions using
the previous multiply result as the accumulator operand.

As an example, the following sequence will incur asingle cycle interlock:
MJL ro, rl, r2
SUB r4, r0, r3

The following cycle will also incur asingle cycle interlock:
M_A ro, rl, r2, r3
STR ro, [r8]

The following example will not incur an interlock:
M_A r0, rl, r2, r0
M_A ro, r3, r4, r0

Table 6-11 on page 6-16 showsthe cycle timing for MUL and M_A instructions with and
without interlocks.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 6-15

Instruction Cycle Times

Table 6-11 MUL and MLA cycle timing

Cycle IA :g'\E"gEQ’ INSTR DA BEI\EASEQ' 5VDDAATTAX
Normal 1 pct3i | cycle (pc+2i) - | cycle
2 pct3i Scycle - - I cycle -
(pc+3i) -
Interlock 1 pct3i | cycle (pc+2i) - | cycle
2 pct3i | cycle - - I cycle -
3 pct3i Scycle - - | cycle -
(pc+3i) -

The MULS and MLAS instructions always take four cycles to execute, and cannot
generate interlocks in following instructions.

Table 6-12 shows the cycle timing for MULS and MLAS instructions.

Table 6-12 MULS and MLAS cycle timing

Cycle 1A :g'I\EASEQ’ INSTR DA Bg'l\z"gEQ’ \F;VDDAATTAX
1 pc+3i | cycle (pc+2i) - | cycle
2 pc+3i | cycle - - | cycle -
3 pc+3i | cycle - - | cycle -
4 pc+3i Scycle - - | cycle -
(pc+3i) -

Copyright © ARM Limited 1999. All rights reserved.

ARM DDI 0165A

Instruction Cycle Times

Table 6-13 shows the cycle timing for SMULL, UMJULL, SM_LAL and UMLAL instructions
with and without interlocks.

Table 6-13 SMULL, UMULL, SMLAL and UMLAL cycle timing

INMREQ, DnMREQ, RDATA/

Cycle IA ISEQ INSTR DA DSEQ WDATA
Normal 1 pct3i | cycle (pc+2i) - I cycle
2 pct3i | cycle - - I cycle -
3 pct3i Scycle - - | cycle -
(pc+3i) -
Interlock 1 pct3i | cycle (pc+2i) - | cycle
2 pct3i | cycle - - | cycle -
3 pct3i | cycle - - | cycle -
4 pct3i Scycle - - I cycle -
(pct3i) -

The SMULLS, UMULLS, SMLALS and UMLALS instructions always take five cycles to
execute, and cannot generate interlocks in following instructions.

Table 6-14 shows the cycle timing for the SMULLS, UMULLS, SM_ALS and UMLALS

instructions.
Table 6-14 SMULLS, UMULLS, SMLALS and UMLALS cycle timing
Cycle 1A :g'l\z"gEQ' INSTR DA Bg'\E"SEQ' @%AATTAX
1 pc+3i I cycle (pc+2i) - I cycle
2 pc+3i I cycle - - I cycle -
3 pc+3i | cycle - - | cycle -
4 pc+3i | cycle - - | cycle -
5 pc+3i Scycle - - | cycle -
(pc+3i) -

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 6-17

Instruction Cycle Times

Table 6-15 shows the cycle timing for SMJLxy, SM_Axy, SMULW and SM_AW
instructions with and without interlocks.

Table 6-15 SMULxy, SMLAxy, SMULWy and SMLAWYy cycle timing

Cycle IA :g'\E"gEQ’ INSTR DA BEI\EASEQ' 5VDDAATTAX
Normal 1 pct3i Scycle (pc+2i) - I cycle
b b (pc+3i) b -
Interlock 1 pc+3i I cycle (pc+2i) - | cycle
2 pct3i Scycle - - I cycle -
(pc+3i) -

Table 6-16 shows the cycle timing for SM_ALxy instructions with and without

interlocks.
Table 6-16 SMLALXxy cycle timing
Cycle IA :g'\E"gEQ’ INSTR DA Bg'\E"SEQ' 5VDDAATTAX
Normal 1 pct3i | cycle (pc+2i) - I cycle
2 pct3i Scycle - - I cycle -
(pc+3i) -
Interlock 1 pct3i | cycle (pc+2i) - | cycle
2 pct3i | cycle - - I cycle
3 pct3i Scycle - - I cycle
(pc+3i) -

6-18 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Instruction Cycle Times

6.11 QADD, QDADD, QSUB, QDSUB

6.11.1 Interlocks

This class of instructions normally takes one cycle to execute and is only availablein
ARM state.

The instructions in this class use both the execute and memory stage of the pipeline.
Because of this, the result of an instruction in this class will not be available until the
end of the memory stage of the pipeline. If afollowing instruction requires the use of
theresult, then it must be interlocked so that the correct valueis available. This applies
to al instructions that require the result for the first execute cycle. Instructions that
requiretheresult of aQADD or similar instruction for the first memory cycle do not incur
an interlock.

As an example, the following sequence will incur a single cycle interlock:
QADD ro, rl, r2
SUB r4, r0, r3

The following cycle will not incur asingle cycle interlock:
QDsuUB ro, rl, r2
STR ro, [r8]

The following example will not incur an interlock:
QADD r0, r4, r5
M_A r0, r3, r4, r0

Table 6-17 on page 6-19 shows the cycle timing for QADD, QDADD, QSUB and QDSUB
instructions with and without interlocks.

Table 6-17 QADD, QDADD, QSUB and QDSUB cycle timing

INMREQ, DnMREQ, RDATA/

Cycle 1A ISEQ INSTR DA DSEQ WDATA
Normal 1 pct3i Scycle (pc+2i) - I cycle
(pc+3i) b -
Interlock 1 pct3i | cycle (pc+2i) - | cycle
2 pct3i Scycle - - | cycle
(pct+3i) -

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 6-19

Instruction Cycle Times

6.12 Load register

6.12.1

Interlocks

A load register operation typically occupies the execute stage for one cycle. There may
be anumber of cycles before the loaded valueis available for later instructions. A load
to the PC occupies the execute stage for five cycles.

Note
Destination equals PC is not possible in Thumb state.

The result of an aligned word load instruction is not available until the end of the
memory stage of the pipeline. If the following instruction requires the use of this result
then it must be interlocked so that the correct value is available. Thisinterlock is
referred to as a single cycle load-use interlock.

The following example incurs a single cycle interlock:
LDR ro, [r1]
ADD r2, r0, r3

The following example does not incur an interlock:
LDR ro, [r1]

NOP

ADD r2, r0, r3

Unaligned word loads, load byte (LDRB) and load halfword (LDRH) instructions make
use of the byte rotate unit in the write stage of the pipeline. Thisintroduces atwo cycle
load-useinterlock, which can affect thetwo instructionsimmediately following theload
instruction.

The following example incurs atwo cycle interlock:
LDRB ro, [r1, #1]
ADD r2, r0, r3

The following example incurs a single cycle interlock:
LDRB ro, [r1, #1]

NOP

ADD r4, r0, r5

Once an interlock has been incurred for one instruction it does not have to be incurred
for alater instruction.

For example, the following sequence incurs atwo cycle interlock on the first ADD
instruction, but the second ADD does not incur any interlocks:

6-20

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Instruction Cycle Times

LDRB ro, [ri, #1]
ADD r2, r0, r3
ADD r4, r0, r5

A two cycleinterlock refersto the number of unwaited ARM9E-S clock cyclestowhich
the interlock applies. If amulti-cycle instruction separates aload instruction and the
instruction using the result of the load, then no interlock may apply. The following
example does not incur an interlock:

LDRB ro, [r1]
MUL ré, r7, r8
ADD r4, r0, r5

There is no forwarding path from loaded data to the C read port of the register bank,
which is used for the store data of STR and STMinstructions and for the accumulate
operand of multiply accumulate instructions. The result of aload must reach the write
stage of the pipeline before it can be made available at the C read port, resulting in a
single cycleload-use interlock from loaded data to the C read port.

The following example incurs asingle cycle interlock:
LDR ro, [r1]
STR ro, [r2]

The following example also incurs asingle cycle interl ock:
LDR ro, [r1]
MLA r2, r3, r4, r0

The following example does not incur an interlock:

LDR ro, [r1]
NOP
STR ro, [r2]

Most interlock conditions are determined when the instruction being interlocked is still
in the decode stage of the pipeline. Load multiple and Store multiple instructions can
incur a decode stage interlock when the base register is not available due to a previous
instruction. Store multiple instructions can also incur an execute stage interlock when
the first register to be stored is not available due to a previousinstruction. Thisis
referred to as a second-cycle interlock.

The following example incurs a single cycle interlock:
LDR ro, [r1]
STM A ro, {rl-r2}

The following example incurs a second-cycle interl ock:
LDR ro, [r1]
STM A r2, {ro0-r1}

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 6-21

Instruction Cycle Times

A second-cycle interlock can be incurred on the first word of data stored by an STM
instruction or during thefirst cycle of aregister controlled shift. Thefollowing example
does not incur an interlock:

LDR r3, [r1]
STM A ro, {r2-r3}

Table 6-18 shows the cycle timing for basic load register operations, where:
S represents the current mode-dependent value.

t iseither 0, when the T bit is specified in the instruction (for example
LDRT) or sat al other times.

Table 6-18 Load register operation cycle timing

Cycle IA :gI\E/IgEQ, INSTR DA Bg'\E"SEQ’ DnTRANS RDATA
Normal 1 pct3i Scycle (pc+2i) da N cycle t
(pc+3i) (da)
dest=pc 1 pct+3i | cycle (pc+2i) da N cycle t
2 pct3i | cycle - - I cycle S (da)
3 pc N cycle (pc+3i) - | cycle S -
4 pcHi S cycle (pc) - | cycle S -
5 pc+2i S cycle (pc'+i) - I cycle s -
(pc+2i) -
Note

Destination equals PC is not possible in Thumb state.

6-22

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Instruction Cycle Times

Table 6-19 shows the cycle timing for load operations resulting in simple interlocks.

Table 6-19 Cycle timing for load operations resulting in interlocks

INMREQ), DnMREQ,
Cycle 1A ISEQ INSTR DA DSEQ RDATA
Singlecycle 1 pct3i I cycle (pc+2i) da N cycle
interlock
pc+3i Scycle - - I cycle (da)
(pc+3i) -
Two cycle 1 pct3i | cycle (pc+2i) da N cycle
interlock -
pc+3i | cycle - - I cycle (da)
3 pct3i Scycle - - I cycle -
(pc+3i) -

With more complicated interlock casesit isnot possibleto consider the load instruction
inisolation. Thisis becausein these cases the load instruction has vacated the execute
stage of the pipeline and a later instruction has occupied it.

Table 6-20 shows the one cycle interlock incurred for the following sequence of
instructions:

LDRB ro, [r1]
NOP
ADD r2, r0, rl

Table 6-20 Example sequence LDRB, NOP, ADD cycle timing

Cycle IA :g'\égEQ’ INSTR DA Bg'\E"gEQ' RDATA
LDRB r0, [r1] 1 pc+3i Scycle (pc+2i) da N cycle
NOP 2 pctHdi | cycle (pc+3i) - | cycle (da)
3 pctHdi Scycle - - | cycle -
ADDr2,r0,r1 4 pct5i Scycle (pc+4i) - | cycle -
(pc+5i) -

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 6-23

Instruction Cycle Times

Table 6-21 shows the cycle timing for the following code sequence:

LDRB ro,

[r2]

STM A r3, {r0-r1}

Table 6-21 Example sequence LDRB, STMIA cycle timing

Cycle IA :gI\E/IgEQ, INSTR DA Bg'\E"gEQ' RDATA
LDRB r0, [r2] 1 pc+3i Scycle (pc+2i) da N cycle
STMIA r3, {rO-r1} 2 pctdi I cycle (pc+3i) - | cycle (da)
3 pctHdi | cycle - r3 N cycle -
4 pctdi Scycle - r3+4 Scycle r0
(pc+4i) ri

6-24 Copyright © ARM Limited 1999. All rights reserved.

ARM DDI 0165A

6.13 Store register

Instruction Cycle Times

A storeregister operation executesin asingle cycle. During the execute cycle, the store
address is calculated, and the datato be stored is read onto the C bus.

Table 6-22 shows the cycle timing for a store register operation, where:

S represents the current mode-dependent value.
t iseither O, when the T bit is specified in the instruction (for
example STRT) or s at al other times.
Table 6-22 Store register operation cycle timing
Cycle 1A :g'\éSEQ’ INSTR DA thélgEQ, DnTRANS WDATA
1 pc+3i Scycle (pc+2i) da Ncycle t

(pc+3i) Rd

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 6-25

Instruction Cycle Times

6.14 Load multiple registers

6.14.1

Interlocks

A load multiple (LDV) takes several cycles to execute, depending on the number of
registers transferred and whether the PC isin the list of registers transferred.

1. During thefirst cycle, the ARM9E-S calcul ates the address of the first word to
be transferred, while performing an instruction prefetch.

2. During the second and subsequent cycles, ARM9E-S reads the data requested in
the previous cycle and calculates the address of the next word to be transferred.
The new value for the base register is cal culated.

When a data abort occurs, the instruction continues to completion. The ARM9E-S
prevents all register writing after the abort. The ARM9E-S restores the modified base
pointer (which the load activity before the abort occurred may have overwritten).

Whenthe PCisinthelist of registersto beloaded, the ARM9E-Sinvalidatesthe current
contents of the instruction pipeline. The PC is always the last register to be loaded, so
an abort at any point prevents the PC from being overwritten.

Note

LDMwith dest i nati on = PC cannot be executed in Thumb state. However,
POP{Rl i st, PC} equatestoanLDMwithdestination = PC.

An LDMinstruction can cause an interlock if afollowing instruction is dependent on the
last data value transferred. Thisis similar to the interlock cases present with asingle
word register load. There is an exception to this case for a single word LDMwhere, due
to the presence of an idle cycle at the end of a single word LDM no interlock condition
exists.

For example, the following sequence incurs a single cycle interlock:
LDM A r0, {ril-r2}
ADD 3, r2, r4

The following sequence incurs a single cycle interlock:
LDM A r0, {ril-r2}
STR r2, [r3]

The following sequence does not incur an interlock:
LDM A r0, {r1}
STR r1, [r2]

The LDMcycle timings are shown in Table 6-23 on page 6-27.

6-26

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Instruction Cycle Times

Table 6-23 LDM cycle timing

Cycle IA :gI\E/IgEQ, INSTR DA Bg'\E"SEQ' RDATA
1 register (not PC) 1 pc+3i | cycle (pc+2i) da N cycle
2 pc+3i Scycle - - | cycle (da)
(pc+3i) -
n registers 1 pc+3i | cycle (pc+2i) da N cycle
E::t I?C) 2 pc+3i | cycle - dat++ Scycle (da)
pc+3i | cycle - dat++ Scycle (dat++)
n pc+3i Scycle - dat++ Scycle (dat+)
(pc+3i) (dat+)
1 register 1 pc+3i | cycle (pc+2i) da N cycle
dest=pe 2 pc+3i | cycle - - I cycle (da)
3 pc’ N cycle - - | cycle -
4 pc'+i S cycle (pc) - | cycle -
5 pc'+2i S cycle (pc'+i) - I cycle -
(pc'+2i) -
n registers 1 pc+3i | cycle (pc+2i) da N cycle
(n>1)
(incl pc) 2 pc+3i I cycle - da++ S cycle (da)
pc+3i | cycle - da++ S cycle (da++)
n pc+3i | cycle - da++ S cycle (da++)
n+1 pc+3i | cycle - - | cycle (da++)
n+2 pc’ N cycle - - | cycle -
n+3 pc'+i S cycle (pc) - I cycle -
n+4 pc'+2i S cycle (pc'+i) - I cycle -
(pc’'+2i) -
ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 6-27

Instruction Cycle Times

Table 6-23 LDM cycle timing (continued)

Cycle IA :g'\é'gEQ’ INSTR DA Bg'\E"gEQ’ RDATA
n registers 1 pc+3i I cycle (pc+2i) da N cycle
8 Zyge interlock) 2 pc+3i I cycle - dat+ Scycle (da)
pc+3i | cycle - dat++ Scycle (dat++)
n pc+3i | cycle - dat++ Scycle (dat++)
n+1 pc+3i Scycle - - | cycle (dat+)
(pc+3i) -

6-28

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

6.15 Store multiple registers

Instruction Cycle Times

Store multiple (STM instructions proceed in asimilar fashion as load multiple

instructions.

1. During thefirst cycle, the ARM9E-S calcul ates the address of the first word to
be transferred, while performing an instruction prefetch and also calculating the
new value for the base register.

2. During the second and subsequent cycles, ARM9E-S stores the datarequested in
the previous cycle and cal cul ates the address of the next word to be transferred.

When a data abort occurs, the instruction continues to completion. The ARM9E-S
restores the modified base pointer (which the load activity before the abort occurred

may have overwritten).

The STMcycle timings are shown in Table 6-24.

Table 6-24 STM cycle timing

INMREQ,

DnMREQ,

Cycle 1A ISEQ INSTR DA DSEQ WDATA
1 register 1 pct3i I cycle (pc+2i) da N cycle
2 pct3i Scycle - - | cycle R
(pc+3i) -
nregisters 1 pc+3i | cycle (pc+2i) da N cycle
(n>1)
pc+3i | cycle - dat+ Scycle R
pc+3i I cycle - dat+ Scycle R’
n pc+3i S cycle - da++ Scycle R”
(pc+3i) R™
ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 6-29

Instruction Cycle Times

6.16 Data swap

6.16.1 Interlocks

A dataswap issimilar to aback-to-back |oad and storeinstruction. Thedataisread from
external memory in the second cycle and the contents of the register are written to the
external memory in the third cycle (which is merged with the first execute cycle of the
next instruction).

The data swapped may be a byte or word quantity.

The swap operation may be aborted in either the read or the write cycle. An aborted
swap operation does not affect the destination register.

Note
Data swap instructions are not available in Thumb state.

The DLOCK output of ARM9E-S s driven HIGH for both read and write cyclesto
indicate to the memory system that it is an atomic operation.

A swap operation can cause one and two cycleinterlocks in a similar fashion to aload
register instruction.

Table 6-25 shows the cycle timing for the basic data swap operation.

Table 6-25 Data swap cycle timing

Cycle IA :g'\é'gEQ’ INSTR DA Bg'\E"gEQ' RDATA WDATA
Normal 1 pct3i | cycle (pc+2i) da N cycle
2 pct3i Scycle - da N cycle (da) -
(pc+3i) - Rd
1 cycleinterlock 1 pct3i I cycle (pc+2i) da N cycle
2 pct3i I cycle - da N cycle (da) -
3 pct3i Scycle - - | cycle - Rd
(pc+3i) - -
6-30 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Instruction Cycle Times

Table 6-25 Data swap cycle timing (continued)

Cycle IA :gI\E/IgEQ, INSTR DA Bg'\E"gEQ’ RDATA WDATA
2 cycleinterlock pc+3i | cycle (pc+2i) da N cycle
pc+3i | cycle - da N cycle (da) -
pc+3i | cycle - - | cycle - Rd
pc+3i Scycle - - | cycle - -
(pc+3i) - -

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 6-31

Instruction Cycle Times

6.17 Software interrupt, undefined instruction and exception entry

Exceptions, software interrupts (SWIs), and undefined instructions force the PC to a
specific value and refill the instruction pipeline from this address:

1. During thefirst cycle, the ARM9E-S constructs the forced address, and a mode
change may take place.

2. During the second cycle, the ARM9E-S performs a fetch from the exception
address. The return address to be stored inr14 is calculated. The state of the
CPSR is saved in the relevant SPSR.

3. During the third cycle, the ARM9E-S performs a fetch from the exception
address + 4, refilling the instruction pipeline.

The exception entry cycle timings are show in Table 6-26, where:

pc isone of:
— the address of th®@wW instruction for SWis

— the address of the instruction following the last one to be executed before
entering the exception for interrupts

— the address of the aborted instruction for prefetch aborts

— the address of the instruction following the one that attempted the aborted
data transfer for data aborts.

Xn is the appropriate exception address

Table 6-26 Exception entry cycle timing

Cycle IA :g'\E"gEQ' INTRANS ITBIT INSTR DA Bg'\EASEQ’ \'TVDDQTTAA/
1 Xn N cycle 1 0 - I cycle
2 Xn+4 Scycle 1 0 (Xn) - | cycle -
3 Xn+8 Scycle 1 0 (Xn+4) - I cycle -
(Xn+8) -
Note

The value on theENSTR bus may be unpredictable in the case of Prefetch Abort or Data
Abort entry.

6-32 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Instruction Cycle Times

6.18 Coprocessor data processing operation

A coprocessor data(CDP) operationisareguest from the ARM9E-Sfor the coprocessor
toinitiate some action. There is no need for the coprocessor to complete the action
immediately, but the coprocessor must commit to completion before driving CHSD or
CHSE to LAST.

If the coprocessor cannot perform the requested task, it leaves CHSD at ABSENT.
When the coprocessor is able to perform the task, but cannot commit immediately, the
coprocessor drives CHSD to WAIT, and in subsequent cycles drives CHSE to WAIT
until able to commit, where it drives CHSE to LAST.

An interrupt can cause the ARM9E-S to abandon a busy-waiting coprocessor
instruction (see Busy-waiting and interrupts on page 4-12).

Note
Coprocessor operations are only availablein ARM state.

The coprocessor data operation cycle timings are shown in Table 6-27.

Table 6-27 Coprocessor data operation cycle timing

Cycle 1A IREQ2 INSTR DA DREQ®P 5\/%:—2;/ pc LCd CHSD CHSE
ready LAST
1 pc+3i Scycle (pc+2i) - | cycle 1 0 -
(pc+3i) -
not ready WAIT
1 pc+3i I cycle (pc+2i) - | cycle 1 0 WAIT
pc+3i I cycle - - | cycle - 1 0 WAIT
n pc+3i I cycle - - | cycle - 1 0 LAST
n+1 pct3i Scycle - - | cycle - 1 0 -
(pc+3i) -

alREQ = INMREQ, I SEQ.
b.DREQ = DnMREQ, DSEQ.
c.P = PASS,
d.LC =LATECANCEL.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. 6-33

Instruction Cycle Times

6.19 Load coprocessor register (from memory)

Theload coprocessor (LDC) operation transfers one or morewords of datafrom memory
to a coprocessor.

The coprocessor commits to the transfer only when it is ready to accept the data. The
coprocessor indicatesthat it is ready for the transfer to commence by driving CHSD or
CHSE to GO. The ARM9E-S will produce addresses and requests data memory reads
on behalf of the coprocessor, which is expected to accept the data at sequential rates.
The coprocessor isresponsible for determining the number of words to be transferred.
It indicates this using the CHSD and CH SE signals, setting the appropriate signal to
LAST in the cycle beforeit isready to initiate the transfer of the last data word.

An interrupt can cause the ARM9E-S to abandon a busy-waiting coprocessor
instruction (see Busy-waiting and interrupts on page 4-12).

Note
Coprocessor operations are only availablein ARM state.

The load coprocessor register cycle timings are shown in Table 6-28.

Table 6-28 Load coprocessor register cycle timing

Cycle 1A IREQ2 INSTR DA DREQP RDATA Pc LCd CHSD CHSE
1 register LAST
ready : :
1 pc+3i Scycle (pc+2i) da N cycle 1 0 -
(pc+3i) (da)
1 register WAIT
not ready))
1 pc+3i I cycle (pc+2i) - I cycle 1 0 WAIT
pc+3i I cycle - - I cycle - 1 0 WAIT
n pc+3i | cycle - - | cycle - 1 0 LAST
n+1 pc+3i Scycle - da Ncycle - 1 0 -
(pc+3i) (da)

6-34 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Instruction Cycle Times

Table 6-28 Load coprocessor register cycle timing (continued)

Cycle 1A IREQ2 INSTR DA DREQP RDATA Pc LCd CHSD CHSE
m registers GO
(m>1)
ready 1 pc+3i I cycle (pct+2i) da N cycle 1 0 GO
2 pc+3i | cycle - dat+ Scycle (da) 1 0 GO
pc+3i | cycle - dat+ Scycle (dat+) 1 0 GO
m-1 pc+3i | cycle - dat+ Scycle (dat+) 1 0 LAST
m pc+3i Scycle - dat+ Scycle (dat++) 1 0 -
(pc+3i) (dat+)
m registers WAIT
(m>1)
not ready 1 pc+3i I cycle (pc+2i) - I cycle 1 0 WAIT
pc+3i I cycle - - I cycle - 1 0 WAIT
n pc+3i I cycle - - I cycle - 1 0 GO
n+l pc+3i | cycle - da Ncycle - 1 0 GO
n+2 pc+3i | cycle - dat++ Scycle (da) 1 0 GO
pc+3i | cycle - dat+ Scycle (dat++) 1 0 GO
ntm-1 pc+3i | cycle - dat+ Scycle (dat+) 1 0 LAST
n+m pc+3i Scycle - dat+ Scycle (dat+) 1 0 -
(pc+3i) (dar++)

alREQ = INMREQ, ISEQ.
b.DREQ = DnMREQ), DSEQ.
c.P=PASS,

d.LC = LATECANCEL.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 6-35

Instruction Cycle Times

6.20 Store coprocessor register (to memory)

The store coprocessor (STC) operation transfers one or more words of datafrom a
coprocessor to memory.

The coprocessor commits to the transfer only when it is ready to write the data. The
coprocessor indicatesthat it is ready for the transfer to commence by driving CHSD or
CHSE to GO. The ARM9E-Swill produce addresses and requests data memory writes
on behalf of the coprocessor, which is expected to produce the data at sequential rates.
The coprocessor isresponsible for determining the number of words to be transferred.
It indicates this using the CHSD and CH SE signals, setting the appropriate signal to
LAST in the cycle beforeit isready to initiate the transfer of the last data word.

An interrupt can cause the ARM9E-S to abandon a busy-waiting coprocessor
instruction (see Busy-waiting and interrupts on page 4-12).

Note
Coprocessor operations are only availablein ARM state.

The store coprocessor register cycle timings are shown in Table 6-29.

Table 6-29 Store coprocessor register cycle timing

Cycle 1A IREQ2 INSTR DA DRQP RDATA Pc LCd CHSD CHSE
1 register LAST
ready 1 pc+3i Scycle (pc+2i) da N cycle 1 0 -
(pc+3i) CPDatag
1 register WAIT
not ready
1 pc+3i I cycle (pct+2i) - I cycle 1 0 WAIT
pc+3i I cycle - - lcycle - 1 0 WAIT
n pc+3i | cycle - - I cycle - 1 0 LAST
n+1 pc+3i Scycle - da N cycle - 1 0 -
(pc+3i) CPDatag
6-36 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Instruction Cycle Times

Table 6-29 Store coprocessor register cycle timing (continued)

Cycle 1A IREQ2 INSTR DA DRQP RDATA Pc LCd CHSD CHSE
m registers GO
(m>1) - -
ready 1 pc+3i I cycle (pct+2i) da N cycle 1 0 GO
2 pc+3i | cycle - dat+ Scycle CPDatay 1 0 GO
pc+3i | cycle - dat+ Scycle CPData 1 0 GO
m-1 pc+3i | cycle - dat+ Scycle CPDatanp, 1 0 LAST
m pc+3i Scycle - dat+ Scycle CPDatang 1 0 -
(pc+3i) CPDatam
m registers WAIT
(m>1) - -
not ready 1 pc+3i | cycle (pc+2i) - | cycle 1 0 WAIT
pc+3i I cycle - - lcycle - 1 0 WAIT
n pc+3i | cycle - - I cycle - 1 0 GO
n+1 pc+3i | cycle - da Ncycle - 1 0 GO
n+2 pc+3i I cycle - dat+ Scycle CPDatay 1 0 GO
pc+3i | cycle - dat+ Scycle CPData 1 0 GO
n+tm-1 pc+3i | cycle - dat+ Scycle CPDatano, 1 0 LAST
n+m pc+3i Scycle - dat+ Scycle CPDatang 1 0 -
(pc+3i) CPDatan,
alREQ =InMREQ, ISEQ.
b.DRQ =DnMREQ, DSEQ.
c.P=PASS.
d.LC =LATECANCEL.
ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 6-37

Instruction Cycle Times

6.21 Coprocessor register transfer (to ARM)

The move from coprocessor (MRC) operation transfers asingle coprocessor register into
the specified ARM register.

Dataistransferred over the data bus interface, in asimilar fashion to aload register
operation.

An interrupt can cause the ARM9E-S to abandon a busy-waiting coprocessor
instruction (see Busy-waiting and interrupts on page 4-12).

Note
Coprocessor operations are only availablein ARM state.

The MRC instruction cycle timings are shown in Table 6-30.

Table 6-30 MRC instruction cycle timing

Cycle 1A IREQ2 INSTR DA DREQP RDATA Pc LCd CHSD CHSE
ready LAST
1 pc+3i Scycle (pct2i) - Ccycle 1 0 -
(pc+3i) CPData
not ready WAIT
1 pc+3i I cycle (pc+2i) - | cycle 1 0 WAIT
pc+3i lcycle - - | cycle - 1 0 WAIT
n pc+3i I cycle - - | cycle - 1 0 LAST
ntl pc+3i Scycle - - Ccycle - 1 0 -
(pc+3i) CPData

alREQ = INMREQ, I SEQ.
b.DREQ = DnMREQ, DSEQ.
c.P = PASS.

d.LC =LATECANCEL.

6-38 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

6.22 Coprocessor register transfer (from ARM)

Instruction Cycle Times

The move to coprocessor (MCR) operation transfers a specified ARM register to a
COprocessor register.

Dataistransferred over the data bus interface, in a similar fashion to a store register

operation.

An interrupt can cause the ARM9E-S to abandon a busy-waiting coprocessor

instruction (see Busy-waiting and interrupts on page 4-12).

Note

Coprocessor operations are only availablein ARM state.

The MCRinstruction cycle timings are shown in Table 6-31.

Table 6-31 MCR instruction cycle timing

Cycle 1A IREQ2 INSTR DA DREQP WDATA Pc LCd CHSD CHSE
ready LAST
1 pc+3i Scycle (pct+2i) - Ccycle 1 0 -
(pc+3i) Rd
not ready WAIT
1 pc+3i I cycle (pc+2i) - I cycle 1 0 WAIT
pc+3i lcycle - - | cycle - 1 0 WAIT
n pc+3i I cycle - - I cycle - 1 0 LAST
n+l pc+3i Scycle - - Ccycle - 1 0 -
(pc+3i) Rd
alREQ =InMREQ, ISEQ.
b.DREQ = DnMREQ, DSEQ.
c.P=PASS.
d.LC =LATECANCEL.
ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 6-39

Instruction Cycle Times

6.23 Coprocessor absent

If no coprocessor is able to process a coprocessor instruction, the instruction is treated
as an UNDEFINED instruction. This allows software to emulate coprocessor
instructions when no hardware coprocessor is present. The cycle timings for
coprocessor absent instructions are shown in Table 6-32.

Note

By default, CHSD and CHSE should be driven to ABSENT unless the coprocessor
instruction is being handled by a coprocessor. Coprocessor operations are only
availablein ARM state.

Table 6-32 Coprocessor absent instruction cycle timing

Cycle IA IREQ2 INSTR DA DREQP \ITVDD':E":/ pc LCd CHSD CHSE
coprocessor ABSENT
absentin
decode 1 pct3i lcycle (pct2i) - | cycle 1 0 - -
2 Ox4 N cycle - - | cycle - 0 0 - -
3 0x8 Scycle (0x4) - | cycle - 0 0 -
4 0xC Scycle (0x8) - | cycle - 0 0 -
(0xC) -
Coprocessor WAIT
absentin
execute 1 pct3i lcycle (pc+2i) - | cycle 1 0 WAIT
pct3i lcycle - - | cycle - 0 0 WAIT
n pct3i lcycle - - | cycle - 0 0 ABSENT
n+l Ox4 N cycle - - | cycle - 0 0 -
n+2 0x8 Scycle (0x4) - | cycle - 0 0
n+t3 OxC Scycle (0x8) - | cycle - 0 0
(0xC) -

alREQ = INMREQ, I SEQ.
b.DREQ = DnMREQ), DSEQ.

c.P =PASS.

d.LC=LATECANCEL.

6-40

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

6.24 Unexecuted instructions

Instruction Cycle Times

When the condition code of any instruction is not met, the instruction is not executed.
An unexecuted instruction takes one cycle.

Table 6-33 shows the instruction cycle timing for an unexecuted instruction.

Table 6-33 Unexecuted instruction cycle timing

INMREQ, DnMREQ, RDATA/
Cycle 1A ISEQ INSTR DA DSEQ WDATA
1 pc + 3i Scycle (pc + 2i) - | cycle
(pc + 3i) -

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 6-41

Instruction Cycle Times

6-42 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Chapter 7
AC Parameters

Thischapter givesthe AC timing parameters of the ARM9E-S. It containsthefollowing
sections:

. Timing diagrams on page 7-2
. AC timing parameter definitions on page 7-7.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 7-1

AC Parameters

7.1 Timing diagrams
The timing diagrams in this section are:
. Figure 7-1 Instruction memory interface timing
. Figure 7-2 Data memory interface timing on page 7-3
. Figure 7-3 Clock enable timing on page 7-3
. Figure 7-4 Coprocessor interface timing on page 7-4
. Figure 7-5 Exception and configuration timing on page 7-4
. Figure 7-6 Debug interface timing on page 7-5
. Figure 7-7 JTAG interface timing on page 7-6.
Instruction memory interface timing parameters are shown in Figure 7-1.
CLK _/—_—_
:gggEQ’ X TRANS| x X
:Tovitrans= — 3 le— Tonitrans
IA[31:1] Addresq)()(
:Toviaddr= — 3 le— Tohiaddr
INTRANS
INM[4:0] Control)()(
ITBIT :Tovictl > ol e Tohiat
INSTR[31:0]
Tisinstr — —><_ t¢— Tihinstr
IABORT
Tisiabort —1 I |, finiabort
DBGIEBKPT
Tisebkpt—»y_ - «—— Tihiebkpt
Figure 7-1 Instruction memory interface timing
7-2 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

AC Parameters

Data memory interface timing parameters are shown in Figure 7-2.

CLK R

DnMREQ,

DSEQ, X TRANS X X

DMORE Jovdrans » |l«— Tohdtrans

DA[31:0] | Address | |

Tovdaddr T

DnRW, < < > «—— 'ohdaddr

DMASI[1:0],

DLOCK, X Control X X

DnTRANS, Tovdctl T

DnM([4:0] < > > «¢—— 'ohdctl

WDATA[31:0] | | pea| |
:Tovwdata; > <«—— Tohwdata

RDATA[31:0]

Tisrdata—p{ |4
-+ a—Tihrdata

DABORT

Tisdabort— | e)
-+ la——Tihdabort

DBGDEWPT

Tisdewpt—p| |4
> t¢— Tihdewpt

Figure 7-2 Data memory interface timing

Clock enable timing parameters are shown in Figure 7-3.

ce [)]
CLKEN | [

Tisclken ——p| le—
—» le—— Tihclken

Figure 7-3 Clock enable timing

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 7-3

AC Parameters

Coprocessor interface timing parameters are shown in Figure 7-4.

ax L[
PASS X X
:Tovpass > — 3 le— Tohpass
LATECANCEL)(
:Tovlate >) |«— Tohlate
CHSD[1:0] |)(:
Tischsd—p [l«— Tinchsd
CHSE[1:0] |)(:
Tischse — —><_ <«—— Tihchse

Figure 7-4 Coprocessor interface timing

Exception and configuration timing parameters are shown in Figure 7-5.

CLK _/—\——\—
nFIQ,
niRQ X X:
Tisint —»| o le— Tihint
nRESET
Tisnreset —p| o le— Tihnreset
CFGBIGEND,
CFGDISLTBIT, X X:
CFGHIVECS TiSCfg — _»4— - e—— Tihcf
Incig

Figure 7-5 Exception and configuration timing

7-4

Copyright © ARM Limited 1999. All rights reserved.

ARM DDI 0165A

CLK

DBGACK

DBGRNGI1:0]

DBGRaQI

DBGINSTREXEC,
DBGINSTRVALID

DBGCOMMRX,
DBGCOMMTX

DBGEN,
EDBGRQ,
DBGEXT[1:0]

Debug interface timing parameters are shown in Figure 7-6.

AC Parameters

i L W N
)
:Tovdbga%k —» le—— Tohdbgack
)
:Tovdbgrng — 3 le— Tohdbgmg
)
:TOdengig — % la—— Tohdbgrqi
|
eovdbosiat bl Tondbgstat
I
:Tovdbgc%rwm —» |4—— Tohdbgcomm
X [
Tisdbgin—- — le— Tihdbgin

Figure 7-6 Debug interface timing

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved.

7-5

AC Parameters

JTAG interface timing parameters are shown in Figure 7-7.

ax L[

DBGIR[3:0],

DBGSCREG[4:0], | | I

DBGTAPMS[3:0] _Tovdbgsm , le—— Tohdbgsm

DBGNnTDOEN | I
:Tovtdoen= » l«—— Tohtdoen

DBGSDIN | I
:Tovsdin > » «4—— Tohsdin

DBGTDO | I
:Tovtdo > » l«—— Tohtdo

DBGNnTRST
Tisntrst —p»] le—
—» ¢— Tihntrst
DBGTDI,
DBGTMS X X:
Tistdi —— le—

—» a— Tihtdi

DBGTCKEN |)(:

Tistcken—| le—
—» (¢— Tihtcken

TAPID | [

Tistapid —| le—
—»| +¢— Tihtapid

Figure 7-7 JTAG interface timing
The relationship between DBGSDOUT and DBGTDO is shown in Figure 7-8.

DBGSDOUT

DBGTDO

Ttdsh —p| |@¢——
Ttdsd —p»| —

Figure 7-8 DBGSDOUT to DBGTDO relationship

7-6 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

AC Parameters

7.2 ACtiming parameter definitions

Table 7-1 shows target AC parameters. All figures are expressed as percentages of the
CLK period at maximum operating frequency.

Note

Where 0% is given, thisindicates the hold timeto clock edge plus the maximum clock
skew for internal clock buffering.

Table 7-1 Target AC timing parameters

Symbol Parameter Min Max
Teye CLK cycletime 100% -
Tisclken CLKEN input setup to rising CLK 40% -
Tihclken CLKEN input hold fromrising CLK - 0%
Tovitrans Rising CLK to instruction transaction valid - 80%
Tonitrans Instruction transaction hold time from rising CLK >0% -
Toviaddr Rising CLK to IA valid - 80%
Toniaddr I A hold time from rising CLK >0% -
Tovict Rising CLK to instruction control valid - 80%
Tohictl Instruction control hold time from rising CLK >0% -
Tisinstr INSTR input setup to rising CLK 20% -
Tihingtr INSTR input hold from rising CLK - 0%
Tisiabort IABORT input setup to rising CLK 15% -
Tinhiabort IABORT input hold fromrising CLK - 0%
Tisieokpt DBGIEBKPT input setup to rising CLK 15% -
Tihiebkpt DBGIEBKPT input hold fromrising CLK - 0%
Tovdtrans Rising CLK to data transaction valid - 70%
Tondtrans Data transaction hold time from CLK rising >0% -

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 7-7

AC Parameters

Table 7-1 Target AC timing parameters (continued)

Symbol Parameter Min Max
T ovdaddr Rising CLK to DA valid - 80%
Tonhdaddr DA hold time from CLK rising >0% -
Tovdct Rising CLK to data control valid - 70%
Tondct Data control hold time from CLK rising >0% -
Tovwdata Rising CLK to WDATA valid - 20%
Tohwdata WDATA hold time from CLK rising >0% -
Tisdata RDATA input setup to rising CLK 20% -
Tihrdata RDATA input hold fromrising CLK - 0%
Tisdabort DABORT input setup to rising CLK 15% -
Tihdabort DABORT input hold from rising CLK - 0%
Tisdewpt DBGDEWPT input setup to rising CLK 15% -
Tindewpt DBGDEWPT input hold from rising CLK - 0%
Tovpass Rising CLK to PASSvalid - 40%
Tohpass PASS hold time from CLK rising >0% -
Toviate Rising CLK to CPLATECANCEL valid - 2506
Tohlate CPLATECANCEL hold from CLK rising >0% -
Tischsd CHSD input setup torising CLK 30% -
Tinchsd CHSD input hold from rising CLK - 0%
Tischse CHSE input setup to rising CLK 30% -
Tinchse CHSE input hold from rising CLK - 0%
Tisint Interrupt input setup to rising CLK 15% -
Tinint Interrupt input hold from rising CLK - 0%
Tisnreset NRESET input setup to rising CLK 25% -

7-8 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

AC Parameters

Table 7-1 Target AC timing parameters (continued)

Symbol Parameter Min Max
Tihnreset NRESET input hold from rising CLK - 0%
Tiscrg Configuration input setup to rising CLK 20% -
Tincfg Configuration input hold from rising CLK - 0%
Tovdogack CLK risingto DBGACK valid - 60%
Tohdbgack DBGACK hold timefrom CLK rising >0% -
Tovdngrng CLK rising to DBGRNG valid - 80%
Tohdbgrng DBGRNG hold time from CLK rising >0% -
Tovdogrgi CLK rising to DBGRQI valid , 45%
Tohdbgrgi DBGRQI hold time from CLK rising >0% -
Tovdbgstat Rising CLK to debug status valid - 30%
Tohdbgstat Debug status hold from CLK rising >0% -
Tovdbgeomm ~ Rising CLK to comms channel outputs valid - 60%
Tohdbgcomm Comms channel output hold time from rising CLK >0% -
Tisdbgin Debug inputs input setup to rising CLK 35% -
Tindogin Debug inputs input hold from rising CLK - 0%
Tovdbgsm CLK rising to debug state valid - 30%
Tohdbgsm Debug state hold from CLK rising >0% -
Tovtdoen CLK rising to DBGNTDOEN valid - 40%
Tohtdoen DBGNTDOEN hold from CLK rising >0% -
Tovsdin CLK rising to DBGSDIN valid - 20%
Tonhsdin DBGSDIN hold from CLK rising >0% -
Tovtdo CLK risingto DBGTDO valid - 35%
Tontdo DBGTDO hold from CLK rising >0% -
ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. 7-9

AC Parameters

Table 7-1 Target AC timing parameters (continued)

Symbol Parameter Min Max
Tisntrst DBGNTRST input setup to CLK rising 25% -
Tibntrst DBGNTRST input hold from CLK rising - 0%
Tigdi DBGTDI input setup to CLK rising 25% -
Tintdi DBGTDI input hold from CLK rising - 0%
Tistcken DBGTCKEN input setup to CLK rising 35% -
Tintcken DBGTCKEN input hold from CLK rising - 0%
Tistapid TAPID input setup to CLK rising 20% -
Tintapid TAPID input hold time from CLK rising - 0%
Ttdsd DBGTDO delay from DBGSDOUT changing - -
Tidsh DBGTDO hold time from DBGSDOUT changing - -

Copyright © ARM Limited 1999. All rights reserved.

ARM DDI 0165A

Appendix A
Signal Descriptions

This appendix lists and describes all the ARMOE-S interface signals. It contains the
following sections:

. Clock interface signals on page A-2

. Instruction memory interface signals on page A-3
. Data memory interface signals on page A-4

. Miscellaneous signals on page A-6

. Coprocessor interface signals on page A-7

. Debug signals on page A-8.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. A-1

Signal Descriptions

A.1 Clock interface signals
The clock interface signals are given in Table A-1.

Table A-1 Clock interface signals

Name Direction Description
CLK Input This clock times al operationsin the ARM9E-S
System clock processor. All outputs change from the rising edge

and al inputs are sampled on the rising edge. The
clock may be stretched in either phase. Synchronous
walit states can be added using the CLK EN signal.
Through the use of the DBGTCKEN signal, this
clock also times debug operations.

CLKEN Input ARMOE-S can be stalled for integer clock cycles by
Wait-state control driving CLKEN LOW. This signal should be held
HIGH at al other times.

CORECLKENOUT Output The principal state advance signal for the ARM9E-S
core. This output must be connected directly to the
CORECLKENIN input for correct operation. This
signal has been exported from the core to ease buffer
tree insertion from the CORECLK ENIN input. You
should take care when loading and routing the
CORECLKENOUT to CORECLKENIN
connection.

CORECLKENIN Input Thisinput should be connected to the
CORECLKENOUT outpuit.

A-2 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

A.2

Instruction memory interface signals

Signal Descriptions

The instruction memory interface signals are shown in Table A-2.

Table A-2 Instruction memory interface signals

Name Direction Description

I1A[31:1] Output The processor instruction address bus.

Instruction address

IABORT Input Thisisan input that alows the memory system to

Instruction abort tell the processor that the requested instruction
memory access is not allowed.

INSTR[31:0] Input Thisbusisused to transfer instructions between the

Instruction data memory system and the processor.

DBGIEBKPT Input Thisisan input that allows external hardware to

Instruction breakpoint halt the execution of the processor for debug
purposes. If HIGH at the end of an instruction fetch
it will cause the ARMOE-S to enter debug state if
that instruction reaches the execute stage of the
processor pipeline.

INMREQ Output If LOW at the end the cycle then the processor

Not instruction requires amemory access during the following

memory request cycle.

InM[4:0] Output These contain the current mode of the processor

Instruction mode and are vaid with the address.

INTRANS Output When LOW the processor isin User mode, when

Not memory HIGH the processor isin aprivileged mode. This

trandlate signal is valid with the address.

ISEQ Output If HIGH at the end of the cyclethen any instruction

Instruction Sequential memory access during the following cycle will be
sequential from the last instruction memory access.

ITBIT Output When HIGH the processor isin Thumb state, when

Instruction LOW the processor isin ARM state. Thissignal is

Thumb bit valid with the address.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved.

Signal Descriptions

A.3 Data memory interface signals
The data memory interface signals are shown in Table A-3.

Table A-3 Data memory interface signals

Name Direction Description

DA[31:0] Output The processor data address bus.

Data address

DABORT Input Thisisaninput that allows the memory system

Data abort to tell the processor that the requested data
memory access is not allowed.

RDATA [31:0] Input Thisbusis used to transfer data between the

Read data memory system and the processor during read
cycles (when DnRW is LOW).

WDATA [31: 0] Output Thisbusis used to transfer data between the

Write data memory system and the processor during write

cycles (when DnRW is HIGH).

DBGDEWPT Input Thisisaninput that allows external hardwareto

Data watchpoint halt the execution of the processor for debug
purposes. If HIGH at the end of a data memory
request cycle, it will cause the ARM9E-Sto

enter debug state.
DLOCK Output If HIGH then any data memory access in the
Datalock following cycleislocked, and the memory

controller must wait until DLOCK goes low
before allowing another device to accessthe

memory.

DMAS[1:0] Output These encode the size of a data memory access

Data memory in the following cycle. A word accessis

accesssize encoded as 10 (binary), a halfword access as 0l,
and a byte access as 00. The encoding 11 is
reserved.

DMORE Output If HIGH at the end of the cycle then the data

Data more memory access in the following cycle will be
directly followed by a sequential data memory
access.

DnMREQ Output If LOW at the end the cycle then the processor

Not data memory requires a data memory accessin the following

request cycle.

A-4 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Signal Descriptions

Table A-3 Data memory interface signals (continued)

Name Direction Description

DnM[4:0] Output The processor mode that any data memory

Data mode accesses should be performed in. Valid with the
data address.

DnRW Output If LOW at the end of the cycle then any data

Data not read, memory accessin the following cycleisaread,

write if HIGH then it isawrite.

DnTRANS Output If LOW at the end of acycle then any data

Data not memory translate memory access should be performed with User
mode privileges, if HIGH it should have
Supervisor mode privileges.

DSEQ Output If HIGH at the end of the cycle then any data

Data sequential address

memory access in the following cycleis
sequential from the last data memory access.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. A-5

Signal Descriptions

A.4 Miscellaneous signals

The miscellaneous signals are shown in Table A-4.

Table A-4 Miscellaneous signals

Name Direction Description

nFlQ Input Thisisthe Fast Interrupt Request signal.

Not fast interrupt

nIRQ Input Thisisthe Interrupt Request signal.

Not interrupt

request

CFGBIGEND Input When HIGH the ARM9E-S processor treats bytesin

Big-endian memory as being in big-endian format. When itisLOW,

configuration memory istreated aslittle-endian. Thisisastatic
configuration signal.

CFGDISLTBIT Input When HIGH the ARM9E-S disables certain ARMvV5T
defined behavior involving loading data to the PC. This
input should be tied LOW for normal operation and full
ARMVST compatibility. Thisis astatic configuration
signal.

CFGHIVECS Input When LOW the ARM9E-S exception vectors start at

High vectors address 0x0000 0000. When HIGH the ARM9E-S

configuration exception vectors start at address OxFFFF 0000. Thisis
astatic configuration signal.

nRESET Input This active LOW reset signal is used to start the

Not reset processor from aknown address. Thisisalevel-

sensitive asynchronous reset.

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

A.5 Coprocessor interface signals

Signal Descriptions

The coprocessor interface signals are shown in Table A-5.

Table A-5 Coprocessor interface signals

Name Direction Description

PASS Output This signal indicates that there is a coprocessor
instruction in the execute stage of the pipeline,
and it should be executed.

CHSDJ[1:0] Input The handshake signals from the decode stage of

Coprocessor the pipeline follower of the coprocessor.

handshake decode

CHSE[1:Q] Input The handshake signals from the execute stage of

Coprocessor the pipeline follower of the coprocessor.

handshake execute

LATECANCEL Output If HIGH during the first memory cycle of a

Coprocessor |ate cancel

coprocessor instruction, then the coprocessor
should cancel the instruction without changing
any internal state. Thissignal is only asserted in
cycles where the previous instruction accessed
memory and a Data Abort occurred.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. A-7

Signal Descriptions

A.6 Debug signals

The debug signals are shown in Table A-6.

Table A-6 Debug signals

Name Direction Description

DBGIR[3:0] Output These four bits reflect the current instruction loaded

TAP controller into the TAP controller instruction register. These bits

instruction register change when the TAP state machineisin the
UPDATE-IR state.

DBGNTRST Input Thisisthe active LOW reset signal for the

Not test reset EmbeddedI CE internal state. Thissignal isalevel
sensitive asynchronous reset input.

DBGNnTDOEN Output When LOW, this signal denotes that serial datais

Not DBGTDO being driven out on the DBGTDO outpui.

enable DBGNnTDOEN would normally be used as an output
enable for aDBGTDO pin in a packaged part.

DBGSCREG[4:0] Output Thesefive bitsreflect the ID number of the scan chain
currently selected by the TAP Scan Chain Register
controller. These bits change when the TAP state
machineisin the UPDATE-DR state.

DBGSDIN Output Thissignal contains the serial datato be applied to an

Output boundary external scan chain.

scan seria input

data

DBGSDOUT Input Thisisthe seria data out of an external scan chain.

Input boundary When an external boundary scan chain is not

scan serial output connected, thisinput must be tied LOW.

data

DBGTAPSM[3:0] Output This bus reflects the current state of the TAP

TAP controller state controller state machine.

machine

DBGTCKEN Input Synchronous enable for debug logic accessed using
the JTAG interface.

DBGTDI Input Test data input to the debug logic.

DBGTDO Output Output from the debug logic.

DBGTMS Input Test mode select for the TAP controller.

Copyright © ARM Limited 1999. All rights reserved.

ARM DDI 0165A

Signal Descriptions

Table A-6 Debug signals (continued)

Name Direction Description

DBGCOMMRX Output When HIGH, this signal denotes that the comms

Communications channel receive buffer contains valid data waiting to

channel receive be read by the ARM9E-S.

DBGCOMMTX Output When HIGH, this signal denotes that the comms

Communications channel transmit buffer is empty.

channel transmit

DBGACK Output When HIGH indicates that the processor isin debug

Debug state.

acknowledge

DBGEN Input Thisinput signal allows the debug features of the

Debug enable processor to be disabled. This signal should be LOW
when debugging is not required.

DBGRQI Output Thissignal represents the state of bit 1 of the debug

Internal debug control register that is combined with EDBGRQ and

request presented to the core debug logic.

EDBGRQ Input External debug request. An external debugger may
force the processor to enter debug state by asserting
thissignal.

DBGEXTI[1:0] Input Thisinput to the EmbeddedI CE logic allows

EmbeddedI CE breakpoints'watchpoints to be dependent on external

external input conditions.

DBGINSTREXEC Output Instruction executed. Indicates that the instruction in
the execute stage of the processors pipeline has been
executed.

DBGINSTRVALID Output Instruction valid. Indicates that the instruction in the
execute stage of the processors pipelinewas valid and
will have been executed (unlessit failed its conditions
codes).

DBGRNG[1:0] Output This output indicates that the corresponding

EmbeddedI CE Embedded| CE watchpoint unit has matched the

Rangeout conditions currently present on the address, data and
control buses. Thissignal isindependent of the state
of the enable control bit of the watchpoint unit.

TAPID[31:0] Input Thisinput specifiesthe ID code value shifted out on

Boundary scan DBGTDO when the IDCODE instruction is entered

ID code into the TAP controller.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. A-9

Signal Descriptions

A-10 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Appendix B
Differences Between the ARM9E-S and the
ARMOTDMI

This appendix describes the differences between the ARM9E-S and ARM9TDMI
macrocell interfaces. It contains the following sections:

. Interface signals on page B-2

. ATPG scan interface on page B-5

. Timing parameters on page B-6

. ARMO9E-S design considerations on page B-7

. ARMOE-S debugger considerations on page B-9.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. B-1

Differences Between the ARM9E-S and the ARM9TDMI

B.1 Interface signals

The signal names have prefixes which identify groups of functionally-related signals:

CFG Shows configuration inputs (typically hard-wired for an embedded
application).

CP Shows coprocessor expansion interface signals.

DBG Shows scan-based Embedded| CE debug support input or output.

Other signals provide the system designer’s interface which is primarily
memory-mapped. Table B-1 provides the ARM9E-S signals with their ARM9TDMI

hard macrocell equivalent signals.

Table B-1 ARM9E-S signals and ARM9TDMI hard macrocell equivalents

ARM9E-S . ARM9TDMI hard
. Function . Note

signal macrocell equivalent

CFGBIGEND 1 = big-endian configuration. BIGEND -
0 = little-endian configuration.

CFGDISLTBIT 1 = disable specific ARMV5T behavior. - -
0 = enable (default).

CFGHIVECS 1 = exception vectors start at OxFFFF 0000. HIVECS -
0 = exception vectors start at 0x0000 0000.

CLK Rising edge master clock. All inputs are sampled on the GCLK a
rising edge of CLK.
All timing dependencies are from the rising edge of CLK.

CLKEN System memory interface clock enable: nWAIT b
1 = advance the core on rising CLK.
0 = prevent the core advancing on rising CLK.

DA[31:0] 32-hit data address output bus, available in the cycle DA[31:0] c
preceding the memory cycle.

DABORT Data Abort. DABORT d

DBGCOMMRX EmbeddedlI CE communication channel receive buffer full COMMRX -
output.

DBGCOMMTX EmbeddedlI CE communication channel transmit buffer COMMTX -
empty output.

DBGDEWPT External data watchpoint (tie LOW when not used). DEWPT e

B-2 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Differences Between the ARM9E-S and the ARM9TDMI

Table B-1 ARM9E-S signals and ARM9TDMI hard macrocell equivalents (continued)

ARMO9E-S . ARM9TDMI hard
) Function : Note
signal macrocell equivalent
DBGEXT[1:0] EmbeddedI CE EXTERN debug qualifiers (tieLOW when ~ EXTERNO, EXTERN1 -
not required).
DBGIEBKPT External breakpoint (tie LOW when not used). IEBKPT e
DBGINSTREXEC Instruction executed. INSTREXEC -
DBGINSTRVALID Instructionvalid. - -
DBGIR[3:0] TAP controller instruction register. IR[3:0] -
DBGnTDOEN TDO enable. nTDOEN f
DBGNnTRST TAP controller reset (asynchronous assertion). nTRST f
DBGRNG[1:0] Embedded| CE rangeout qualifier outputs. RANGEOUT1, -
RANGEOUTO
DBGRQI Internal status of debug request. DBGRQI g
DBGSCREGJ[4:0] Scan chain register select. SCREG[4:0] -
DBGSDIN Boundary scan serial datain. SDIN -
DBGSDOUT Boundary scan serial data out. SDOUT -
DBGTAPSM[3:0] TAP controller state machine state. TAPSM[3:0] -
DBGTCKEN Multi-ICE clock input qualifier sampled ontherisingedge - -
of CLK. Used to qualify CLK to enable the debug
subsystem.
DBGTDI Test datainput. TDI f
DBGTDO Test data output. TDO f
DBGTMS Test mode select. TMS f
EDBGRQ External debug request. EDBGRQ h
1A[31:1] 31-hit instruction address output bus, availableinthecycle 1A[31:1] c
preceding the memory cycle.
INSTR[31:0] Instruction data bus used to transfer instructions between ID[31:0] -
the memory system and the ARMOE-S.
INMREQ Instruction memory request. INMREQ c
ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. B-3

Differences Between the ARM9E-S and the ARM9TDMI

Table B-1 ARM9E-S signals and ARM9TDMI hard macrocell equivalents (continued)

ARMO9E-S . ARM9TDMI hard

. Function . Note
signal macrocell equivalent
nFlQ Fast interrupt request. nFlQ i
nIRQ Interrupt request. nIRQ i
RDATA[31:0] Data input bus. DDIN[31:0] i
WDATA[31:0] Data output bus. This busis always driven. DDI[31:0] j

a. CLK isarising edge clock. It isinverted with respect to the GCLK signal used on the ARM9TDMI hard
macrocell.

b.CLKEN issampled on therising edge of CLK. ThenWAIT signal onthe ARM9TDMI hard macrocell must be
held throughout the high phase of GCLK. This means that the address class outputs (IA[31:1], DA[31:0],
DnRW, DMAS, INTRANS, DnTRANS, and I TBIT) may still changein acyclein which CLKEN istaken
LOW. You must take this possihility into account when designing a memory system.

c.All the address classsignals (IA[31:1], DA[31:0], DnRW, DMAS, INTRANS, DnTRANS, and | TBI T) change
ontherising edge of CLK. In asystem with alow-frequency clock this meansthat it is possible for the signals
to changein thefirst phase of the clock cycle. Thisisunlike the ARM9TDMI hard macrocell where they would
aways change in the last phase of the cycle.

d.The ARMITDMI featured a combinational path from DABORT to DnMREQ. This path does not exist in
ARMOE-S.

e.With ARM9TDMI, the breakpoint and watchpoint inputs had to be asserted in the phase 1 of the cyclefollowing
the cycle in which the data was returned from the memory system. With ARM9E-S, external breakpoints and
watchpoints must be returned in the same cycle as the data.

f. All JTAG signals are synchronousto CLK on the ARM9E-S. Thereis no asynchronous TCK ason the
ARMOITDMI hard macrocell. An external synchronizing circuit can be used to generate TCL KEN when an
asynchronous TCK is required. However, CLK must be running.

g.The DBGRQI signa in ARM9TDMI features a combinational input to output path from EDBGRQ. This has
been removed in ARM9E-S.

h.EDBGRQ must be synchronized externally to the macrocell. It is not an asynchronous input as on the
ARMOITDMI hard macrocell

i. nF1Q and nIRQ are synchronous inputs to the ARM9E-S, and are sampled on the rising edge of CLK.
Asynchronous interrupts are not supported.

j- The ARMO9E-S supports only unidirectional data buses, RDATA[31:0], and WDATA[31:0]. When a
bidirectiona busis required, you must implement external bus combining logic.

B-4 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Differences Between the ARM9E-S and the ARM9TDMI

B.2 ATPG scan interface

Where automatic scan path is inserted for automatic test pattern generation, three signals
are instantiated on the macrocell interface:

. SCANENABLE is LOW for normal usage, HIGH for scan test
. SCANIN is the serial scan path input
. SCANOUT is the serial scan path output.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. B-5

Differences Between the ARM9E-S and the ARM9TDMI

B.3 Timing parameters

The timing constraints have been adjusted to balance the external timing parameters
with the area of the synthesized core. All inputs are sampled on therising edge of CLK.
The timing diagrams associated with these timing parameters are shown in Timing
diagrams on page 7-2.

The clock enables are sampled on every rising clock edge:
. CLKEN setup time isj{yyen, hold time isitqken-

. DBGTCKEN setup time iSj&cen. hold time is jfcken-

All other inputs are sampled on rising edge€afK when the clock enable is active
HIGH, for example:

. IABORT setup time isi§aport, hold time is jfianor, WheNnCLKEN is active.
. RDATA setup time iS;§qata hold time is {,gata, WeNCLKEN is active.

. DBGTMS, DBGTDI setup time isjgi, hold time is jq, whenDBGTCKEN
is active.

Outputs are all sampled on the rising edg€IoK with the appropriate clock enable
active, for example:

. | A output hold time iSghjagqgr Valid time is §yiagqr WhenCLKEN is active.

. INMREQ, ISEQ output hold time iSgfjitrans Valid time is §yirans When
CLKEN is active.

Similarly, all memory, coprocessor and debug signal expansion signals are defined with
input setup parameters @f.t , hold parameters gft. , output hold parameters of

ton---and output valid parameters gj.t. .

B-6 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Differences Between the ARM9E-S and the ARM9TDMI

B.4 ARMO9E-S design considerations

When an ARM9TDMI hard macrocell design is being converted to the ARMOE-S, a
number of areas require special consideration. These are the:

. Master clock

. JTAG interface timing

. Interrupt timing

. Address class signal timing on page B-8
. Data Aborts on page B-8.

B.4.1 Master clock

The master clock to the ARM9E-S| K, is inverted with respect 8CLK used on
the ARM9TDMI hard macrocell. The rising edge of the clock is the active edge of the
clock, on which all inputs are sampled.

All outputs are generated safely from the rising edgeldf, with the following

exceptions:

CORECLKENOUT
This signal can change from the rising edg€bK and has a
causal relationship wit&L KEN.

DBGTDO This signal can change from the rising edg€bK and has a

causal relationship witBBGSDOUT.

B.4.2 JTAG interface timing

All JTAG signals on the ARM9E-S are synchronous to the master clock @b,
When an externdl CK is used, use an external synchronizer to the ARM9E-S.

B.4.3 Interrupt timing

As with all ARM9E-S signals, the interrupt signaiRQ andnFIQ, are sampled on
the rising edge ofLK.

When you are converting an ARM9TDMI hard macrocell design wheresthC
signal is asserted LOW, add a synchronizer to the design to synchronize the interrupt
signals before they are applied to the ARM9E-S.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. B-7

Differences Between the ARM9E-S and the ARM9TDMI

B.4.4

B.4.5

Address class signal timing

Data Aborts

The address class outputs (1A[31:1], DA[31:0], DnRW, DMAS, InTRANS,
DnTRANS, and I TBIT) onthe ARM9E-S al change in response to the rising edge of
CLK. Thismeansthat they can changein the first phase of the clock in some systems.
When exact compatibility is required, add latches to the outside of the ARM9E-S to
make sure that they can change only in the second phase of the clock.

Becausethe CLK EN signal is sampled only on the rising edge of the clock, the address
class outputs till changein acyclein which CLKEN isLOW. (Thisissimilar to the
behavior of /DNnMREQ and I/DSEQ inan ARM9TDMI hard macrocell system, when
await stateisinserted using nWAIT.) Make sure that the memory system design takes
thisinto account.

Also make sure that the correct address is used for the memory cycle, even though
| A/DA[31:0] may have moved on to address for the next memory cycle.

For further details, refer to Chapter 3 Memory Interface.

The ARM9TDM I featured acombinationa pathfrom DABORT toDnMREQ, DSEQ,
and DM ORE. This path does not exist in ARM9E-S. A consequence of this changeis
that, in the case of two back-to-back memory accesses (for example aload followed by
astore), the second access will not be cancelled by the ARM if thefirst is aborted. In
such situations, the system must ignore the second memory request. For more details,
see DABORT on page 3-17.

B-8

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Differences Between the ARM9E-S and the ARM9TDMI

B.5 ARMO9E-S debugger considerations

There are anumber of differences between the ARM9TDMI and ARM9E-S that a
JTAG debugger should be aware of

The EmbeddedICE version number in the debug channel status register is
different. Sedbebug comms channel control register on page 5-17.

From (test) reset, the ARM9E-S is configured into monitor mode debug. A
debugger requiring use of the ARM'’s halt mode debug features must clear the
monitor mode enable bit in the debug control registerD&bag control

register on page C-35.

There are a number of instructions which have different cycle counts on
ARMOE-S than ARM9TDMI. In particular, the MRS instruction always requires
two cycles to execute on ARM9E-S. Sestruction Cycle Times on page 6-1for
more details on instruction cycle timing.

The NV condition code cannot be used to provide a convenient single cycle non.
interlocking NOP operation. This is due to ARM9E-S implementing the
ARMVS5TE architecture. A special opcode, OxE320 FO0O provides a guaranteed
single cycle, non-interlocking NOP for ARM9E-S. This opcode is using an
UNPREDICTABLE part of the instruction space, so that its behavior cannot be
guaranteed over all ARM variants.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. B-9

Differences Between the ARM9E-S and the ARM9TDMI

B-10 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Appendix C
Debug in Depth

This appendix describesin further detail the debug features of the ARM9E-S, and
includes additional information about the EmbeddedI CE-RT logic. It containsthe
following sections:

. Scan chains and JTAG interface on page C-2

. Resetting the TAP controller on page C-5

. Instruction register on page C-6

. Public instructions on page C-7

. Test data registers on page C-10

. ARMOE-S core clock domains on page C-18

. Determining the core and system state on page C-19
. Behavior of the program counter during debug on page C-25
. Priorities and exceptions on page C-28

. EmbeddedI CE-RT logic on page C-29

. \ector catching on page C-38

. Single-stepping on page C-39

. Coupling breakpoints and watchpoints on page C-40
. Disabling Embedded| CE-RT on page C-43

. Embedded| CE-RT timing on page C-44.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved.

Debug in Depth

C.1 Scan chains and JTAG interface

There are two JTAG-style scan chains within the ARM9E-S. These allow debugging
and Embedded| CE-RT programming.

The scan chains allow commandsto be serially shifted into the ARM core, allowing the
state of the core and the system to be interrogated. The JTAG interface requires only

five pins on the package.

A JTAG style Test Access Port (TAP) controller controls the scan chains. For further
details of the JTAG specification, refer to |EEE Standard 1149.1 - 1990 Standard Test
Access Port and Boundary-Scan Architecture.

C.1.1 Debug scan chains

The two scan paths used for debug purposes are referred to as scan chain 1 and scan
chain 2, and are shown in Figure C-1.

ARMOE-S

EmbeddedICE-RT

Scan chain 2

|7

Scan chain 1

ARM9E-S
core

A

/

ARM9E-S
TAP controller

Figure C-1 ARM9E-S scan chain arrangements

C-2 Copyright © ARM Limited 1999. All rights reserved.

ARM DDI 0165A

Debug in Depth

Scan chain 1

Scan chain 1 is used for debugging the ARM9E-S core when it has entered debug state.
You can useit to:

. inject instructions into the ARMSs pipeline
. read and write its registers
. perform memory accesses.

Scan chain 2

Scan chain 2 allows access to the EmbeddedICE-RT registers. Redgrdata
registers on page C-10 for details.

C.1.2 TAP state machine

The process of serial test and debug is best explained in conjunction with the JTAG stat
machine. Figure C-2 on page C-4 shows the state transitions that occur in the TAP
controller. The state numbers shown in the diagram are output from the ARM9E-S on
theDBGTAPSM[3:0] bits.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. C-3

Debug in Depth

tms=1

tms=0

Test-Logic-Reset <

OxF

-

4

Run-Test/Idle

0xC

tms=0

Select-DR-Scan
0x7

tms=0

tms=1 Capture-DR
X6
tms=0
| Shift-DR
2
Xi

tms=0
tms=1

y
aptu
0
Y
i
Ox.
y
Exitt-DR \Ims=1
0x1
Y
0
y
0

tms=0

Pause-DR
X3

tms=0
tms=1

tms=0 /" Eyito-DR
x0

tms=1

y
Update-DR
0x5

tms=0

tms=1

Lt
d

A J

Figure C-2 Test access port controller state transitions

Select-IR-Scan
0x4

Update-IR
0xD

1

1.From IEEE Std 1149.1-1990. Copyright 1999 |IEEE. All rights reserved.

c-4

Copyright © ARM Limited 1999. All rights reserved.

ARM DDI 0165A

Debug in Depth

C.2 Resetting the TAP controller

The boundary-scan interface includes a state machine controller called the TAP
controller. To force the TAP controller into the correct state after power-up, you must
apply areset pulseto the DBGnTRST signal:

. To ready the boundary-scan interface for use, @B&nTRST LOW, and then
HIGH again

. To prevent the boundary-scan interface from being use@BI@NTRST input
may be tied permanently LOW.

Note
A clock onCLK with DBGTCKEN HIGH is not necessary to reset the device.

The action of reset is as follows:

1. System mode is selected. This means that, the boundary-scan cells do
intercept any of the signals passing between the external system and the core.

2. The IDCODE instruction is selected.

When the TAP controller is put into the SHIFT-DR state, @h& is pulsed
while enabled bypBGTCKEN, the contents of the ID register are clocked out
of DBGTDO.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. C-5

Debug in Depth

C.3 Instruction register

The instruction register is 4 bitsin length.
Thereis no parity bit.

The fixed value 0001 is loaded into the instruction register during the CAPTURE-IR
controller state.

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug in Depth

C.4 Public instructions

Instructions are loaded into the TAP state machine by scanning the appropriate bit
pattern for the instruction when the TAP controller isin the SHIFT-IR state, and then
advancing the TAP controller through the UPDATE-IR state.

Table C-1 gives the public instructions.

Table C-1 Public instructions

Instruction Binary code

EXTEST 0000

SAMPLE/PRELOAD 0011

SCAN_N 0010
INTEST 1100
IDCODE 1110
BYPASS 1111
RESTART 0100

In the following descriptions, the ARM9E-S samplesDBGTDI and DBGTM S on the
rising edge of CLK with DBGTCKEN HIGH. All output transitions on DBGTDO
occur as aresult of therising edge of CLK with DBGTCKEN HIGH.

C.41 EXTEST (0000)

The EXTEST instruction allows a boundary scan chain to be connected between the
DBGSDIN and DBGSDOUT pins. External logic, based on the DBGTAPSM,
DBGSCREG and DBGIR signalsisrequired to use the EXTEST function for such a
boundary scan chain. Using EXTEST with scan chain 1 or scan chain 2 selected is
UNPREDICTABLE.

C.4.2 SAMPLE/PRELOAD (0011)

Thisinstruction should be used to preload the boundary scan register with known data
prior to selecting INTEST or EXTEST instructions.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. C-7

Debug in Depth

C.4.3 SCAN_N (0010)

The SCAN_N instruction connects the scan path select register between DBGTDI and

DBGTDO:

. In the CAPTURE-DR state, the fixed value 1000 is loaded into the register.

. In the SHIFT-DR state, the ID number of the desired scan path is shifted into the
scan path select register.

. In the UPDATE-DR state, the scan register of the selected scan chain is
connected betweddBGTDI andDBGTDO, and remains connected until a
subsequent SCAN_N instruction is issued.

. On reset, scan chain 0 is selected by default.

The scan path select register is 4 bits long in this implementation, although no finite

length is specified.

C.4.4 INTEST (1100)

The INTEST instruction places the selected scan chain in test mode:

. The INTEST instruction connects the selected scan chain beg@mDI and
DBGTDO.

. When the INTEST instruction is loaded into the instruction register, all the scan
cells are placed in their test mode of operation. For example, in test mode, input
cells will select the output of the scan chain to be applied to the core, and so on.

. In the CAPTURE-DR state, the value of the data applied from the core logic to
the output scan cells, and the value of the data applied from the system logic to
the input scan cells is captured.

. In the SHIFT-DR state, the previously-captured test data is shifted out of the scan
chain via theDBGTDO pin, while new test data is shifted in via DBGT DI
pin.

Single-step operation of the core is possible using the INTEST instruction.

C.45 |IDCODE (1110)

The IDCODE instruction connects the device identification code register (or

ID register) betwee®BGTDI andDBGTDO. The ID register is a 32-bit register that

allows the manufacturer, part number, and version of a component to be read through

the TAP. SeARMOE-S deviceidentification (ID) code register on page C-11 for the
details of the ID register format.
C-8 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug in Depth

When the IDCODE instruction is loaded into the instruction register, al the scan cells
are placed in their normal (System) mode of operation:

. In the CAPTURE-DR state, the device identification code is captured by the ID
register.

. In the SHIFT-DR state, the previously captured device identification code is
shifted out of the ID register via ti¥BGTDO pin, while data is shifted into the
ID register via théBGTDI pin.

. In the UPDATE-DR state, the ID register is unaffected.

C.4.6 BYPASS (1111)

The BYPASS instruction connects a 1-bit shift register (the bypass register) between
DBGTDI andDBGTDO.

When the BYPASS instruction is loaded into the instruction register, all the scan cells
assume their normal (System) mode of operation. The BYPASS instruction has no
effect on the system pins:

. In the CAPTURE-DR state, a logic 0 is captured in the bypass register.

. In the SHIFT-DR state, test data is shifted into the bypass regiseB@d DI,
and shifted out vidBGTDO after a delay of on€LK cycle. The first bit to
shift out is a zero.

. The bypass register is not affected in the UPDATE-DR state.

All unused instruction codes default to the BYPASS instruction.

C.4.7 RESTART (0100)

The RESTART instruction is used to restart the processor on exit from debug state. Th
RESTART instruction connects the bypass register bet@8iT DI andDBGTDO,
and the TAP controller behaves as if the BYPASS instruction had been loaded.

The processor exits debug state when the RUN-TEST/IDLE state is entered.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. C-9

Debug in Depth

C.5 Test dataregisters

Therearesix test dataregisterswhich can be selected to connect between DBGTDI and

DBGTDO:

. bypass register

. ID code register

. instruction register

. scan path select register
. scan chain 1
. scan chain 2.

In addition, other scan chains can be added betkB&ESDOUT andDBGSDIN, and
selected when in INTEST mode.

In the following descriptions, data is shifted during ev@hK cycle when
DBGTCKEN enable is HIGH.

C.5.1 Bypass register

Purpose Bypasses the device during scan testing by providing a path
betweerDBGTDI andDBGTDO.

Length 1 bit.

Operating mode When the BYPASS instruction, or any undefined instruction, is
the current instruction in the instruction register, serial data is
transferred fronDBGTDI to DBGTDO in the SHIFT-DR state
with a delay of on€LK cycle enabled bipP BGTCKEN.

Alogic 0 is loaded from the parallel input of the bypass register in
the CAPTURE-DR state. There is no parallel output from the
bypass register.

C-10 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug in Depth

C.5.2 ARMO9E-S device identification (ID) code register

Purpose Reads the 32-bit device identification code. No programmable
supplementary identification code is provided.

Length 32 bits. The format of the ID register is as follows:

313029282726252423222120191817161514131211109 8 7 6 56 4 3 2 1 0

1

Version Part number Manufacturer identity

Figure C-3 ID code register format
The 32-bit device identification code is |oaded into the register
fromthe parallel inputs of the TAPI D[31:0] input pins during the
CAPTURE-DR state.

Note
| EEE Standard 1149.1 requires that bit O of the ID register be set to 1.

Operating mode When the IDCODE instruction is current, the ID register is
selected as the serial path between DBGTDI and DBGTDO.

Thereisno parallel output from the ID register.

The 32-bit deviceidentification codeisloaded into the ID register
from its parallel inputs during the CAPTURE-DR state.

C.5.3 Instruction register
Purpose Specifiesa TAP instruction.
Length 4 bits.

Operating mode In the SHIFT-IR state, the instruction register is selected as the
serial path between DBGTDI and DBGTDO.
During the CAPTURE-IR state, the binary value 0001 is loaded
into thisregister. Thisvalueis shifted out during SHIFT-IR (least
significant bit first), while anew instruction is shifted in (least
significant bit first).
During the UPDATE-IR state, the valuein theinstruction register
specifies the current instruction.

On reset, IDCODE specifies the current instruction.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. Cc-11

Debug in Depth

C.5.4 Scan path select register
Purpose
Length

Operating mode

Changes the current active scan chain.
5 bits.

SCAN_N asthecurrent instructioninthe SHIFT-DR state selects
the scan path select register as the seria path between DBGTDI
and DBGTDO.

During the CAPTURE-DR state, the value 10000 binary isloaded
into thisregister. Thisvalueisshifted out during SHIFT-DR (least
significant bit first), while anew value is shifted in (least
significant bit first). During the UPDATE-DR state, the value in
the scan path select register selects a scan chain to become the
currently active scan chain. All further instructions such as
INTEST then apply to that scan chain.

The currently selected scan chain changes only when a SCAN_N
instruction is executed, or when areset occurs. On reset, scan
chain 3 is selected as the active scan chain.

The number of the currently-sel ected scan chainisreflected onthe
DBGSCREGJ[4:0] output bus. The TAP controller may be used
to drive external chainsin addition to those within the ARM9E-S
macrocell. The external scan chain is connected between
DBGSDIN and DBGSDOUT, and must be assigned a number.
The control signals are derived from DBGSCREG[4:0],
DBGIR[4:0], DBGTAPSM[3:0] and the clock, CLK, and clock
enable, DBGTCKEN.

C-12 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug in Depth

Table C-2 lists the scan chain numbers allocated by ARM.

Table C-2 Scan chain number allocation

Scan chain .
Function

number

0 Reserved

1 Debug

2 Embedded| CE-RT
programming

3 Externa boundary
scan

4-15 Reserved

16-31 Unassigned

The scan chain present between DBGSDIN and DBGSDOUT is connected between
DBGTDI and DBGTDO whenever scan chain 3 is selected, or when any unassigned
scan chain number is selected. If thereis more than one external scan chain, a
multiplexor must be built externally to apply the desired scan chain output to
DBGSDOUT. The multiplexor can be controlled by decoding DBGSCREG[4:0].

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. C-13

Debug in Depth

C.5.5 Scanchainsland?

The scan chains allow serial accessto the core logic and to the Embedded| CE hardware
for programming purposes. Each scan chain cell is simple, and comprises a serial
register and a multiplexor. A typical cell is shown in Figure C-4.

Serial data out
A

CLK

Test mode
select

Shift
enable

Serial data in

Figure C-4 Typical scan chain cell

The scan cells perform three basic functions:

. capture
. shift
. update.

For input cells, the capture stage involves copying the value of the system input to the
core into the serial register. During shift, this value is output serially. The value applied
to the core from an input cell is either the system input or the contents of the parallel
register (loads from the shift register after UPDATE-DR state) under multiplexor
control.

For output cells, capture involves placing the value of a core output into the serial
register. During shift, this value is serially output as before. The value applied to the
system from an output cell is either the core output or the contents of the serial register.

C-14 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug in Depth

All the control signalsfor the scan cells are generated internally by the TAP controller.
The action of the TAP controller is determined by current instruction and the state of
the TAP state machine.

Scan chain 1

Purpose: Scan chain 1isused for communication between the debugger and
the ARMOE-S core. It is used to read and write data, and to scan
instructions into the instruction pipeline. The SCAN_N
instruction is used to select scan chain 1.

Length 67 bits.

Scan chain 1 provides serial accessto RDATA[31:0] when the coreisdoing aread, and
to the WDATA[31:0] bus when the coreis doing awrite. It also provides serial access
to the INSTR[31:0] bus, and to the control bits, SY SPEED and WPTANDBKPT. For
compatibility with the ARM9TDMI, thereis one additional unused bit that should be

zero when writing, and is UNPREDICTABLE when reading.

There are 67 bitsin this scan chain, the order being (from serial datain to out):
. INSTR[31:0]

. SYSPEED

. WPTANDBKPT

. unused bit

. RDATA[31:0] orWDATA[31:0]

Bit 0 of RDATA or WDATA is therefore the first bit to be shifted out.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. C-15

Debug in Depth

Table C-3 shows the bit allocations for scan chain 1.

Table C-3 Scan chain 1 bit order

Bit number Function Type
66 RDATA[O] Bidir
/WDATA[O]
Bidir
35 RDATA[31] Bidir
/WDATA[31]
34 Unused -
33 WPTANDBKPT Input
32 SY SSPEED Input
31 INSTR[31] Input
Input
0 INSTR[O] Input

The scan chain order is the same as for the ARM9TDMI. The unused bit isto retain
compatibility with ARM9TDMI.

The two control bits serve the following purposes:

. While debugging, the value placed in the SYSSPEED control bit determines
whether the ARM9E-S synchronizes back to system speed before executing the
instruction. Se&ystem speed access on page C-27 for further details.

. After the ARM9OE-S has entered debug state, the first time SYSSPEED is
captured and scanned out, its value tells the debugger whether the core has
entered debug state from a breakpoint (SYSSPEED LOW), or a watchpoint
(SYSSPEED HIGH). If the instruction directly following one which causes a
watchpoint has a breakpoint set on it, then the WPTANDBKPT bit will be set.
This situation does not affect how to restart the code.

. For a read the data value taken from the 32 bits in the scan chain allocated for
data will be used to deliver tiRDATA[31:0] value to the core.

. When a write is being performed by the processoYWBRATA[31:0] value will
be returned in the data part of the scanned out value.

C-16 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug in Depth

Scan chain 2

Purpose: Scan chain 2 allows access to the Embedded| CE registers. To do
this, scan chain 2 must be selected using the SCAN_N instruction,
and then the TAP controller instruction must be changed to
INTEST.

Length 38 hits.

Scan chainorder: From DBGTDI to DBGTDO. Read/write, register address bits 4
to 0, data values bits 31 to 0.

No action occurs during CAPTURE-DR.

During SHIFT-DR, adatavalue is shifted into the serial register. Bits 32 to 36 specify
the address of the Embedded| CE register to be accessed.

During UPDATE-DR, this register is either read or written depending on the value of
bit 37 (0 = read, 1 = write).

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. C-17

Debug in Depth

C.6 ARMO9E-S core clock domains

The ARMOE-S has asingle clock, CLK, that is qualified by two clock enables:
. CLKEN controls access to the memory system
. DBGTCKEN controls debug operations.

During normal operatiorGCL KEN conditionsCLK to clock the core. When the
ARMOE-S is in debug stat®BGTCKEN conditionsCLK to clock the core.

C-18 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug in Depth

C.7 Determining the core and system state

When the ARMOE-S isin debug state, the core and system state can be examined by
forcing the load and store multiples into the instruction pipeline.

Before examining the core and system state, the debugger must determine whether the
processor entered debug from Thumb state or ARM state by examining bit 4 of the
Embeddedl CE-RT debug status register. When bit 4 is HIGH, the core has entered
debug from Thumb state. When bit 4 is LOW the core has entered debug from ARM
state.

C.7.1 Determining the core state

When the processor has entered debug state from Thumb state, the simplest method is
for the debugger to force the core back into ARM state. The debugger can then execute
the same sequence of instructions to determine the processor state.

To force the processor into ARM state, execute the following sequence of Thumb
instructions on the core (with the SY SSPEED bit set LOW):

STR RO, [R1] ; Save RO before use

MOV RO, PC ; Copy PCinto RO
STR RO, [R1] ; Now save the PCin RO
BX PC ; Jump into ARM state
MOV R8, R8 ;. NOP
MOV R8, R8 ;. NOP

Note

Because all Thumb instructions are only 16 bits long, the simplest method, when
shifting scan chain 1, isto repeat the instruction. For example, the encoding for BX RO
is0x4700, so when 0x47004700 shiftsinto scan chain 1, the debugger does not have to
keep track of the half of the bus on which the processor expects to read the data.

The sequences of ARM instructions shown in Example C-1 on page C-20 can be used
to determine the processor’s state.

With the processor in the ARM state, typically the first instruction to execute would be:
STM A RO, {RO-RL5}

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. C-19

Debug in Depth

Thisinstruction causes the contents of the registers to appear on the data bus. Y ou can
then sample and shift out these values.

Note

The above use of r0 as the base register for the STMis only for illustration, and you can
use any register.

After you have determined the valuesin the bank of registers available in the current
mode, you may wish to access the other banked registers. To do this, you must change
mode. Normally, a mode change can occur only if the core is aready in a privileged
mode. However, whilein debug state, amode change can occur from any modeinto any
other mode.

The debugger must restore the origina mode before exiting debug state. For example,
if the debugger has been requested to return the state of the User mode registersand FIQ
mode registers, and debug state was entered in Supervisor mode, the instruction
seguence could be:

Example C-1 Determining the core state

STM A RO, {RO-R15}; Save current registers

MRS RO, CPSR

STR RO, [RO]; Save CPSR to determine current nobde

BIC RO, Ox1F; C ear node bits

ORR RO, 0x10; Select User node

MSR CPSR, RO; Enter User npde

STM A RO, {R13, R14}; Save registers not previously visible
ORR RO, 0x01; Select FIQ node

MSR CPSR, RO; Enter FIQ node

STM A RO, {R8-R14}; Save banked FlI Q registers

All theseinstructions execute at debug speed. Debug speed is much slower than system
speed. Thisis because between each core clock, 67 clocks occur in order to shiftin an
instruction, or shift out data. Executing instructions this slowly is acceptable for
accessing the core state because the ARMOE-Sisfully static. However, you cannot use
this method for determining the state of the rest of the system.

C-20 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug in Depth

Whilein debug state, only the following ARM/Thumb instructions can be scanned into
the instruction pipeline for execution:

. all data processing operations

. all load, store, load multiple, and store multiple instructions
. MSR andMVRS

. B, BL andBX.

C.7.2 Determining the system state

To meet the dynamic timing requirements of the memory system, any attempt to acces
system state must occur synchronously. Therefore, the ARM9E-S must be forced to
synchronize back to system speed. Bit 32 of scan chain 1, SYSSPEED, controls this.

You can place a legal debug instruction onto the instruction data bus of scan chain 1
with bit 32 (the SYSSPEED bit) LOW. This instruction will then be executed at debug
speed. To execute an instruction at system speed, a NOP (unh B8, R0) must

be scanned in as the next instruction with bit 32 set HIGH.

After the system speed instructions have been scanned into the instruction data bus at
clocked into the pipeline, the RESTART instruction must be loaded into the TAP
controller. This will cause the ARM9E-S automatically to resynchronize baCk ko
conditioned withlCL KEN when the TAP controller enters RUN-TEST/IDLE state, and
execute the instruction at system speed. Debug state will be reentered once the
instruction completes execution, when the processor will switch itself b&ukKo
conditioned withDBGTCKEN. When the instruction has complet@BGACK will

be HIGH. At this point INTEST can be selected in the TAP controller, and debugging
can resume.

To determine whether a system speed instruction has completed, the debugger must
look at SYSCOMP (bit 3 of the debug status register). The ARM9E-S must access
memory through the data data bus interface, as this access may be stalled indefinitel
by CLKEN. Therefore, the only way to determine whether the memory access has
completed is to examine the SYSCOMP bit. When this bit is HIGH the instruction has
completed.

The state of the system memory can be fed back to the debug host by using system spe
load multiples and debug speed store multiples.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. C-21

Debug in Depth

Instructions which can have the SYSSPEED bit set

There are restrictions on which instructions can have the SY SSPEED bit set. Thevalid
instructions on which to set this bit are:

. loads
. stores
. load multiple

. store multiple.

When the ARM9E-S returns to debug state after a system speed access, the SYSSPEED
bit is set LOW. The state of this bit gives the debugger information about why the core
entered debug state the first time this scan chain is read.

C.7.3 Exit from debug state

Leaving debug state involves:

. restoring the internal state of the ARM9E-S

. causing a branch to the next instruction to be executed
. synchronizing back t€LK conditioned withCL KEN.

After restoring the internal state, a branch instruction must be loaded into the pipeline.
SeeBehavior of the program counter during debug on page C-2%or details on
calculating the branch.

The SYSSPEED bit of scan chain 1 forces the ARM9E-S to resynchronize l&zcK to
conditioned withCLK EN. The penultimate instruction in the debug sequence is a
branch to the instruction at which execution is to resume. This is scanned in with bit 32
(SYSSPEED) set LOW. The final instruction to be scanned in is a NOP (shick as

RO, RO0), with bit 32 set HIGH. The core is then clocked to load this instruction into the
pipeline.

Next, the RESTART instruction is selected in the TAP controller. When the state
machine enters the RUN-TEST/IDLE state, the scan chain will revert back to System
mode and clock resynchronization@b K conditioned withCL K EN will occur within

the ARM9E-S. Normal operation will then resume, with instructions being fetched
from memory.

The delay, waiting until the state machine is in RUN-TEST/IDLE state, allows
conditions to be set up in other devices in a multiprocessor system without taking
immediate effect. Then, when RUN-TEST/IDLE state is entered, all the processors
resume operation simultaneously.

C-22 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug in Depth

The function of DBGACK isto tell the rest of the system when the ARM9E-Sisin
debug state. This can be used to inhibit peripherals such as watchdog timers that have
real-time characteristics. Also, DBGACK can be used to mask out memory accesses
that are caused by the debugging process. For example, when the ARM9E-S enters
debug state after a breakpoint, the instruction pipeline contains the breakpointed
instruction plus two other instructions which have been prefetched. On entry to debug
state, the pipeline is flushed. So, on exit from debug state, the pipeline must be refilled
to its previous state. Therefore, because of the debugging process, more memory
accesses occur than would normally be expected. It is possible, using the DBGACK
signal and a small amount of external logic, for a peripheral which is sensitive to the
number of memory accesses to return the same result with and without debugging.

Note

DBGACK canonly beused in such away using breakpoints. It will not mask the correct
number of memory accesses after awatchpoint.

For example, consider aperipheral that simply countsthe number of instruction fetches.
This device should return the same answer after a program has run both with and
without debugging.

Figure C-5 shows the behavior of the ARM9E-S on exit from debug state.

ck [\ \ \ \ \ \ \ [
'"""I';Eg Internal| Cycles X N) S X s)){
IA[31:1] X mo X iab+a [)0 mnes [X
INSTR[31:0] {1 {1 {2 {[)
DBGACK \

Figure C-5 Debug exit sequence

In Figure C-6 on page C-24, you can see that two instructions are fetched after the
instruction which breakpoints. Figure C-5 shows that DBGACK masks the first three
instruction fetches out of the debug state, corresponding to the breakpoint instruction,
and the two instructions prefetched after it.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. C-23

Debug in Depth

Under some circumstances DBGACK can remain HIGH for more than three
instruction fetches. Therefore, if precise instruction access counting is required, some
external logic must be provided to generateamodified DBGACK that alwaysfallsafter
three instruction fetches.

Note

When system speed accesses occur, DBGACK remains HIGH throughout. It then falls
after the system speed memory accesses are completed, and finally rises again asthe
processor reenters debug state. Therefore, DBGACK masks all system speed memory

accesses.
CLK \ \ \ \ \ \ \ [
|n|v:b;:8 Menhory Cycles X Internal Cycles
1A[31:1] X X X X
INSTR[31:0] - D) (1) {2} {3)
DBGIEBKPT /7j
DBGACK /7

Figure C-6 Debug state entry

C-24 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug in Depth

C.8 Behavior of the program counter during debug

C.8.1 Breakpoints

C.8.2 Watchpoints

The debugger must keep track of what happensto the PC, so that the ARM9E-S can be
forced to branch back to the place at which program flow was interrupted by debug.
Program flow may be interrupted by any of the following:

. a breakpoint

. a watchpoint

. a watchpoint when another exception occurs

. a debug request

. a system speed access.

Entry to debug state from a breakpointed instruction advances the PC by 16 bytes in
ARM state, or 8 bytes in Thumb state. Each instruction executed in debug state
advances the PC by one address (4 bytes). The normal way to exit from debug state aft
a breakpoint is to remove the breakpoint and branch back to the previously breakpointe
address.

For example, if the ARM9YE-S entered debug state from a breakpoint set on a given
address and two debug speed instructions were executed, a branch of seven address
must occur (four for debug entry, plus two for the instructions, plus one for the final
branch). The following sequence shows ARM instructions scanned into scan chain 1.
This is theMost Sgnificant Bit (MSB) first, so the first digit represents the value to be
scanned into the SYSSPEED bit, followed by the instruction.

0 EAFFFFF9 ; B -7 addresses (two’'s complement)
1 E1A00000 ; NOP (MOV RO, R0), SYSSPEED bhit is set

After the ARMOE-S enters debug state, it must execute a minimum of two instructions
before the branch, athough these may both be NOPs (MOV RO, RO). For small
branches, you can replace the final branch with asubtract, with the PC asthe destination
(SUB PC, PC, #28 in the above example).

To return to program execution after entry to debug state from a watchpoint, use the
same procedure described in Breakpoints.

Debug entry adds four addressesto the PC, and every instruction adds one address. The
difference from breakpoint is that the instruction that caused the watchpoint has
executed, and the program should return to the next instruction.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. C-25

Debug in Depth

C.8.3 Watchpoint with another exception

If awatchpointed access also has a Data Abort returned, the ARM9E-S enters debug
statein Abort mode. Entry into debug isheld off until the core changesinto Abort mode,
and has fetched the instruction from the abort vector.

A similar sequence follows when an interrupt, or any other exception, occurs during a
watchpointed memory access. The ARMOE-S enters debug state in the mode of the
exception. The debugger must check to see whether an exception has occurred by
examining the current and previous mode (in the CPSR and SPSR), and the value of the
PC. When an exception hastaken place, the user should be given the choice of servicing
the exception before debugging.

For example, suppose that an abort has occurred on a watchpointed access and ten
instructions have been executed in debug state. Y ou can use the following sequence to
return to program execution:

0 EAFFFFF1; B -15 addresses (two's complement)

1 E1A00000; NOP (MOV RO, R0), SYSSPEED bit is set

This code forces a branch back to the abort vector, causing the instruction at that
location to be refetched and executed.

Note

After the abort service routine, theinstruction that caused the abort and watchpoint will
be refetched and executed. This triggers the watchpoint again, and the ARM9E-S will
reenter debug state.

C.8.4 Watchpoint and breakpoint

Itis possible to have awatchpoint and breakpoint condition occurring simultaneously.
This can happen when an instruction causes awatchpoint, and the following instruction
has been breakpointed. Y ou should perform the same calculation as for Breakpoints on
page C-25 to determine where to resume. In this case, it will be at the breakpoint
instruction, since this has not been executed.

C.8.5 Debug request

Entry into debug state through adebug request is similar to abreakpoint. Entry to debug
state adds four addresses to the PC, and every instruction executed in debug state adds
one address.

C-26 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug in Depth

For example, the following sequence handles a situation in which the user has invoked
a debug reguest, and then decides to return to program execution immediately:

0 EAFFFFFB; B -5 addresses (2's complement)
1 E1A00000; NOP (MOV RO, R0), SYSSPEED bit is set

This code restores the PC, and restarts the program from the next instruction.

C.8.6 System speed access

When a system speed access is performed during debug state, the value of the PC
increases by five addresses. System speed instructions access the memory system, and
so it ispossible for aborts to take place. If an abort occurs during a system speed
memory access, the ARM9E-S enters Abort mode before returning to debug state.

This scenario issimilar to an aborted watchpoint, but the problem is much harder to fix
because the abort was not caused by an instruction in the main program, and so the PC
does not point to theinstruction that caused the abort. An abort handler usually looks at
the PC to determine the instruction that caused the abort, and hence the abort address.
In this case, the value of the PC isinvalid, but because the debugger can determine
which location was being accessed, the debugger can be written to help the abort
handler fix the memory system.

C.8.7 Summary of return address calculations

The calculation of the branch return address can be summarized as:
- (4+N+5S)

where Nis the number of debug speed instructions executed (including the final
branch), and S is the number of system speed instructions executed.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. Cc-27

Debug in Depth

C.9 Priorities and exceptions

When a breakpoint or adebug request occurs, the normal flow of the programis
interrupted. Therefore debug can be treated as another type of exception. The
interaction of the debugger with other exceptionsis described in Behavior of the
program counter during debug on page C-25. This section covers the priorities.

C.9.1 Breakpoint with Prefetch Abort

When a breakpointed instruction fetch causes a Prefetch Abort, the abort is taken and
the breakpoint is disregarded. Normally, Prefetch Aborts occur when, for example, an
access is made to avirtual address that does not physically exist, and the returned data
isthereforeinvalid. In such a case, the normal action of the operating system isto swap
in the page of memory, and to return to the previously invalid address. Thistime, when
the instruction is fetched, and providing the breakpoint is activated (it may be
data-dependent), the ARMOE-S enters debug state.

The Prefetch Abort, therefore, takes higher priority than the breakpoint.

C.9.2 Interrupts
When the ARM9E-S enters debug state, interrupts are automatically disabled.

If an interrupt is pending during the instruction prior to entering debug state, the
ARMOE-S enters debug state in the mode of the interrupt. On entry to debug state, the
debugger cannot assume that the ARM9E-S isin the mode expected by your program.
The ARM9E-S must check the PC, the CPSR, and the SPSR to determine accurately the
reason for the exception.

Debug, therefore, takes higher priority than the interrupt, but the ARM9E-S does
recognise that an interrupt has occurred.

C.9.3 Data Aborts

When a Data Abort occurs on awatchpointed access, the ARM9E-S enters debug state
in Abort mode. The watchpoint, therefore, has higher priority than the abort, but the
ARMO9E-S remembers that the abort happened.

C-28 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug in Depth

C.10 EmbeddedICE-RT logic

The EmbeddedI CE-RT logic isintegral to the ARM9E-S processor core. It has two
hardware breakpoint/watchpoint units, each of which may be configured to monitor
either the instruction memory interface or the data memory interface. Each watchpoint
unit has registersthat set the address, dataand control fieldsfor both values and masks.
Theregisters used are shown in Table C-4.

Because the ARM9E-S processor core has a Harvard Architecture, you must specify
whether the watchpoint unit examines the instruction or the data interface. Thisis
specified by bit 3 of the control value register:

. when bit 3 is set, the data interface is examined

. when bit 3 is clear, the instruction interface is examined.

There cannot be@on’t care case for this bit because the comparators cannot compare
the values on both buses simultaneously. Therefore, bit 3 of the control mask register is
always clear and cannot be programmed HIGH. Bit 3 also determines whether the
internal IBREAKPT or DWPT signal should bedriven by the result of the comparison.
Figure C-7 on page C-31 gives an overview of the operation of the EmbeddedI CE-RT
logic.

The ARM9E-S EmbeddedI CE-RT logic has dedicated hardware that allows single
stepping through code. This reduces the work required by an external debugger, and
removestheneedto flush theinstruction cache. Thereisal so hardwareto allow efficient
trapping of accesses to the exception vectors. These blocks of logic free the two
general-purpose hardware breakpoint/watchpoint unitsfor use by the programmer at all
times.

The general arrangement of the Embedded| CE-RT logic is shown in Figure C-7 on
page C-31.

C.10.1 Register map
The EmbeddedI CE-RT logic register map is shown in Table C-4.

Table C-4 ARM9E-S EmbeddedICE-RT logic register map

Address Width Function Type
00000 5 Debug control Read/write
00001 5 Debug status Read only
00010 8 Vector catch control Read/write
00100 6 Debug comms control Read only

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. C-29

Debug in Depth

C.10.2 Programming and reading EmbeddedICE-RT logic registers

Table C-4 ARM9E-S EmbeddedICE-RT logic register map (continued)

Address Width Function Type

00101 32 Debug comms data Read/write
01000 32 Watchpoint 0 address value Read/write
01001 32 Watchpoint 0 address mask Read/write
01010 32 Watchpoint O data value Read/write
01011 32 Watchpoint O data mask Read/write
01100 9 Watchpoint O control value Read/write
01101 8 Watchpoint O control mask Read/write
10000 32 Watchpoint 1 address value Read/write
10001 32 Watchpoint 1 address mask Read/write
10010 32 Watchpoint 1 data value Read/write
10011 32 Watchpoint 1 data mask Read/write
10100 9 Watchpoint 1 control value Read/write
10101 8 Watchpoint 1 control mask Read/write

An EmbeddedI CE-RT logic register is programmed by shifting data into the
Embedded| CE scan chain (scan chain 2). The scan chainisa38-hit register comprising:

. a 32-bit data field
. a 5-bit address field

. a read/write bit.

This is shown in Figure C-7.

C-30

Copyright © ARM Limited 1999. All rights reserved.

ARM DDI 0165A

Debug in Depth

Scan chain
register

\

R/W Update
4

> Address
Address g decoder

g

0 Enable

31

Yy

| Control

— Breakpoint/
D Control watchpoint

[0JJu0D
[01u0D
j0Jju0D

vy

32
Data >

Rangeout _

eleq
ejleq
eleq

INSTR[31:0]
DD[31:0]

Yy

ssaIppy
ssaIppy

IA[31:1]
0 DA[31:0]

ssalppy

Value Mask Comparator

Registers

TDI TDO

Figure C-7 ARM9E-S EmbeddedICE macrocell overview

If awatchpoint is requested on a particular memory location but the datavalueis
irrelevant, the datamask register can be programmed to OxFFFF FFFF (all bitssetto 1),
so that the entire data bus value is masked.

C.10.3 Using the mask registers

For each value register there is an associated mask register in the same format. Setting
abit to 1 in the mask register causes the corresponding bit in the value register to be
ignored in any comparison.

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. C-31

Debug in Depth

C.10.4 Watchpoint control registers
The format of the control registers depends on how bit 3 is programmed.

If bit 3 of the control register isprogrammed to a 1, the breakpoint comparators examine
the data address, data and control signals.

In this case, the format of the control register is as shown in Figure C-8.

Note
Bit 8 and bit 3 cannot be masked.

8 7 6 5 4 3 2 1 0

ENABLE RANGE CHAIN DBGEXT DnTRANS | 1 DMAS[1] DMAS|0] DnRW

Figure C-8 Watchpoint control register for data comparison

Data comparison bit functions are described in Table C-5.

Table C-5 Watchpoint control register for data comparison bit functions

Bit Name Function

number

0 DnRW Compares against the data not read/write signal from the corein
order to detect the direction of the data data bus activity. DnRW
isOfor aread, and 1 for awrite.

21 DMAS[1:0] Compares against the DMAS[1:0] signa from the corein order
to detect the size of the data data bus activity.

4 DnTRANS Compares against the data not trandate signal from the corein
order to determine between a User mode (DnTRANS = 0) data
transfer, and a privileged mode (DnTRANS = 1) transfer.

5 DBGEXT Is an external input into the Embedded| CE-RT logic that allows

the watchpoint to be dependent upon some external condition.
The DBGEXT input for watchpoint 0 is labelled DBGEXTI0],
and the DBGEXT input for watchpoint 1 is labelled
DBGEXT[1].

C-32 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

8

Debug in Depth

Table C-5 Watchpoint control register for data comparison bit functions

Bit

Name Function
number

6 CHAIN Selects the chain output of another watchpoint unit in order to
implement some debugger requests. For example, “breakpoint
on address YYY only when in process XXX".
In the ARM9E-S EmbeddedICE-RT logic, tB&lAINOUT
output of watchpoint 1 is connected to @idAIN input of
watchpoint 0. ThR€HAINOUT output is derived from a latch.
The address/control field comparator drives the write enable for
the latch and the input to the latch is the value of the data field
comparator. ThR€HAINOUT latch is cleared when the control
value register is written or whéBGnTRST is LOW.

7 RANGE Can be connected to the range output of another watchpoint
register. In the ARM9E-S EmbeddedICE-RT logic, the
RANGEOUT output of watchpoint 1 is connected to the
RANGE input of watchpoint 0. This allows two watchpoints to
be coupled for detecting conditions that occur simultaneously,
for example, for range-checking.

8 ENABLE If a watchpoint match occurs, the interB&PT signal will
only be asserted when tB&IABLE bit is set. This bit only
exists in the value register, it cannot be masked.

If bit 3 of the control register is programmed to 0, the comparators will examine the
instruction address, instruction data and instruction control buses. In this case bits[2]
and [0] of the mask register must be set to don’t care(programmedto 1 _1). Theformat
of the register in this caseis as shown in Figure C-9.

6 5 4 3 2 1 0

ENABLE

RANGE

CHAIN DBGEXT INTRANS 0 X ITBIT X

Figure C-9 Watchpoint control register for instruction comparison

Instruction comparison bit functions are described in Table C-6.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. C-33

Debug in Depth

Table C-6 Watchpoint control register for instruction comparison bit functions

Bit
number

Name

Function

ITBIT

Compares against the Thumb state signal from the core to determine between a
Thumb (ITBIT =1) instruction fetch or an ARM (ITBIT = 0) instruction fetch.

INTRANS

Compares against the not translate signal from the core in order to determine
between a user mode (InTRANS = 0) instruction fetch, and a privileged mode
(INTRANS = 1) fetch.

DBGEXT

Isan external input into the Embedded| CE-RT logic that allows the watchpoint
to be dependent upon some external condition. The DBGEXT input for
watchpoint 0 islabelled DBGEXT[0], and the DBGEXT input for watchpoint
lislabelled DBGEXT[1].

CHAIN

Selects the chain output of another watchpoint unit in order to implement some
debugger requests. For example, “breakpoint on address YYY only when in
process XXX".

In the ARM9E-S EmbeddedICE-RT logic, t&élAINOUT output of

watchpoint 1 is connected to tB#1AIN input of watchpoint 0. The

CHAINOUT output is derived from a latch. The address/control field
comparator drives the write enable for the latch, and the input to the latch is the
value of the data field comparator. TBEIAINOUT latch is cleared when the
control value register is written, or whemRST is LOW.

RANGE

Can be connected to the range output of another watchpoint register. In the
ARMO9E-S EmbeddedICE-RT logic, tiRANGEOUT output of watchpoint 1

is connected to thRANGE input of watchpoint 0. This allows two

watchpoints to be coupled for detecting conditions that occur simultaneously,
for example, for range-checking.

ENABLE

If a watchpoint match occurs, the interl BREAKPT signal will only be
asserted when tHENABLE bit is set. This bit only exists in the value register,
it cannot be masked.

C-34

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

C.10.5 Debug control register

Debug in Depth

The debug control register is 5 bits wide. Writing control bits occurs during a register
write access (with the read/write bit HIGH). Reading control bits occurs during a
register read access (with the read/write bit LOW).

Figure C-10 shows the function of each bit in this register.

4 3 2 1 0
Monitor mode Single-step INTDIS DBGRQ DBGACK
enable

Figure C-10 Debug control register format

These functions are described in Table C-7 and Table C-8.

Table C-7 Debug control register bit functions

Function

Controls the selection between monitor mode debug (monitor
mode enable = 1) and halt mode debug. In monitor mode,
breakpoints and watchpoints cause Prefetch Aborts and Data
Aborts to be taken (respectively). At reset, the monitor mode
enable bitisset to 1.

Controls the single-step hardware. Thisis explained in more
detail in Single-stepping on page C-39.

If bit 2 (INTDIS) is asserted, the interrupt signals to the processor
areinhibited. Table C-8 shows interrupt signal control.

Bit
Name
number
4 Monitor
mode
enable
3 Single-step
2 INTDIS
1.0 DBGRQ,
DBGACK

These bits allow the values on DBGRQ and DBGACK to be
forced.

Table C-8 Interrupt signal control

DBGACK INTDIS Interrupts
0 0 Permitted
1 X Inhibited
X 1 Inhibited

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. C-35

Debug in Depth

Both IRQ and FI Q are disabled when the processor isin debug state
(DBGACK =1), or when INTDIS s forced.

As shown in Figure C-12 on page C-37, the value stored in bit 1 of the control register
issynchronized and then ORed with the external EDBGRQ before being applied to the
processor.

In the case of DBGACK, the value of DBGACK from the coreis ORed with the value
held in bit O to generate the external value of DBGACK seen at the periphery of the
ARMOE-S. Thisallowsthe debug system to signal to therest of the system that the core
isstill being debugged even when system-speed accesses are being performed (in which
case the internal DBGACK signa from the core is LOW).

The structure of the debug control and status registersis shown in Figure C-12 on
page C-37.

C.10.6 Debug status register

Thedebug statusregister isfivebitswide. If itisaccessed for aread (with the read/write
bit LOW), the status bits are read.

4 3 2 1 0

ITBIT SYSCOMP IFEN DBGRQ DBGACK

Figure C-11 Debug status register

The function of each bit in thisregister is shown in Table C-9 on page C-36.

Table C-9 Debug status register bit functions

Bit

Name Function

number

1.0 DBGRQ, Allow the values on the synchronized versions of EDBGRQ and
DBGACK DBGACK to beread.

2 IFEN Allows the state of the core interrupt enable signal to be read.

3 SYSCOMP Allowsthe state of the SY SCOM P bit from the core to be read.
This allows the debugger to determine that a memory access
from the debug state has completed.

4 ITBIT Allows the status of the output | TBI T to be read. This enables

the debugger to determine what state the processor isin, and
hence which instructions to execute.

C-36

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug in Depth

The structure of the debug control and status registersis shown in Figure C-12.

Debug control Debug status
register register
ITBIT .| Bit4
(from core) ITBIT
SYSCOMP o] Bit3
(from core) " |sYSCOMP)
(fﬁ?%% e — s IS Interrupt mask enable
—»
> (to core)
Bit 2
INTDIS .
P } Bit 2
—> + IFEN
Bit 1
DBGRQ T
> DBGRQ
—»
EDBGRQ > (to core)
(from ARM9E-S input)
| Bit1
"| DBGRQ
DBGACK o| Bit0
(from core) " IDBGACK
. | DBGACK
Bit 0 + >
DBGACK > (to ARM9E-S output)

Figure C-12 Debug control and status register structure

C.10.7 Vector catch register

The ARM9E-S Embedded| CE-RT logic controls hardware to enable accesses to the
exception vectors to be trapped in an efficient manner. Thisis controlled by the vector
catch register, as shown in Figure C-13. The functionality is described in \Vector
catching on page C-38.

7 6 5 4 3 2 1 0

FIQ IRQ Reserved D_Abort P_Abort SWiI Undef Reset

Figure C-13 Vector catch register

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved. C-37

Debug in Depth

C.11 Vector catching

The ARM9E-S EmbeddedI CE-RT logic contains hardware that allows efficient
trapping of fetches from the vectors during exceptions. Thisis controlled by the vector
catch register. If one of the bitsin this register is set HIGH and the corresponding
exception occurs, the processor enters debug state as if abreakpoint has been set on an
instruction fetch from the relevant exception vector.

For example, if the processor executes a SWI instruction while bit 2 of the vector catch
register is set, the ARMOE-Sfetches an instruction from location 0x8. The vector catch
hardware detects this access and forces the internal IBREAKPT signal HIGH into the
ARMOE-S control logic. This, in turn, forces the ARM9E-S to enter debug state.

The behavior of the hardware is independent of the watchpoint comparators, leaving
them free for general use. The vector catch register is sensitive only to fetchesfrom the
vectors during exception entry. Therefore, if code branches to an address within the
vectors during normal operation, and the corresponding bit in the vector catch register
is set, the processor is not forced to enter debug state.

In monitor mode debug, vector catching is disabled on Data Aborts and Prefetch Aborts
to avoid the processor being forced into an unrecoverable state as aresult of the aborts
that are generated for the monitor mode debug.

C-38

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug in Depth

C.12 Single-stepping

The ARM9E-S EmbeddedI CE-RT logic contains logic that allows efficient single-
stepping through code. This leaves the watchpoint comparators free for general use.

Enable this function by setting bit 3 of the debug control register. The state of this bit
should only be altered while the processor isin debug state. If the processor exits debug
state and this bit is HIGH, the processor fetches an instruction, executes it, and then
immediately reenters debug state. This happens independently of the watchpoint
comparators. If a system speed data access is performed while in debug state, the
debugger must ensure that the control bit is clear first.

This bit should not be set when using monitor mode debug.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. C-39

Debug in Depth

C.13 Coupling breakpoints and watchpoints

Watchpoint units 1 and 0 can be coupled together using the CHAIN and RANGE
inputs. Using CHAIN enables Watchpoint 0 to be triggered only if Watchpoint 1 has
previously matched. Using RANGE enables simple range checking to be performed by
combining the outputs of both watchpoints.

C.13.1 Breakpoint and watchpoint coupling example

Let:
Av[31: 0] bethevaluein the address value register
An{ 31: 0] bethe valuein the address mask register

Al 31: 0] be the | A bus from the ARM9E-S if control register bit 3 isclear, or the
DA bus from the ARMOE-S if control register bit 3is set

Dv[31:0] bethevaluein the datavalue register

Dni 31: 0] bethevaluein the data mask register

O 31: 0] bethe INSTR busfrom the ARMOE-S if control register bit 3isclear, or
the RDAT A busfrom the ARM9E-Sif control register bit 3isset andthe
processor is doing aread, or the WDATA bus from the ARMOE-S if
control register bit 3 is set and the processor is doing awrite

Cv[8: 0] be the value in the control value register

Cn{ 7: 0] be the value in the control mask register

q9:0] be the combined control bus from the ARM9E-S, other watchpoint
registers, and the DBGEXT signal.

CHAINOUT signal

The CHAINOUT signal is derived as follows:

WHEN (({Av[31:0],Cv[4,2:0]} XNOR {A[31:0],d4,2:0]}) R
{An{31:0], Cnf4: 0]} == OxFFFFFFFFF)

CHAI NOUT = ((({D,[31:0],C,[6:4]} XNOR {D[31:0],C[7:5]}) OR
{D{31:0],CJ7:5]}) == Ox7FFFFFFFF)

The CHAINOUT output of Watchpoint register 1 provides the CHAIN input to
Watchpoint 0. This CHAIN input alows for quite complicated configurations of
breakpoints and watchpoints.

Note
Thereisno CHAIN input to Watchpoint 1 and no CHAIN output from Watchpoint 0.

C-40

Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug in Depth

Take, for example, the request by adebugger to breakpoint on theinstruction at location
YYY when running process X XX in amultiprocess system. If the current process|ID is
stored in memory, you can implement the above function with a watchpoint and
breakpoint chained together. The watchpoint address points to a known memory
location containing the current process ID, the watchpoint data points to the required
process ID, and the ENABLE bit is set to off.

The address comparator output of the watchpoint is used to drive the write enable for
the CHAINOUT latch. Theinput to thelatch isthe output of the data comparator from
the same watchpoint. The output of the latch drivesthe CHAIN input of the breakpoint
comparator. Theaddress YY'Y is stored in the breakpoint register, and when the
CHAIN input is asserted, the breakpoint address matches, and the breakpoint triggers
correctly.

C.13.2 DBGRNG signal

The DBGRNG signal is derived asfollows:

DBGRNG = ((({A[31:0],C,[4,2:0]} XNOR {A[31:0],C[4,2:0]}) OR
{A{31:0],Cf4:0]}) == OXFFFFFFFFF) AND

((({Dy[31:0],C[7:5]} XNOR {D[31:0],C[7:5]}) OR
Dy 31:0], G 7:5]}) == Ox7FFFFFFFF)

The RANGE input to Watchpoint unit 0 is derived as the address comparison of
Watchpoint unit 1, that is:

RANGEIN = ((A,[31:0] XNOR A[31:0]) OR A,[31:0] == OXFFFF FFFF)

ThisRANGE input allows two breakpoints to be coupled together to form range
breakpoints.

Selectable ranges are restricted to being powers of 2. For example, if abreakpoint isto
occur when the addressisin thefirst 256 bytes of memory, but not in thefirst 32 bytes,
program the watchpoint registers as follows:

For Watchpoint 1:

1. Program Watchpoint 1 with an address value of 0x00000000 and an address
mask of 0x0000001f.

2. Clear the ENABLE hit.

3. Program all other Watchpoint 1 registers as normal for a breakpoint.

An address within the first 32 bytes causes the RANGE output to go HIGH
because the address matches, but does not trigger the breakpoint because the
ENABLEisLOW.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. C-41

Debug in Depth

For Watchpoint O:

1. Program Watchpoint O with an address value of 0x00000000 and an address
mask of 0x000000ff.

2. Setthe ENABLE bit.
3. Program the RANGE bit to match a 0.
4. Program all other Watchpoint O registers as normal for a breakpoint.

If Watchpoint 0 matches but Watchpoint 1 does not (that isthe RANGE input to
Watchpoint 0 is 0), the breakpoint is triggered.

C-42 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Debug in Depth

C.14 Disabling EmbeddedICE-RT

Y ou can disable EmbeddedI CE-RT by wiring the DBGEN input LOW.

When DBGEN isLOW:

DBGIEBKPT, DBGDEWPT and DBGRQ are forced LOW to the core
(DBGRQ is the internal DBGRQ, which is a combination of the external input
EDBGRQ and the debug control register bit 1 DBGRQ).

DBGACK is forced LOW from the ARM9E-S
interrupts pass through to the processor uninhibited.

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved. C-43

Debug in Depth

C.15 EmbeddedICE-RT timing

Embeddedl CE-RT samplesthe DBGEXT[1] and DBGEXT[0] inputs on therising
edge of CLK.

Refer to Chapter 7 AC Parameters for details of the required setup and hold times for
these signals.

C-44 Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Index

Theitemsin thisindex are listed in a phabetic order. The references given are to page numbers.

A

Abort
data C-28
handler 2-20
mode 2-7
Prefetch 2-20
prefetch C-28
vector C-26

Aborted watchpoint C-27
AC timing diagrams 7-2-7-6
AC timing parameters 7-7

Access
system speed C-25
watchpointed C-26, C-28
Address class signals
timing B-8
ARM
Branch with link 6-7
register set 2-8
state 1-5, 2-3, 2-8

ARMO9E-S

architecture 1-5

block diagram 1-7

core diagram 1-8

functional diagram 1-9

overview 1-2

porting considerations B-7

signals compared to
ARMOTDMI B-2

ATPG scan interface B-5

B

Banked registers 2-8, C-20
Big-endian format = 2-4
Block diagram 1-7

Boundary-scan
chaincells C-5
interface C-5

Branch 6-7

Branch and exchange 6-9

Breakpoints 5-7, 5-9, 5-10, C-25
entering debug state C-25
instruction boundary 5-10
Prefetch Abort 5-10
with prefetch abort C-28

Bus interface signals 3-13
Busy-wait 4-5, 4-6, 4-12
abandoned 4-12
interrupted 4-12

Bypass register C-9, C-10

C

CDP 4-10, 6-33
CFGBIGEND A-6
CFGDISLTBIT A-6
CFGHIVECS A-6
CHAIN C-41
CHAINOUT C-40-C-41
CHSD A-7

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved.

Index-i

Index

CHSE A-7
CLK A-2
CLKEN 3-30, A-2
Clock
domains 5-14, C-18

interface signals A-2
maximum skew 7-7
system 5-14
test 5-14
Codedensity 1-5
Condition codeflags 2-14
Configuration input timing ~ 7-4
Control bits 2-15
Coprocessor
absent 6-40
data processing operation 6-33
expansion interface signals B-2,

handshake signals 4-6, 4-7
interface 4-2
interfacesignals A-7
register transfer 6-38, 6-39
register transfer cycles 3-28
register transfer instructions 5-16
Coprocessor instructions ~ 4-8
Busy-wait 4-5, 4-6
during busy-wait 4-12
during interrupts ~ 4-12
LDC 44
privileged instructions 4-11
privileged modes 4-11
Coprocessor 15 4-13
Corediagram 1-8
CORECLKENIN A-2
CORECLKENOUT A-2
CPSR 2-11,2-12,2-14
format 2-14
mode C-26
Current program status register ~ 2-11,
2-12,2-14

D

DA 314, A4
DABORT 3-17,A-4

Data
Abort C-28
byte 2-6
halfword 2-6
operations 6-11
swap 6-30
types 2-6
word 2-6

Datainterface 3-13

cycletypes 3-23

Data memory
interfacesignas A-4
interfacetiming 7-3

DBGACK A-9

DBGCOMMRX A-9

DBGCOMMTX A-9

DBGDEWPT A-4

DBGEN A-9

DBGEXT A-9

DBGIEBKPT A-3

DBGINSTREXEC A-9

DBGINSTRVALID A-9

DBGIR A-8

DBGNTDOEN A-8

DBGNTRST A-8

DBGRNG A-9, C-41-C-42

DBGRQI A-9

DBGSCREG A-8

DBGSDIN A-8

DBGSDOUT A-8

DBGTAPSM A-8

DBGTCKEN A-8

DBGTDI A-8

DBGTDO A-8

DBGTMS A-8

Debug
comms channel 5-16, 5-19
comms control register 5-16, 5-17
comms data read register 5-16
comms data write register 5-16
control register 5-6, C-35
entry from ARM state C-19
entry from Thumb state C-19
expansion signals B-6
extensions 5-2
hardware extensions 5-4
host 5-3
interface 5-2
interface signals 5-5, 5-9
message transfer 5-19
Multi-ICE 5-14

request 5-13, C-25
signals A-8
state 5-5

state, exiting from C-22
state, processor restart on exit C-9
status register 5-6

support 5-6
systems 5-3
target 5-3

Debug state
actions of ARM9E-S 5-13
breakpoints 5-9
watchpoints 5-11

Determining
core state 5-15
system state 5-15
Device identification code C-8, C-11
Disabling EmbeddedICE-RT 5-8, C-43
DLOCK 3-16, A4
DMAS 3-15, A4
DMORE A-4
DnM 3-16, A-5
DnMREQ A-4
DnRW 3-14, A-5
DnTRANS 3-15, A-5
DSEQ A-5

E

EDBGRQ A-9

EmbeddedICE-RT C-29

breakpoints, coupling with
watchpoints C-40

control registers C-32

debug communications
channel 5-16

debug control register C-35

debug status register 5-15, C-36

disabling 5-8, C-43

functionality C-29

hardware C-29

logic 5-4,5-6

operation 5-6

overview 5-6

programming C-2

register map C-29

registers, accessing C-3

single stepping C-39

timing C-44

vector catch register C-37

vector catching C-38

watchpoints, coupling with
breakpoints C-40

Endian effects for data transfers 3-29

Exception entry 6-32
ARM state 2-18
Thumb state 2-18

Exceptions 2-17, 5-10, 5-13
action on entry 2-18
action on exit 2-18
at watchpoint C-25
Data Abort 2-24
FIQ 2-19
IRQ 2-19
priorities 2-23
vectors 2-22

EXTEST C-7

Index-ii

Copyright © ARM Limited 1999. All rights reserved.

ARM DDI 0165A

F

F bit, FIQ disable 2-15
Fast interrupt request 2-19
FIQ

disable, Fhit 2-15

exception 2-19

mode 2-7,2-15, 2-19
Flags, condition code 2-14
Formats

big-endian 2-4

litle-endian 2-4
Functional diagram 1-9

H

Halt mode debug 5-2
Highregisters 2-13

| bit, IRQ disable 2-15
IA 3-4,A-3
IABORT 3-6, A-3
ID register C-5, C-8, C-10, C-11
IDCODE instruction C-5, C-8, C-11
Identification register C-8
InM 3-5,A-3
INMREQ A-3
INSTR 3-6, A-3
Instruction
cyclecount 6-3
interface 3-4, 3-6
length 2-5
memory interface signals A-3
pipeline 1-2
Instruction register C-6, C-9, C-10
Instruction set
ARM 15
ARM, summary
Thumb 1-5
Thumb, summary
Instructions
coprocessor register transfer 5-16
SCAN_N C-8,C-12
system speed C-27
Interface
ATPG scan B-5
boundary-scan C-5
debug 5-2
JTAG C-2
memory 3-2
signals B-2
Interlocked MCR 4-9
Interlocks 6-15, 6-19, 6-20, 6-26, 6-30

1-10-1-20
1-21-1-24

Internal cycles 3-27
Interrupts C-28
disable bits 2-15
disable flags 2-18
disabling 2-14
enabling 2-14
latency 2-24,2-25
latency calculation 2-25
Interworking 2-3
INTEST
instruction C-8, C-12
mode C-17
INTRANS 3-5, A-3
IRQ
disable, | bit 2-15
exception 2-19
mode 2-7, 2-15, 2-19
ISEQ A-3
ITBIT 2-15, 3-4, A-3

J

JTAG
interface 5-4, 5-5, C-2
state machine C-3
JTAG instructions
IDCODE C-5,C-8,C-11
INTEST C-8, C-12
public C-7
RESTART C-9
SCAN_N C-8, C-12, C-17
SCAN_N TAP C-15
TAP C-11

L

LATECANCEL A-7

LDC 6-34

Link register 2-8, 2-11, 2-12
Load coprocessor 6-34
Load multiple registers 6-26
Load register 6-20

Low registers 2-13

LR 2-8,2-11, 2-12

M

MCR 4-8, 4-9, 4-13, 6-39
Memory
big-endian format 2-4
byte and halfword accesses 3-20
formats 2-4
interface 3-2
little-endian format 2-4
Merged I-S cycles 3-27

Minimum interrupt latencies 2-25

Index

Miscellaneous signals A-6
Mode bits 2-16

Modes
Abort 2-7
abort C-26, C-27, C-28
FIQ 2-7,2-19
IRQ 2-7,2-19
operating 2-7
privileged 2-7

PSR bit values 2-16
Supervisor 2-7
System 2-7
Undefined 2-7
User 2-7

Monitor mode debug 5-2

MRC 4-8, 6-38

MRS 6-13

MSR 6-14

Multi-ICE 5-14

Multiply and multiply accumulate 6-15

N
nFIQ A-6
niRQ A-6

Nonsequential cycles 3-24
nRESET 2-26, A-6

O

Operating modes 2-7

Operating state
ARM 2-3
ITBIT 2-15
switching 2-3
T bit 2-15
Thumb 2-3

P

PASS A-7
PC 2-8,2-11, 2-12
Pipeline 1-2

ARM 4-2

coprocessor 4-2
Pipeline follower 4-2

Porting considerations

ARM9E-S B-7
Prefetch Abort 2-20, C-28
Privileged modes 2-7
Processor operating states 2-3
Processor state, determining C-19
Program counter 2-8, 2-11, 2-12
Protocol converter 5-3, 5-4

ARM DDI 0165A

Copyright © ARM Limited 1999. All rights reserved.

Index-iii

Index

PSR
control bits 2-15
mode bit values 2-16
reserved bits 2-16
Public instructions C-7

Q

Qflag 2-15
QADD 6-19
QDADD 6-19
QDSUB 6-19
QSuB 6-19

R

RDATA 3-17,A-4
Registers
ARM state 2-8
banked 2-8
bypass C-10
debug comms control
general-purpose 2-8
high 2-13
ID C-11
instruction C-9
status 2-8
Thumb 2-11
Registers, debug
bypass C-10
comms control 5-16
commsdataread 5-16
comms datawrite 5-16

5-17

control 5-6, C-35
EmbeddedI CE-RT debug
status 5-15

EmbeddedI CE-RT, accessing C-3
ID C-5C-10
instruction C-6, C-9, C-10
scan path select C-8, C-10, C-12
status 5-6
testdata C-10

Reserved bits, PSR 2-16

Reset 2-26
TAPcontroller C-5

RESTART instruction C-9

Restart on exit fromdebug C-9
Return address, calculation C-27

Scan chains C-2-C-3

number allocation C-13

scan chainl C-2,C-3, C-10, C-14,

C-15

scan chain2 C-2, C-3, C-10, C-14,

C-17
SCANENABLE B-5
SCANIN B-5
SCANOUT B-5
SCAN_N C-8, C-12, C-17
Sequential cycles 3-26
Serial interface, JTAG

Signal types
address class 3-4, 3-14, B-8
bus interface 3-13
clock interface A-2
clocking and clock control
coprocessor interface A-7
data memory interface A-4
data timed 3-6, 3-17
debug A-8
debug interface 5-5, 5-9
instruction memory interface
interface B-2
miscellaneous A-6
Signals
CFGBIGEND A-6
CFGDISLTBIT A-6
CFGHIVECS A-6
CHAIN C-41
CHAINOUT C-40-C-41
CHSD A-7
CHSE A-7
CLK A-2
CLKEN 3-30, A-2
CORECLKENIN A-2
CORECLKENOUT A-2
DA 3-14,A-4
DABORT 3-17,A-4
DBGACK A-9
DBGCOMMRX A-9
DBGCOMMTX A-9
DBGDEWPT A-4
DBGEN A-9
DBGEXT A-9
DBGIEBKPT A-3
DBGINSTREXEC A-9
DBGINSTRVALID A-9
DBGIR A-8
DBGnTDOEN A-8
DBGnTRST A-8
DBGRNG A-9, C-41-C-42

5-4,5-5

3-30

A-3

Signals (continued)
DBGTDI A-8
DBGTDO A-8
DBGTMS A-8
DLOCK 3-16, A-4
DMAS 3-15,A-4
DMORE A-4
DnM 3-16, A-5
DnMREQ A-4
DnRW 3-14, A-5
DnTRANS 3-15, A-5
DSEQ A-5
EDBGRQ A-9
1A 3-4,A-3
IABORT 3-6, A-3
InM 3-5, A-3
INMREQ A-3
INSTR 3-6, A-3
INTRANS 3-5, A-3
ISEQ A-3
ITBIT 2-15, 3-4, A-3
LATECANCEL A-7
nFIQ A-6
nIRQ A-6
NRESET 2-26, A-6
PASS A-7
RDATA 3-17, A-4
SCANENABLE B-5
SCANIN B-5
SCANOUT B-5
TAPID A-9
WDATA 3-17,A-4

Single-step core operation C-8

Single-stepping C-39

Software interrupts 2-21

SP 2-11, 2-12

SPSR 2-11, 2-12, 2-14, C-26
format 2-14

Stack pointer 2-11, 2-12

State
ARM 1-5
debug 5-5
switching 2-3
Thumb 1-5

States
core C-19
processor operating 2-3
system C-19, C-21
TAP C-15
TAP controller 5-2

Status registers 2-8
STC 4-4,6-36

S DBGRQI A-9
DBGSCREG A-8 Sticky overflow flag 2-15
Sean DBGSDIN A-8 -
s C.14 DBGSDOUT A-8 Store copr.ocesso.r 6-36
S DBGTAPSM A-8 Store multiple registers ~ 6-29
limitations C-2 .
pah C-2 DBGTCKEN A-8 Store register 6-25
path select register C-8, C-10, C-12 Stored program status register 2-11,
2-12, 2-14
Index-iv Copyright © ARM Limited 1999. All rights reserved. ARM DDI 0165A

Summary

instructionset 1-10-1-24
Supervisor mode 2-7
SWI 2-21, 6-32
Switching state 2-3
SYSSPEED bit C-22

System
mode 2-7
state C-21

System speed instruction C-27
System state

scanchainl C-21
System state, determining 5-15, C-21

T
T bit 2-15
TAP 5-2
controller 5-4, C-2, C-3, C-15
controller, reset C-5
controller, states 5-2
instruction C-11
state C-15
state machine C-3
TAPID A-9

Test Access Port 5-2
Testclock 5-14
Test data registers C-10

Thumb
BLX 6-10
Branch with link 6-8
code 1-6

instruction set 1-5

registers 2-11

state 1-5, 2-3, 2-11
Timing

configuration input 7-4

data memory interface 7-3

EmbeddedICE-RT C-44

exception input 7-4

interrupts B-7

parameters B-6

U

Undefined instruction 2-21, 6-32
Undefined mode 2-7
Unexecuted instructions 6-41
Unused instruction codes C-9
User mode 2-7

\%

Vector catching C-38

w

Watchpointed
access C-26,C-28
memory access C-26
Watchpoints 5-6, 5-7, 5-11, 5-13, C-25
aborted C-27
entering debug state from C-25
timing 5-11
with exception C-25
WDATA 3-17, A4

Index

ARM DDI 0165A Copyright © ARM Limited 1999. All rights reserved.

Index-v

	ARM9E-S Technical Reference Manual
	Preface
	About this document
	Intended audience
	Using this manual
	Typographical conventions
	Timing diagram conventions

	Further reading
	ARM publications
	Other publications

	Feedback
	Feedback on the ARM9E-S
	Feedback on the ARM9E�S Technical Reference Manual

	1 Introduction
	1.1 About the ARM9E�S
	1.1.1 The instruction pipeline
	1.1.2 Memory access
	1.1.3 Forwarding, interlocking and data dependencies

	1.2 ARM9E�S architecture
	1.2.1 Instruction compression
	1.2.2 The Thumb instruction set

	1.3 ARM9E�S block, core, and functional diagrams
	1.4 ARM9E�S instruction set summary
	1.4.1 ARM instruction set summary
	1.4.2 Thumb instruction set summary

	2 Programmer’s Model
	2.1 About the programmer’s model
	2.2 Processor operating states
	2.2.1 Switching state
	2.2.2 Interworking ARM and Thumb state

	2.3 Memory formats
	2.3.1 Big-endian format
	2.3.2 Little-endian format

	2.4 Instruction length
	2.5 Data types
	2.6 Operating modes
	2.7 Registers
	2.7.1 The ARM state register set
	2.7.2 The Thumb state register set
	2.7.3 The relationship between ARM state and Thumb state registers
	2.7.4 Accessing high registers in Thumb state

	2.8 The program status registers
	2.8.1 The condition code flags
	The Q flag

	2.8.2 The control bits
	Interrupt disable bits
	T bit
	Mode bits

	2.8.3 Reserved bits

	2.9 Exceptions
	2.9.1 Exception entry/exit summary
	2.9.2 Entering an exception
	2.9.3 Leaving an exception
	2.9.4 Fast interrupt request
	2.9.5 Interrupt request
	2.9.6 Abort
	Prefetch Abort
	Data Abort

	2.9.7 Software interrupt instruction
	2.9.8 Undefined instruction
	2.9.9 Breakpoint instruction (BKPT)
	2.9.10 Exception vectors
	2.9.11 Exception priorities

	2.10 Interrupt latencies
	2.10.1 Maximum interrupt latencies
	2.10.2 Minimum interrupt latencies

	2.11 Reset

	3 Memory Interface
	3.1 About the memory interface
	3.2 Instruction interface
	3.2.1 Instruction interface signals

	3.3 Instruction interface addressing signals
	3.3.1 IA[31:1]
	3.3.2 ITBIT
	3.3.3 InTRANS
	3.3.4 InM[4:0]

	3.4 Instruction interface data timed signals
	3.4.1 INSTR[31:0]
	3.4.2 IABORT

	3.5 Endian effects for instruction fetches
	3.6 Instruction interface cycle types
	3.6.1 Nonsequential instruction fetches
	3.6.2 Sequential instruction fetches
	3.6.3 Internal cycles
	3.6.4 Merged I�S cycles

	3.7 Data interface
	3.7.1 Data interface signals

	3.8 Data interface addressing signals
	3.8.1 DA[31:0]
	3.8.2 DnRW
	3.8.3 DMAS[1:0]
	3.8.4 DnTRANS
	3.8.5 DLOCK
	3.8.6 DnM[4:0]

	3.9 Data interface data timed signals
	3.9.1 WDATA[31:0]
	3.9.2 RDATA[31:0]
	3.9.3 DABORT
	3.9.4 Byte and halfword accesses
	Reads
	Writes

	3.10 Data interface cycle types
	3.10.1 Nonsequential cycles
	3.10.2 Sequential cycles
	3.10.3 Internal cycles
	3.10.4 Merged I�S cycles
	3.10.5 Coprocessor register transfer cycles

	3.11 Endian effects for data transfers
	3.11.1 Writes
	3.11.2 Reads

	3.12 Use of CLKEN to control bus cycles
	3.13 ARM9E-S reset behavior

	4 ARM9E-S Coprocessor Interface
	4.1 About the coprocessor interface
	4.1.1 Coprocessor pipeline operates in step with the ARM9E-S
	4.1.2 Coprocessor pipeline one cycle behind the ARM9E-S

	4.2 LDC/STC
	4.2.1 Coprocessor handshake encoding

	4.3 MCR/MRC
	4.4 Interlocked MCR
	4.5 CDP
	4.6 Privileged instructions
	4.7 Busy-waiting and interrupts
	4.8 Coprocessor 15 MCRs
	4.9 Connecting coprocessors
	4.9.1 Connecting a single coprocessor
	4.9.2 Connecting multiple coprocessors
	4.9.3 If you are not using an external coprocessor
	4.9.4 Undefined instructions

	5 Debug Interface and EmbeddedICE-RT
	5.1 Overview of the debug interface
	Halt mode debug
	Monitor mode debug

	5.2 Debug systems
	5.2.1 The debug host
	5.2.2 The protocol converter
	5.2.3 The ARM9E�S

	5.3 Overview of EmbeddedICE-RT
	5.4 Disabling EmbeddedICE-RT
	5.5 Debug interface signals
	5.5.1 Entry into debug state on breakpoint
	5.5.2 Breakpoints and exceptions
	5.5.3 Watchpoints
	5.5.4 Watchpoints and exceptions
	5.5.5 Debug request
	5.5.6 Actions of the ARM9E�S in debug state

	5.6 ARM9E�S core clock domains
	5.6.1 Clocks and synchronization

	5.7 Determining the core and system state
	5.8 The debug communications channel
	5.8.1 Debug comms channel registers
	5.8.2 Debug comms channel control register
	5.8.3 Comms channel monitor mode debug status register
	5.8.4 Communications using the comms channel
	Sending a message to the debugger
	Receiving a message from the debugger

	5.9 Monitor mode debug

	6 Instruction Cycle Times
	6.1 Instruction cycle count summary
	6.2 Introduction to detailed instruction cycle timings
	6.3 Branch and ARM branch with link
	6.4 Thumb branch with link
	6.5 Branch and exchange
	6.6 Thumb Branch, Link and Exchange <immediate>
	6.7 Data operations
	6.8 MRS
	6.9 MSR operations
	6.10 Multiply and multiply accumulate
	6.10.1 Interlocks

	6.11 QADD, QDADD, QSUB, QDSUB
	6.11.1 Interlocks

	6.12 Load register
	6.12.1 Interlocks

	6.13 Store register
	6.14 Load multiple registers
	6.14.1 Interlocks

	6.15 Store multiple registers
	6.16 Data swap
	6.16.1 Interlocks

	6.17 Software interrupt, undefined instruction and exception entry
	6.18 Coprocessor data processing operation
	6.19 Load coprocessor register (from memory)
	6.20 Store coprocessor register (to memory)
	6.21 Coprocessor register transfer (to ARM)
	6.22 Coprocessor register transfer (from ARM)
	6.23 Coprocessor absent
	6.24 Unexecuted instructions

	7 AC Parameters
	7.1 Timing diagrams
	7.2 AC timing parameter definitions

	Appendix A Signal Descriptions
	A.1 Clock interface signals
	A.2 Instruction memory interface signals
	A.3 Data memory interface signals
	A.4 Miscellaneous signals
	A.5 Coprocessor interface signals
	A.6 Debug signals

	Appendix B Differences Between the ARM9E S and the ARM9TDMI
	B.1 Interface signals
	B.2 ATPG scan interface
	B.3 Timing parameters
	B.4 ARM9E�S design considerations
	B.4.1 Master clock
	B.4.2 JTAG interface timing
	B.4.3 Interrupt timing
	B.4.4 Address class signal timing
	B.4.5 Data Aborts

	B.5 ARM9E-S debugger considerations

	Appendix C Debug in Depth
	C.1 Scan chains and JTAG interface
	C.1.1 Debug scan chains
	Scan chain 1
	Scan chain 2

	C.1.2 TAP state machine

	C.2 Resetting the TAP controller
	C.3 Instruction register
	C.4 Public instructions
	C.4.1 EXTEST (0000)
	C.4.2 SAMPLE/PRELOAD (0011)
	C.4.3 SCAN_N (0010)
	C.4.4 INTEST (1100)
	C.4.5 IDCODE (1110)
	C.4.6 BYPASS (1111)
	C.4.7 RESTART (0100)

	C.5 Test data registers
	C.5.1 Bypass register
	C.5.2 ARM9E�S device identification (ID) code register
	C.5.3 Instruction register
	C.5.4 Scan path select register
	C.5.5 Scan chains 1 and 2
	Scan chain 1
	Scan chain 2

	C.6 ARM9E�S core clock domains
	C.7 Determining the core and system state
	C.7.1 Determining the core state
	C.7.2 Determining the system state
	Instructions which can have the SYSSPEED bit set

	C.7.3 Exit from debug state

	C.8 Behavior of the program counter during debug
	C.8.1 Breakpoints
	C.8.2 Watchpoints
	C.8.3 Watchpoint with another exception
	C.8.4 Watchpoint and breakpoint
	C.8.5 Debug request
	C.8.6 System speed access
	C.8.7 Summary of return address calculations

	C.9 Priorities and exceptions
	C.9.1 Breakpoint with Prefetch Abort
	C.9.2 Interrupts
	C.9.3 Data Aborts

	C.10 EmbeddedICE-RT logic
	C.10.1 Register map
	C.10.2 Programming and reading EmbeddedICE-RT logic registers
	C.10.3 Using the mask registers
	C.10.4 Watchpoint control registers
	C.10.5 Debug control register
	C.10.6 Debug status register
	C.10.7 Vector catch register

	C.11 Vector catching
	C.12 Single-stepping
	C.13 Coupling breakpoints and watchpoints
	C.13.1 Breakpoint and watchpoint coupling example
	CHAINOUT signal

	C.13.2 DBGRNG signal

	C.14 Disabling EmbeddedICE-RT
	C.15 EmbeddedICE-RT timing

