Intel Architecture
Software Developer’s
Manual

Volume 2:
| nstruction Set Reference

NOTE: The Intel Architecture Software Developer’s Mangahsists of
three volumes: Basic ArchitectureOrder Number 243190; Instruction Set
ReferenceQrder Number 243191, and the System Programming Guide,
Order Number 243192.
Please refer to al three volumes when eval uating your design needs.

1999



Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel
or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and
Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied
warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular
purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are
not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked “reserved” or
“undefined.” Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

Intel's Intel Architecture processors (e.g., Pentium®, Pentium® Il, Pentium® Ill, and Pentium® Pro processors) may
contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your
product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature,
may be obtained by calling 1-800-548-4725, or by visiting Intel's literature center at http://www.intel.com.

COPYRIGHT © INTEL CORPORATION 1999
*THIRD-PARTY BRANDS AND NAMES ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS.



intgl.
TABLE OF CONTENTS

CHAPTER 1
ABOUT THIS MANUAL
1.1. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE DEVELOPER’'S MANUAL,

VOLUME 2: INSTRUCTION SET REFERENCE 1-1
1.2. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE DEVELOPER’S MANUAL,

VOLUME 1: BASIC ARCHITECTURE 1-2
1.3. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE DEVELOPER’'S MANUAL,

VOLUME 3: SYSTEM PROGRAMMING GUIDE 1-3
1.4. NOTATIONAL CONVENTIONS. . ... e e 1-5
1.4.1. Bitand Byte Order. . ...t e 1-5
1.4.2. Reserved Bits and Software Compatibility .. ......... .. ... .. ... .. ...... 1-6
1.4.3. Instruction Operands. . . . ... ...t e 1-7
1.4.4. Hexadecimal and Binary Numbers . .......... ... .. 1-7
1.4.5. Segmented AdAreSSINg . . . ..ottt 1-7
1.4.6. EXCEPUONS. . . oot 1-8
1.5. RELATED LITERATURE . . . ... e e 1-9
CHAPTER 2
INSTRUCTION FORMAT
2.1. GENERAL INSTRUCTION FORMAT . . . e 2-1
2.2. INSTRUCTION PREFIXES . . ... e 2-1
2.3. OP CODE . . . 2-2
2.4. MODR/M AND SIB BYTES . ... e 2-2
2.5. DISPLACEMENT AND IMMEDIATE BYTES. . .. ..o 2-3
2.6. ADDRESSING-MODE ENCODING OF MODR/M AND SIBBYTES. ........... 2-3
CHAPTER 3
INSTRUCTION SET REFERENCE
3.1. INTERPRETING THE INSTRUCTION REFERENCE PAGES ................ 3-1
3.1.1. Instruction Format . . . ... ... 3-1
3.1.1.1. Opcode ColuMN . ...t 3-2
3.1.1.2. Instruction Column . .. ... .. e 3-3
3.1.1.3. Description Column .. ... .. e 3-5
3.1.1.4. DESCHPtON . . o 3-5
3.1.2. OPeratiION. . . o 3-6
3.1.3. Intel C/C++ Compiler Intrinsics Equivalent . . ............ ... ... ... ....... 3-9
3.1.3.1. The Intrinsics APl . . ... 3-9
3.1.3.2. MMX™ Technology IntrinSics. . ... ... . e 3-10
3.1.3.3. SIMD Floating-Point Intrinsics . ........... . 3-10
3.1.4. Flags Affected . . ... ..o 3-11
3.15. FPU Flags Affected . . . .. ... e 3-12
3.1.6. Protected Mode EXCEpPLiONS. . . ... ... i 3-12
3.1.7. Real-Address Mode EXCEPLIONS . . . ..ottt e e 3-12
3.1.8. Virtual-8086 Mode EXCeplions. . . . .. ...t e 3-13
3.1.9. Floating-Point EXCEPLIONS . . . . .ot e 3-14
3.1.10. SIMD Floating-Point Exceptions - Streaming SIMD Extensions Only......... 3-14



TABLE OF CONTENTS

3.2.

INSTRUCTION REFERENCE . . . ... e 3-16
AAA—ASCII Adjust After Addition . . ... ... . e 3-17
AAD—ASCII Adjust AX Before Division. . .. ... ... 3-18
AAM—ASCII Adjust AX After Multiply . . . ... 3-19
AAS—ASCII Adjust AL After Subtraction. . . ........... .. . .. 3-20
ADC—Add With Carmy. . . ... e e e 3-21
ADD—Add . . . 3-23
ADDPS—Packed Single-FP Add . . .. ... . e 3-25
AND—Logical AND . . ... 3-30
ANDNPS—BiIt-wise Logical And Not For Single-FP. . . .......... ... ... ....... 3-32
ANDPS—BIt-wise Logical And For Single FP . . . . ... ... ... ... . .. 3-34
ARPL—Adjust RPL Field of Segment Selector ................ . ... .. ... .... 3-36
BOUND—Check Array Index AgainstBounds. . .. ............ ..., 3-38
BSF—BIit Scan Forward . . .. ... 3-40
BSR—BIt Scan Reverse. . .. .. ... 3-42
BSWAP—BYIE SWaP . . . . e e 3-44
BT —Bit TOST. . . ottt e e 3-45
BTC—Bit Testand Complement . ... ... e 3-47
BTR—BIit Testand ReSet. . ... ... i e e 3-49
BTS—Bit Testand Set. .. ... e 3-51
CALL—Call Procedure. . . . ... ... e e e 3-53
CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword . ... .......... 3-64
CDQ—Convert Doubleto Quad. .. ... i e 3-65
CLC—Clear Carry Flag . ... e e e 3-66
CLD—<Clear Direction Flag. . . . ... ..ot e e 3-67
CLI—Clear Interrupt Flag . . . . .. ..o e e e 3-68
CLTS—Clear Task-Switched Flagin CRO . . . ......... ... .. 3-70
CMC—Complement Carry Flag . . . . .. ..o 3-71
CMOVcc—Conditional MOVE . . . . ..o e 3-72
CMP—Compare TWO Operands . .. ...... .ttt 3-76
CMPPS—Packed Single-FP Compare . ...ttt 3-78
CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands. .. ............... 3-87
CMPSS—Scalar Single-FP Compare . ...... ... ..t 3-90
CMPSS—Scalar Single-FP Compare (Continued) . ............... .. ......... 3-98
CMPXCHG—Compare and Exchange. . .. ... ... .. i 3-100
CMPXCHG8B—Compare and Exchange 8 Bytes. . . .............. .. oo 3-102
COMISS—Scalar Ordered Single-FP Compare and Set EFLAGS .............. 3-104
CPUID—CPU Identification . . ... e 3-111
CVTPI2PS—Packed Signed INT32 to Packed Single-FP Conversion ........... 3-119
CVTPS2PI—Packed Single-FP to Packed INT32 Conversion. . . ............... 3-123
CVTSI2SS—Scalar Signed INT32 to Single-FP Conversion. . ................. 3-127
CVTSS2SI—Scalar Single-FP to Signed INT32 Conversion. . ................. 3-130
CVTTPS2Pl—Packed Single-FP to Packed INT32 Conversion (Truncate) ....... 3-133
CVTTSS2S|—Scalar Single-FP to Signed INT32 Conversion (Truncate) . ........ 3-137
CWD/CDQ—Convert Word to Doubleword/Convert Doubleword
IO QUAAWOId. . . .. e 3-141
CWDE—Convert Word to Doubleword . .......... ... .. ... . . ... 3-142



Inu@; TABLE OF CONTENTS

DAA—Decimal Adjust AL after Addition. . .......... .. ... ... ... . . . ... 3-143
DAS—Decimal Adjust AL after Subtraction .. .............. ... ... ... ...... 3-145
DEC—Decrement by 1. ... ... . e e e 3-146
DIV—Unsigned Divide . . .. ... ... e 3-148
DIVPS—Packed Single-FP Divide . . . ... ... ... 3-151
DIVSS—Scalar Single-FP Divide . . . ... .. .. e 3-154
EMMS—Empty MMX™ State. . .. ..ot 3-156
ENTER—Make Stack Frame for Procedure Parameters. .. .................. 3-158
F2XMI—COomMpPULE 2X—L . . o ottt e e 3-161
FABS—ADbsolute Value ... ... ... .. 3-163
FADD/FADDP/FIADD—AAd. . . . ..o e e e 3-165
FBLD—Load Binary Coded Decimal . ......... ... ... i, 3-169
FBSTP—Store BCD Integerand Pop. ... ... .o e 3-171
FCHS—Change Sign . .. ..o e e e e e e e e 3-174
FCLEX/FNCLEX—Clear EXCEPtionNs . ... ...ttt e 3-176
FCMOVcc—Floating-Point Conditional Move. . . ........ ... ... ... ... ..... 3-178
FCOM/FCOMP/FCOMPP—Compare Real .. ......... ..., 3-180
FCOMI/FCOMIP/ FUCOMI/FUCOMIP—Compare Real and Set EFLAGS .. ..... 3-183
FCOS—C0SINE. . .t ittt e 3-186
FDECSTP—Decrement Stack-Top Pointer .. .......... ... ... 3-188
FDIVIFDIVP/FIDIV/DIVIdE . . . . .ot 3-189
FDIVR/FDIVRP/FIDIVR—Reverse Divide .. ..., 3-193
FFREE—Free Floating-Point Register. . . ... ... . . .. 3-197
FICOM/FICOMP—Compare Integer. . . . . . ..o e e e 3-198
FILD—Load Integer . . ... oo e 3-200
FINCSTP—Increment Stack-Top Pointer. . ........... ... .. ... 3-202
FINIT/FNINIT—Initialize Floating-PointUnit. ... .......... ... ... ... .. ..... 3-203
FIST/FISTP—Store Integer . . ... e e e 3-205
FLD—Load Real. . . . ... 3-208
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load Constant . .. ... .. 3-210
FLDCW—Load Control Word . . . . . .. ... e 3-212
FLDENV—Load FPU Environment. . . . .. ...ttt 3-214
FMUL/FMULP/FIMUL—Multiply . . . .. 3-216
FNOP—NO Operation. . . ... e e e e e e 3-220
FPATAN—Partial Arctangent .. . . ... ... e e 3-221
FPREM—Partial Remainder. . .. ... ... e 3-223
FPREM1—Partial Remainder. . . . . ... e 3-226
FPTAN—Partial Tangent . . ... e e e e 3-229
FRNDINT—Round to Integer . .. ...t e 3-231
FRSTOR—Restore FPU State. . . . ... e 3-232
FSAVE/FNSAVE—Store FPU State. . .. ... ... 3-235
FSCALE—SCale. . . .ot 3-238
FSIN—SINE. . ..o 3-240
FSINCOS—Sine and COSINe . . . . ..ottt e 3-242
FSQRT—Square ROOL . . .. ..o e 3-244
FST/IFSTP—Store Real . .. ... . e 3-246
FSTCW/FNSTCW—Store ControlWord . . ....... ... ... ... . .. 3-249



TABLE OF CONTENTS Inu@;

FSTENV/FNSTENV—Store FPU Environment .. ......... ... ... .. ... 3-251
FSTSW/FNSTSW—Store Status Word . ... ... .ot 3-254
FSUB/FSUBP/FISUB—Subtract .. ..........o e 3-257
FSUBR/FSUBRP/FISUBR—Reverse Subtract ... .......... .. ... .. ... .. .... 3-261
FTST—TEST . .ot e e e e e e 3-265
FUCOM/FUCOMP/FUCOMPP—Unordered CompareReal .. ................. 3-267
FWAIT—Wat . . 3-270
FXAM—EXAMINE . . ..ttt e 3-271
FXCH—Exchange Register Contents . ...t 3-273
FXRSTOR—Restore FP and MMX™ State and

Streaming SIMD Extension State. . . ... 3-275
FXSAVE—Store FP and MMX™ State and Streaming SIMD Extension State . . . . . 3-279
FXTRACT—EXxtract Exponent and Significand ............................. 3-285
FYL2X—Compute Yy * l0g2X . . . .ttt e e 3-287
FYL2XP1—Compute y * 10g2(X +1) . . .ot i ittt e e 3-289
HLT—Halt. . . . 3-291
IDIV—Signed Divide. . . . .. .. 3-292
IMUL—Signed MUItiply. . . . ... e 3-295
IN—Input from Port .. ... 3-299
INC—Increment by 1 ... ... 3-301
INS/INSB/INSW/INSD—Input from Portto String .. ........... ... .. ... ... 3-303
INT n/INTO/INT 3—Call to Interrupt Procedure . . .. ......... ... ... ... ... 3-306
INVD—Invalidate Internal Caches . .. ....... ... .. . . . . i 3-318
INVLPG—Invalidate TLB ENtry . ... .. ... .. e e e 3-320
IRET/IRETD—Interrupt Return. . . .. ... .. e e 3-321
Jec—Jumpif Condition IS Met . ... ... . 3-329
M P UM . . e 3-333
LAHF—Load Status Flagsinto AHRegister ............ ... ... .. i, 3-341
LAR—Load Access Rights Byte. . . . ... ... 3-342
LDMXCSR—Load Streaming SIMD Extension Control/Status ................. 3-345
LDS/LES/LFS/LGS/LSS—Load Far Pointer. ... .......... ... .. 3-349
LEA—Load Effective AdAress . . ...t 3-353
LEAVE—High Level Procedure EXit. . . . ... ...t e 3-355
LES—Load Full Pointer . . ... 3-357
LFS—Load Full Pointer . . .. ... .. 3-358
LGDT/LIDT—Load Global/lnterrupt Descriptor Table Register ... .............. 3-359
LGS—Load Full Pointer . . . . ... 3-361
LLDT—Load Local Descriptor Table Register . . .......... .. ... ... 3-362
LIDT—Load Interrupt Descriptor Table Register . . ......... ... .. ... .. ... 3-364
LMSW—Load Machine Status Word . . . ... 3-365
LOCK—Assert LOCK# Signal Prefix . ......... . . . 3-367
LODS/LODSB/LODSW/LODSD—Load String. . . ...« oo ot i i e e ns 3-369
LOOP/LOOPcc—Loop Accordingto ECX Counter . ..., 3-372
LSL—Load Segment Limit. . ... ... e 3-375
LSS—Load Full Pointer . . .. ... 3-379
LTR—Load Task Register . . ... ..o e e e e 3-380
MASKMOVQ—Byte Mask Write ... ... ... e 3-382



Inu@; TABLE OF CONTENTS

MAXPS—Packed Single-FP Maximum .. ........ ... ... .. ... 3-387
MAXSS—Scalar Single-FP Maximum ... ......... ... . . 3-391
MINPS—Packed Single-FP Minimum . .......... ... ... .. . ... 3-395
MINSS—Scalar Single-FP Minimum . ... ... ... . . 3-399
MOV—MOVE . . . o 3-403
MOV—Move to/from Control Registers . ........... ... 3-408
MOV—Move to/from Debug Registers. . . ........ ..o 3-410
MOVAPS—Move Aligned Four Packed Single-FP. . ........................ 3-412
MOVD—MOVE 32 BitS . ... ot 3-415
MOVHLPS— High to Low Packed Single-FP. .. ... .. ... ... ... .. ... .. .... 3-418
MOVHPS—Move High Packed Single-FP .. ... ... ... ... ... .. . ... .. .. ... 3-420
MOVLHPS—Move Low to High Packed Single-FP . ........................ 3-423
MOVLPS—Move Low Packed Single-FP. . ......... ... . ... . .. . . .. 3-425
MOVMSKPS—Move Mask ToInteger . .. ... 3-428
MOVNTPS—Move Aligned Four Packed Single-FP Non Temporal. .. .......... 3-430
MOVNTQ—Move 64 Bits Non Temporal . . .......... ... 3-432
MOVQ—MOVE B4 BitS . ... ottt e e 3-434
MOVS/MOVSB/MOVSW/MOVSD—Move Data from String to String ... ........ 3-436
MOVSS—Move Scalar Single-FP . .. ... ... ... . . 3-439
MOVSX—Move with Sign-Extension . . ........... .. ... 3-442
MOVUPS—Move Unaligned Four Packed Single-FP . ...................... 3-444
MOVZX—Move with Zero-Extend . . ..... ... ... i 3-447
MUL—Unsigned Multiply . ... ... e 3-449
MULPS—Packed Single-FP Multiply . .. . ... ... o 3-451
MULSS—Scalar Single-FP Multiply . . ... .. ... . o 3-453
NEG—Two's Complement Negation . ............c. it 3-455
NOP—NO Operation. . . ... e e e e 3-457
NOT—One's Complement Negation . ............ .. ... 3-458
OR—Logical Inclusive OR . ... . ... e e 3-460
ORPS—Bit-wise Logical OR for Single-FP Data .. ......................... 3-462
OUT—OULPUL tO POrt . . . . e 3-464
OUTS/OUTSB/OUTSW/OUTSD—Output StringtoPort ... .................. 3-466
PACKSSWB/PACKSSDW—Pack with Signed Saturation. ................... 3-470
PACKSSWB/PACKSSDW—Pack with Signed Saturation (Continued) .. ........ 3-471
PACKSSWB/PACKSSDW—Pack with Signed Saturation (Continued) .. ........ 3-472
PACKUSWB—Pack with Unsigned Saturation. . . .............. .. ... ....... 3-473
PADDB/PADDW/PADDD—Packed Add . ....... ... 3-476
PADDSB/PADDSW—Packed Add with Saturation ......................... 3-480
PADDUSB/PADDUSW—Packed Add Unsigned with Saturation............... 3-483
PAND—Logical AND . ... .. 3-486
PANDN—LoOgical AND NOT . . .. .ttt e e e e 3-488
PAVGB/PAVGW—Packed Average. . . . ... oottt e 3-490
PCMPEQB/PCMPEQW/PCMPEQD—Packed Compare for Equal . ............ 3-494
PCMPGTB/PCMPGTW/PCMPGTD—Packed Compare for Greater Than .. ..... 3-498
PEXTRW—EXtract Word . . . ... ... e 3-502
PINSRW—Insert Word . . . ... ..o e 3-504
PMADDWD—Packed Multiplyand Add . . .. ... .. ... . . 3-506



TABLE OF CONTENTS Inu@;

vi

PMAXSW—Packed Signed Integer Word Maximum . ....................... 3-509
PMAXUB—Packed Unsigned Integer Byte Maximum . . . ..................... 3-512
PMINSW—Packed Signed Integer Word Minimum . . . ....................... 3-515
PMINUB—Packed Unsigned Integer Byte Minimum . . . ...................... 3-518
PMOVMSKB—Move Byte Mask To Integer. .. .. ... ... .. 3-521
PMULHUW—Packed Multiply High Unsigned . . . . ... ....... ... . ... ....... 3-523
PMULHW—Packed Multiply High . . ... ... . 3-526
PMULLW—Packed Multiply LOW . . . ... ..o e 3-529
POP—Pop aValuefromthe Stack ........... ... ... ... . . ... 3-532
POPA/POPAD—Pop All General-Purpose Registers . ....................... 3-537
POPF/POPFD—Pop Stack into EFLAGS Register ... .......... .. ... . ... 3-539
POR—BItwise Logical OR . . . ... ... . e 3-542
PREFETCH—Prefetch .. ... ... . . e 3-544
PSADBW—Packed Sum of Absolute Differences ... .......... ... ... ........ 3-546
PSHUFW—Packed Shuffle Word .. ...... .. . . e 3-549
PSLLW/PSLLD/PSLLQ—Packed Shift Left Logical.......................... 3-551
PSRAW/PSRAD—Packed Shift Right Arithmetic. . .......... .. ... .. ... ... ... 3-556
PSRLW/PSRLD/PSRLQ—Packed Shift Right Logical. .. ..................... 3-559
PSUBB/PSUBW/PSUBD—Packed Subtract . . ........... ... ... .. ... 3-564
PSUBSB/PSUBSW—Packed Subtract with Saturation....................... 3-568
PSUBUSB/PSUBUSW—Packed Subtract Unsigned with Saturation ............ 3-571
PUNPCKHBW/PUNPCKHWD/PUNPCKHDQ—Unpack High Packed Data . . . . . .. 3-574
PUNPCKLBW/PUNPCKLWD/PUNPCKLDQ—Unpack Low Packed Data . ....... 3-578
PUSH—Push Word or Doubleword Onto the Stack. .. ....................... 3-582
PUSHA/PUSHAD—Push All General-Purpose Registers . .. .................. 3-585
PUSHF/PUSHFD—Push EFLAGS Registerontothe Stack .. ................. 3-588
PXOR—Logical Exclusive OR . . ... ... . e e 3-590
RCL/RCR/ROL/IROR-—ROtate. . . . . ottt e 3-592
RCPPS—Packed Single-FP Reciprocal ........ ... ... ... .. . ... . ... 3-597
RCPSS—Scalar Single-FP Reciprocal . ............ ... .. . . . . ... 3-599
RDMSR—Read from Model Specific Register. . . . ........ .. ... ... .. ... .... 3-601
RDPMC—Read Performance-Monitoring Counters. . . ..............covuuu... 3-603
RDTSC—Read Time-Stamp COUNEr . . ... .ottt e e e 3-605
REP/REPE/REPZ/REPNE /REPNZ—Repeat String Operation Prefix ........... 3-606
RET—Return from Procedure . . ... .. e 3-609
ROL/ROR—ROMAtE. . . . .ottt e e e e e e e 3-616
RSM—Resume from System ManagementMode . ... ....................... 3-617
RSQRTPS—Packed Single-FP Square Root Reciprocal . .................... 3-618
RSQRTSS—Scalar Single-FP Square Root Reciprocal ...................... 3-620
SAHF—Store AHINtO Flags. . . . ... oo 3-622
SAL/SAR/SHL/ISHR—SNhIft. . . . ... 3-623
SBB—Integer Subtraction with Borrow . . ............. . ... i, 3-628
SCAS/SCASB/SCASW/SCASD—Scan String .. .. ..vvviie i 3-630
SETcc—SetByte on Condition . ... ...t e 3-633
SGDT/SIDT—Store Global/lnterrupt Descriptor Table Register . ............... 3-637
SHL/SHR—ShIft INStructions . . . . ... ... 3-640
SHLD—Double Precision ShiftLeft . . ......... ... ... . . . 3-641



Inu@; TABLE OF CONTENTS

SHRD—Double Precision ShiftRight. .. ........ .. ... .. ... ... ... .. ... ... 3-644
SHUFPS—Shuffle Single-FP . . .. .. ... e 3-647
SIDT—Store Interrupt Descriptor Table Register. . ......................... 3-652
SLDT—Store Local Descriptor Table Reqister. . . ......... .. ... ... ......... 3-653
SMSW—Store Machine Status Word. .. ......... ... . 3-655
SQRTPS—Packed Single-FP Square Root . ........ ... ... ... ... .. .. ... 3-657
SQRTSS—Scalar Single-FP Square Root. . .......... ... ... i, 3-660
STC—SetCarry Flag . . ... ..o 3-663
STD—SetDirection Flag . . ... e 3-664
STI—Set Interrupt Flag. . . . . . ... 3-665
STMXCSR—Store Streaming SIMD Extension Control/Status .. .............. 3-667
STOS/STOSB/STOSW/STOSD—Store String. . ..« .o vvv it 3-669
STR—Store Task Register. .. ... .. e e 3-672
SUB—SUDBLIract . . ... 3-674
SUBPS—Packed Single-FP Subtract. .. .......... ... .. . .. . . 3-676
SUBSS—Scalar Single-FP Subtract. . ........... ... . 3-679
SYSENTER—Fast Transition to System Call Entry Point . ................... 3-682
SYSEXIT—Fast Transition from System Call Entry Point .. .................. 3-686
TEST—Logical Compare . . ...ttt e e e e e 3-689
UCOMISS—Unordered Scalar Single-FP compare and set EFLAGS ... ........ 3-691
UD2—Undefined INStruction. . ... ...t 3-698
UNPCKHPS—Unpack High Packed Single-FP Data. .. ..................... 3-699
UNPCKLPS—Unpack Low Packed Single-FP Data . ....................... 3-702
VERR/VERW—Verify a Segment for Reading or Writing. . ... ................ 3-705
WAIT/FWAIT—Walt . . .o e 3-708
WBINVD—Write Back and Invalidate Cache .. .......... ... ... ... ....... 3-709
WRMSR—Write to Model Specific Register. .. .......... ... .. . i, 3-711
XADD—Exchange and Add . . ... . it e e 3-713
XCHG—Exchange Register/Memory with Register . . ....................... 3-715
XLAT/XLATB—Table Look-up Translation. . . .......... ... ... ... . ... 3-717
XOR—Logical Exclusive OR . ... ... .. . . 3-719
XORPS—Bit-wise Logical Xor for Single-FPData.......................... 3-721
APPENDIX A
OPCODE MAP
Al KEY TO ABBREVIATIONS .. .. e e A-1
A.2. CODES FOR ADDRESSING METHOD. . .. ... A-1
A.2.1. Codes for Operand TYPe . . . ..ttt i e A-3
A.2.2. Register Codes . . ... ..o A-3
A3. OPCODE LOOK-UP EXAMPLES ... ... . e A-3
A.3.1. One-Byte Opcode Integer Instructions . ........ ... ... . A-4
A.3.2. Two-Byte Opcode Integer Instructions . .............. .. .. A-5
A.3.3. Opcode Extensions For One- And Two-byte Opcodes .. ................. A-10
A.3.4. Escape Opcode INStructions . . . ...t A-12
A.3.4.1. Opcodes with ModR/M Bytes in the 00H through BFHRange . .. ........ A-12
A.3.4.2. Opcodes with ModR/M Bytes outside the 00H through BFH Range. . . . . .. A-12
A.3.4.3. Escape Opcodes with D8 as FirstByte. . . . ......... .. ... oo ... A-12
A.3.4.4. Escape Opcodes withD9 as FirstByte. . . . ......... .. ... .. ... ... A-14
A.3.4.5. Escape Opcodes with DA as FirstByte .............. ... ...t A-15

vii



TABLE OF CONTENTS Inu@;

A.3.4.6. Escape Opcodes withDB as FirstByte .. ......... ... ... ... ... ... .. A-16
A3.4.7. Escape Opcodes withDC as FirstByte . ... ...... ... .. A-18
A.3.4.8. Escape Opcodes withDD as FirstByte . . ............ ... .. ... ...... A-19
A.3.4.9. Escape Opcodes with DE as FirstByte .. ......... ... ... ... ... ... .. A-21
A.3.4.10. Escape Opcodes with DF As FirstByte . . .. ...... ... i, A-22
APPENDIX B
INSTRUCTION FORMATS AND ENCODINGS
B.1. MACHINE INSTRUCTION FORMAT . . . oo e B-1
B.1.1. Reg Field (reg). . . . .o oo B-2
B.1.2. Encoding of Operand Size Bit (W) . ... ... i B-3
B.1.3. Sign Extend (S) Bit. . . ... B-3
B.1.4. Segment Register Field (Sreg). . . . . oo v e B-4
B.1.5. Special-Purpose Register (eee) Field . .. .......... ... ... ... . . . B-4
B.1.6. Condition Test Field (tttn) . ... o e e B-5
B.1.7. Direction (d) Bit . . . .. ... B-5
B.2. INTEGER INSTRUCTION FORMATS AND ENCODINGS ... ................ B-6
B.3. MMX™ INSTRUCTION FORMATS AND ENCODINGS ... ................. B-19
B.3.1. Granularity Field (9g). - . - -« oo B-19
B.3.2. MMX™ and General-Purpose Register Fields

(MMXreg and reg) . . ..o v vt e B-19
B.3.3. MMX™ [nstruction Formats and Encodings Table .. .................... B-20
B.4. STREAMING SIMD EXTENSION FORMATS AND ENCODINGS TABLE .. . ... B-24
B.4.1. Instruction Prefixes . . ... B-24
B.4.2. NOtAtiONS . . . . B-26
B.4.3. Formats and Encodings. . . .. ..ottt B-27
B.5. FLOATING-POINT INSTRUCTION FORMATS AND ENCODINGS .. ......... B-36
APPENDIX C
COMPILER INTRINSICS AND FUNCTIONAL EQUIVALENTS
C.1. SIMPLE INTRINSICS. . .. e C-2
C.2. COMPOSITE INTRINSICS .. ..o e e Cc-11

viii



intel.

Figure 1-1.
Figure 2-1.
Figure 3-1.
Figure 3-2.
Figure 3-3.
Figure 3-4.
Figure 3-5.
Figure 3-6.
Figure 3-8.
Figure 3-7.
Figure 3-9.

Figure 3-10.
Figure 3-11.
Figure 3-12.
Figure 3-13.
Figure 3-14.
Figure 3-15.
Figure 3-16.
Figure 3-17.
Figure 3-18.
Figure 3-19.
Figure 3-20.
Figure 3-21.
Figure 3-22.
Figure 3-23.
Figure 3-24.
Figure 3-25.
Figure 3-26.
Figure 3-27.
Figure 3-28.
Figure 3-29.
Figure 3-30.
Figure 3-31.
Figure 3-32.
Figure 3-33.
Figure 3-34.
Figure 3-35.
Figure 3-36.
Figure 3-37.
Figure 3-38.
Figure 3-39.
Figure 3-40.
Figure 3-41.
Figure 3-42.
Figure 3-43.
Figure 3-44.
Figure 3-45.
Figure 3-46.
Figure 3-47.

TABLE OF FIGURES

Bitand Byte Order . ... 1-6
Intel Architecture Instruction Format. . .. ......... ... ... ... .. ... ... ... 2-1
Bit Offset for BIT[EAX, 21]. . . . oottt e e e e 3-8
Memory Bit Indexing. . . ... e 3-12
Operation of the ADDPS Instruction. . . ............ ... ... 3-25
Operation of the ADDSS Instruction. . . .......... .. .. ... 3-27
Operation of the ANDNPS Instruction ........... ... ... .. ... 3-32
Operation of the ANDPS Instruction. . . ............ ... .. ... ... 3-34
Operation of the CMPPS (Imm8=1) Instruction .. ..................... 3-78
Operation of the CMPPS (Imm8=0) Instruction .. ..................... 3-78
Operation of the CMPPS (Imm8=2) Instruction .. ..................... 3-79
Operation of the CMPPS (Imm8=3) Instruction .. ..................... 3-79
Operation of the CMPPS (Imm8=4) Instruction .. ..................... 3-80
Operation of the CMPPS (Imm8=5) Instruction .. ..................... 3-80
Operation of the CMPPS (Imm8=6) Instruction . ...................... 3-81
Operation of the CMPPS (Imm8=7) Instruction .. ..................... 3-81
Operation of the CMPSS (Imm8=0) Instruction .. ..................... 3-92
Operation of the CMPSS (Imm8=1) Instruction . ...................... 3-92
Operation of the CMPSS (Imm8=2) Instruction .. ..................... 3-93
Operation of the CMPSS (Imm8=3) Instruction . ...................... 3-93
Operation of the CMPSS (Imm8=4) Instruction .. ..................... 3-94
Operation of the CMPSS (Imm8=5) Instruction .. ..................... 3-94
Operation of the CMPSS (Imm8=6) Instruction .. ..................... 3-95
Operation of the CMPSS (Imm8=7) Instruction .. ..................... 3-95
Operation of the COMISS Instruction, ConditionOne ................. 3-104
Operation of the COMISS Instruction, Condition Two .. ............... 3-105
Operation of the COMISS Instruction, Condition Three . . .............. 3-105
Operation of the COMISS Instruction, Condition Four . . ............... 3-106
Version and Feature Information in Registers EAX and EDX. ........... 3-112
Operation of the CVTPI2PS Instruction .. ......... ... .. ... ... 3-119
Operation of the CVTPS2PI Instruction .. ......... ... .. ... ... 3-123
Operation of the CVTSI2SS Instruction .. ............. .. ... .. ...... 3-127
Operation of the CVTSS2SI Instruction .. ......... ... . ... 3-130
Operation of the CVTTPS2PI Instruction . ... ....................... 3-133
Operation of the CVTTSS2SI Instruction . ... ........... ... .. ...... 3-137
Operation of the DIVPS Instruction. . . . .......... ... ... 3-151
Operation of the DIVSS Instruction. . . . ........... ... ... 3-154
Operation of the MAXPS Instruction. . . ........... . ... oo, 3-387
Operation of the MAXSS Instruction. . . ........... ... 3-391
Operation of the MINPS Instruction .. .......... .. ... .. .o, 3-395
Operation of the MINSS Instruction .. .......... .. ... ... ... .. ...... 3-399
Operation of the MOVAPS Instruction . ................. ... ... 3-412
Operation of the MOVD Instruction. .. ........... .. ... i, 3-415
Operation of the MOVHLPS Instruction . . ............ ... ... .. ...... 3-418
Operation of the MOVHPS Instruction . . ........................... 3-420
Operation of the MOVLHPS Instruction . . .............. ... .. ...... 3-423
Operation of the MOVLPS Instruction . ............... .. ........... 3-425
Operation of the MOVMSKPS Instruction. ... ....................... 3-428
Operation of the MOVQ Instructions. . .. ........ . ... i, 3-434



TABLE OF FIGURES Inu@;

Figure 3-48.
Figure 3-49.
Figure 3-50.
Figure 3-51.
Figure 3-52.
Figure 3-53.
Figure 3-54.
Figure 3-55.
Figure 3-56.
Figure 3-57.
Figure 3-58.
Figure 3-59.
Figure 3-60.
Figure 3-61.
Figure 3-62.
Figure 3-63.
Figure 3-64.
Figure 3-65.
Figure 3-66.
Figure 3-67.
Figure 3-68.
Figure 3-69.
Figure 3-70.
Figure 3-71.
Figure 3-72.
Figure 3-73.
Figure 3-74.
Figure 3-75.
Figure 3-76.
Figure 3-77.
Figure 3-78.
Figure 3-79.
Figure 3-80.
Figure 3-81.
Figure 3-82.
Figure 3-83.

Figure 3-84.

Figure 3-85.
Figure 3-86.
Figure 3-87.
Figure 3-88.
Figure 3-89.
Figure 3-90.
Figure 3-91.
Figure 3-92.
Figure 3-93.
Figure 3-94.
Figure 3-95.
Figure 3-96.
Figure 3-97.

Operation of the MOVSS Instruction . .................. ... ...... 3-439
Operation of the MOVUPS Instruction . . ................ ..., 3-444
Operation of the MULPS Instruction. . .. ............ ... ... .. ... ... 3-451
Operation of the MULSS Instruction. . .......... ... ... .. i, 3-453
Operation of the ORPS Instruction. ... ........... ... . ... 3-462
Operation of the PACKSSDW Instruction. ... ........... .. ... .. ..... 3-470
Operation of the PACKUSWB Instruction. ... ....................... 3-473
Operation of the PADDW Instruction . ............ ... ..o iua... 3-476
Operation of the PADDSW Instruction . . . .............. ... ... ... 3-480
Operation of the PADDUSB Instruction .. .............. ..o, 3-483
Operation of the PAND Instruction. .. ........... .. ... ..., 3-486
Operation of the PANDN Instruction. . .. .......... .. ... ... ... . ... 3-488
Operation of the PAVGB/PAVGW Instruction. . . ..................... 3-490
Operation of the PCMPEQW Instruction . .......................... 3-494
Operation of the PCMPGTW Instruction. . ... ....................... 3-498
Operation of the PEXTRW Instruction .. ........................... 3-502
Operation of the PINSRW Instruction. . . ........................... 3-504
Operation of the PMADDWD Instruction . .......................... 3-506
Operation of the PMAXSW Instruction. . ........................... 3-509
Operation of the PMAXUB Instruction . ............................ 3-512
Operation of the PMINSW Instruction. . .. ............ ... ... .. ...... 3-515
Operation of the PMINUB Instruction . . . ................ ..., 3-518
Operation of the PMOVMSKB Instruction. ... ....................... 3-521
Operation of the PMULHUW Instruction. . .. ........... .. ... .. ...... 3-523
Operation of the PMULHW Instruction. .. .......................... 3-526
Operation of the PMULLW Instruction . ...................c.cuuo... 3-529
Operation of the POR Instruction.. . .. ........... . . ... 3-542
Operation of the PSADBW Instruction . . .............. .. ... .. ..... 3-546
Operation of the PSHUFW Instruction . . ........................... 3-549
Operation of the PSLLW Instruction. . .. ......... ... .. .. . ... 3-551
Operation of the PSRAW Instruction .. ............ ... .. ... .. ..... 3-556
Operation of the PSRLW Instruction. . .......... ... ... .. ... 3-559
Operation of the PSUBW Instruction .. ............ ... .. ........... 3-564
Operation of the PSUBSW Instruction . . ............... . ... .. ..... 3-568
Operation of the PSUBUSB Instruction . ........................... 3-571
High-Order Unpacking and Interleaving of Bytes

With the PUNPCKHBW Instruction. . . .......... ... . i . 3-574
Low-Order Unpacking and Interleaving of Bytes

With the PUNPCKLBW Instruction. .. .............. ... 3-578
Operation of the PXOR Instruction. ... ............ ... . oo, 3-590
Operation of the RCPPS Instruction. . . ............ ... ... 3-597
Operation of the RCPSS Instruction. . . ............ ... .. ... . ..... 3-599
Operation of the RSQRTPS Instruction .. ............ .. ... .. ....... 3-618
Operation of the RSQRTSS Instruction .. ............ .. ... ..o, 3-620
Operation of the SHUFPS Instruction. . . ........... ... .. ... .. ..... 3-648
Operation of the SQRTPS Instruction. . .. ......... ... .. ... .. ...... 3-657
Operation of the SQRTSS Instruction. . ........... ... .. ... .. ...... 3-660
Operation of the SUBPS Instruction. . . ........... ... .. ... .. ...... 3-676
Operation of the SUBSS Instruction. . . ........... ... .. ... . ..... 3-679
Operation of the UCOMISS Instruction, ConditionOne . ............... 3-691
Operation of the UCOMISS Instruction, Condition Two . ... ............ 3-692
Operation of the UCOMISS Instruction, Condition Three. .. ............ 3-692



intel.

Figure 3-98.
Figure 3-99.
Figure 3-100.
Figure 3-101.
Figure A-1.
Figure B-1.
Figure B-2.
Figure B-3.

TABLE OF FIGURES

Operation of the UCOMISS Instruction, Condition Four............... 3-693
Operation of the UNPCKHPS Instruction . .. ....................... 3-700
Operation of the UNPCKLPS Instruction . ......................... 3-703
Operation of the XORPS Instruction. . . .............. .. ... v, 3-721
ModR/M Byte nnn Field (Bits 5,4, and 3). . ............. ... .. ....... A-10
General Machine Instruction Format. . . .............. .. ... .. ........ B-1
Key to Codes for MMX™ Data Type Cross-Reference. ... ............. B-20

Key to Codes for Streaming SIMD Extensions Data Type Cross-Reference B-27

Xi



TABLE OF FIGURES

Xii



Table 2-1.
Table 2-2.
Table 2-3.
Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.
Table 3-5.
Table 3-6.
Table 3-7.
Table 3-8.
Table 3-9.
Table A-1.
Table A-2.
Table A-3.
Table A-4.
Table A-5.
Table A-6.
Table A-7.
Table A-8.
Table A-9.

Table A-10.
Table A-11.
Table A-12.
Table A-13.
Table A-14.
Table A-15.
Table A-16.
Table A-17.
Table A-18.
Table A-19.
Table A-20.
Table A-21.

Table B-1.
Table B-2.
Table B-3.
Table B-4.
Table B-5.
Table B-6.
Table B-7.
Table B-8.
Table B-9.

Table B-10.
Table B-11.
Table B-12.
Table B-13.

Table B-14.
Table B-15.

xii

intel.

TABLE OF TABLES

16-Bit Addressing Forms with the ModR/M Byte . ...................... 2-5
32-Bit Addressing Forms with the ModR/MByte . ...................... 2-6
32-Bit Addressing Forms withthe SIBByte . . ........... ... .. ... ...... 2-7
Register Encodings Associated with the +rb, +rw, and +rd Nomenclature. . . .3-3
Exception Mnemonics, Names, and Vector Numbers .................. 3-13
Floating-Point Exception Mnemonicsand Names .. ................... 3-14
SIMD Floating-Point Exception Mnemonics and Names . ............... 3-15
Streaming SIMD Extensions Faults (Interrupts 6 & 7) . ................. 3-16
Information Returned by CPUID Instruction. . ....................... 3-111
Processor Type Field . . ... ... . . 3-113
Feature Flags Returned in EDX Register .......................... 3-114
Encoding of Cache and TLB Descriptors . ... ........ ..., 3-116
One-Byte Opcode Map (Left) . . ... ..o e A-6
One-Byte Opcode Map (Right) . . . ... ... A-7
Two-Byte Opcode Map (Left) (First ByteisOFH). ..................... A-8
Two-Byte Opcode Map (Right) (First ByteisOFH) . ................... A-9
Opcode Extensions for One- and Two-Byte Opcodes by Group Numberl . A-11
D8 Opcode Map When ModR/M Byte is Within OOHto BFH1 . .......... A-12
D8 Opcode Map When ModR/M Byte is Outside 00Hto BFH1 . ......... A-13
D9 Opcode Map When ModR/M Byte is Within 00H to BFH1............ A-14
D9 Opcode Map When ModR/M Byte is Outside 00Hto BFH1 . ......... A-15
DA Opcode Map When ModR/M Byte is Within OOHto BFH1 . ... ....... A-15
DA Opcode Map When ModR/M Byte is Outside 0OHto BFH1.......... A-16
DB Opcode Map When ModR/M Byte is Within OOHto BFH1 . ... ....... A-17
DB Opcode Map When ModR/M Byte is Outside OOHto BFH1.......... A-17
DC Opcode Map When ModR/M Byte is Within 0OHto BFH1 . .. ........ A-18
DC Opcode Map When ModR/M Byte is Outside 00H to BFH4. .. ... .. .. A-19
DD Opcode Map When ModR/M Byte is Within 0OHto BFH1 . .......... A-20
DD Opcode Map When ModR/M Byte is Outside O0H to BFH1.......... A-20
DE Opcode Map When ModR/M Byte is Within OOHto BFH1 . ... ....... A-21
DE Opcode Map When ModR/M Byte is Outside 0OHto BFH1.......... A-22
DF Opcode Map When ModR/M Byte is Within OOH to BFHL1 . .. ........ A-23
DF Opcode Map When ModR/M Byte is Outside 00H to BFH1 ... ....... A-23
Special Fields Within Instruction Encodings. . ........................ B-2
Encoding of reg Field When w Field is Not Present in Instruction . ........ B-2
Encoding of reg Field When w Field is Present in Instruction. . .. ......... B-3
Encoding of Operand Size (W) Bit. . .......... ... .. B-3
Encoding of Sign-Extend (S) Bit . . . ....... ... .. B-3
Encoding of the Segment Register (sreg) Field . . ..................... B-4
Encoding of Special-Purpose Register (eee) Field. . . .................. B-4
Encoding of Conditional Test (tttn) Field. . .. ... ...... ... .. ... .. ...... B-5
Encoding of Operation Direction (d) Bit . ............................ B-6
Integer Instruction Formats and Encodings . . ............. ... .. ...... B-6
Encoding of Granularity of Data Field (gg) . . - - -« - oo oo oo B-19
Encoding of the MMX™ Register Field (mmxreg) .................... B-19
Encoding of the General-Purpose Register Field (reg)

When Used in MMX™ InStructions. ... ... B-20
MMX™ [nstruction Formats and Encodings . ....................... B-21
Streaming SIMD Extensions Instruction Behavior with Prefixes ......... B-25



TABLE OF TABLES

Table B-16.
Table B-17.
Table B-18.
Table B-19.
Table B-20.
Table B-21.

Table B-22.
Table B-23.

Table C-1.
Table C-2.

Xiv

SIMD Integer Instructions - Behavior with Prefixes ................... B-25
Cacheability Control Instruction Behavior with Prefixes ............... B-25
Key to Streaming SIMD Extensions Naming Convention. . ............. B-26
Encoding of the SIMD Floating-Point Register Field .................. B-27
Encoding of the SIMD-Integer Register Field. . . . .................... B-34
Encoding of the Streaming SIMD Extensions

Cacheability Control Register Field ............................... B-35
General Floating-Point Instruction Formats . ........................ B-36
Floating-Point Instruction Formats and Encodings. . . ................. B-37
Simple INtriNSICS . . . ... C-2
Composite INtHNSICS . . . .. C-11



About ThisManual

1






CHAPTER 1
ABOUT THIS MANUAL

The Intel Architecture Software Developer’s Manual, Volumdn®truction Set Reference
(Order Number 243191) is part of a three-volume set that describes the architecture and
programming environment of all Intel Architecture processors. The other two volumes in this
Set are:

®* The Intel Architecture Software Developer’s Manual, Volume 1: Basic Archite@uder
Number 243190).

® Thelntel Architecture Software Developer’s Manual, Volum8y&tem Programing Guide
(Order Number 243192).

TheIntel Architecture Software Developer’s Manual, Volumdetcribes the basic architecture
and programming environment of an Intel Architecture processor; the Intel Architecture Soft-
ware Developer’s Manual, Volume @escribes the instructions set of the processor and the
opcode structure. These two volumes are aimed at application programmers who are writing
programsto run under existing operating systems or executives. The Intel Architecture Software
Developer’s Manual, Volume 8escribes the operating-system support environment of an Intel
Architecture processor, including memory management, protection, task management, interrupt
and exception handling, and system management mode. It also provides Intel Architecture
processor compatibility information. This volume is aimed at operating-system and BIOS
designers and programmers.

1.1. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE
DEVELOPER'S MANUAL, VOLUME 2 : INSTRUCTION SET
REFERENCE

The contents of this manual are as follows:

Chapter 1 — About This Manual. Gives an overview of all three volumes of the Intel Archi-
tecture Software Developer's Manudi also describes the notational conventions in these
manuals and listsrelated Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2 — Instruction Format. Describes the machine-level instruction format used for all
Intel Architectureinstructions and gives the allowable encodings of prefixes, the operand-iden-
tifier byte (ModR/M byte), the addressing-mode specifier byte (SIB byte), and the displacement
and immediate bytes.

Chapter 3 — Instruction Set ReferenceDescribes each of the Intel Architecture instructions
in detail, including an algorithmic description of operations, the effect on flags, the effect of
operand- and address-size attributes, and the exceptions that may be generated. Theinstructions

I 1-1



ABOUT THIS MANUAL Intel®

are arranged in alphabetical order. The FPU, MMX™ Technology instructions, and Streaming
SIMD Extensions are included in this chapter.

Appendix A — Opcode Map.Gives an opcode map for the Intel Architecture instruction set.

Appendix B — Instruction Formats and Encodings.Gives the binary encoding of each form
of each Intel Architecture instruction.

Appendix C — Compiler Intrinsics and Functional Equivalents. Gives the Intel C/C++
compiler intrinsics and functional equivalents for the MMX™ Technology instructions and
Streaming SIMD Extensions.

1.2. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE
DEVELOPER'’S MANUAL, VOLUME 1 : BASIC
ARCHITECTURE

The contents of the Intel Architecture Software Developer’s Manual, Volumard as follows:

Chapter 1 — About This Manual. Gives an overview of all three volumes of the Intel Archi-
tecture Software Developer's Manuét also describes the notational conventions in these
manuals and listsrelated Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2— Introduction to the Intel Architecture. Introducesthe Intel Architecture and the
families of Intel processors that are based on this architecture. It also gives an overview of the
common features found in these processors and brief history of the Intel Architecture.

Chapter 3 — Basic Execution EnvironmentIntroduces the models of memory organization
and describes the register set used by applications.

Chapter 4 — Procedure Calls, Interrupts, and ExceptionsDescribes the procedure stack
and the mechanisms provided for making procedure calls and for servicing interrupts and
exceptions.

Chapter 5 — Data Types and Addressing Moded®escribes the data types and addressing
modes recognized by the processor.

Chapter 6 — Instruction Set Summary. Gives an overview of all the Intel Architecture
instructions except those executed by the processor’s floating-point unit. The instructions are
presented in functionally related groups.

Chapter 7 — Floating-Point Unit. Describes the Intel Architecture floating-point unit,
including the floating-point registers and data types; gives an overview of the floating-point
instruction set; and describes the processor’s floating-point exception conditions.

Chapter 8 — Programming with Intel MMX™ Technology. Describes the Intel MMX™
technology, including registers and data types, and gives an overview of the MMX™ technology
instruction set.

1-2 I



Intel® ABOUT THIS MANUAL

Chapter 9 — Programming with the Streaming SIMD Extensions.Describes the Intel
Streaming SIMD Extensions, including the registers and data types, and gives an overview of
the Streaming SIMD Extension set.

Chapter 10— Input/Output. Describes the processor’s /O architecture, including I/O port
addressing, the 1/O instructions, and the 1/O protection mechanism.

Chapter 11 — Processor Identification and Feature DeterminatiorDescribes how to deter-
mine the CPU type and the features that are available in the processor.

Appendix A — EFLAGS Cross-ReferenceSummaries how the Intel Architecture instruc-
tions affect the flags in the EFL AGS register.

Appendix B— EFLAGS Condition Codes.Summarizes how the conditional jump, move, and
byte set on condition code instructions use the condition code flags (OF, CF, ZF, SF, and PF) in
the EFLAGS register.

Appendix C — Floating-Point Exceptions SummarySummarizes the exceptions that can be
raised by floating-point instructions.

Appendix D — Guidelines for Writing FPU and SIMD Extension Exception Handlers.
Describes how to design and write MS-DOS* compatible exception-handling facilities for FPU

and Streaming SIMD Extension exceptions, including both software and hardware requirements
and assembly-language code examples. This appendix also describes general techniques for

writing robust FPU exception handlers.

Appendix E— Guidelines for Writing Streaming SIMD Extension Floating-Point Excep-
tion Handlers. Provides guidelines for the Streaming SIMD Extension instructions that can
generate numeric (floating-point) exceptions, and gives an overview of the necessary support
for handling such exceptions.

1.3. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE
DEVELOPER’S MANUAL, VOLUME 3 : SYSTEM
PROGRAMMING GUIDE

The contents of the Intel Architecture Software Developer’s Manual, Volumar8&as follows:

Chapter 1 — About This Manual. Gives an overview of all three volumes of the Intel Archi-
tecture Software Developer's Manudi also describes the notational conventions in these
manuals and listsrelated Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2 — System Architecture OverviewDescribes the modes of operation of an Intel
Architecture processor and the mechanisms provided in the Intel Architecture to support oper-
ating systems and executives, including the system-oriented registers and data structures and the
system-oriented instructions. The steps necessary for switching between real-address and
protected modes are also identified.

I 1-3



ABOUT THIS MANUAL Intel®

Chapter 3 — Protected-Mode Memory ManagementDescribesthe data structures, registers,
and instructions that support segmentation and paging and explains how they can be used to
implement a “flat” (unsegmented) memory model or a segmented memory model.

Chapter 4 — Protection.Describes the support for page and segment protection provided in
the Intel Architecture. This chapter also explains the implementation of privilege rules, stack
switching, pointer validation, user and supervisor modes.

Chapter 5 — Interrupt and Exception Handling. Describes the basic interrupt mechanisms
defined in the Intel Architecture, shows how interrupts and exceptions relate to protection, and
describes how the architecture handles each exception type. Reference information for each
Intel Architecture exceptionis given at the end of this chapter.

Chapter 6 — Task ManagementDescribes the mechanismsthe Intel Architecture providesto
support multitasking and inter-task protection.

Chapter 7 — Multiple Processor ManagementDescribes the instructions and flags that
support multiple processors with shared memory, memory ordering, and the advanced program-
mableinterrupt controller (APIC).

Chapter 8 — Processor Management and InitializationDefines the state of an Intel Archi-
tecture processor and its floating-point and SIMD floating-point units after reset initialization.
This chapter also explains how to set up an Intel Architecture processor for real-address mode
operation and protected- mode operation, and how to switch between modes.

Chapter 9 — Memory Cache Control. Describes the general concept of caching and the
caching mechanisms supported by the Intel Architecture. This chapter also describes the
memory type range registers (MTRRs) and how they can be used to map memory types of phys-
ical memory. MTRRs were introduced into the Intel Architecture with the Pentium® Pro
processor. It also presents information on using the new cache control and memory streaming
instructions introduced with the Pentium® [11 processor.

Chapter 10 — MMX™ Technology System ProgrammingDescribes those aspects of the

Intel MMX™ technology that must be handled and considered at the system programming level,
including task switching, exception handling, and compatibility with existing system environ-
ments. The MMX™ technology was introduced into the Intel Architecture with the Péntium
processor.

Chapter 11 — Streaming SIMD Extensions System ProgrammindPescribes those aspects
of Streaming SIMD Extensions that must be handled and considered at the system programming
level, including task switching, exception handling, and compatibility with existing system
environments. Streaming SIMD Extensions were introduced into the Intel Architecture with the
Pentium® processor.

Chapter 12 — System Management Mode (SMMDescribes the Intel Architecture’s system
management mode (SMM), which can be used to implement power management functions.

Chapter 13 — Machine-Check Architecture. Describes the machine-check architecture,
which was introduced into the Intel Architecture with the Pentium® processor.

Chapter 14 — Code Optimization.Discusses general optimization techniques for program-
ming an Intel Architecture processor.

1-4 I



Intel® ABOUT THIS MANUAL

Chapter 15 — Debugging and Performance MonitoringDescribes the debugging registers
and other debug mechanism provided in the Intel Architecture. This chapter also describes the
time-stamp counter and the performance-monitoring counters.

Chapter 16 — 8086 EmulationDescribes the real-address and virtual-8086 modes of the Intel
Architecture.

Chapter 17 — Mixing 16-Bit and 32-Bit Code Describes how to mix 16-bit and 32-bit code
modules within the same program or task.

Chapter 18 — Intel Architecture Compatibility. Describes the programming differences
between the Intel 286, Intel386, Intel486, Pentium®, and P6 family processors. The differences
among the 32-bit Intel Architecture processors (the Intel 386, Intel 486, Pentium®, and P6 family
processors) are described throughout the three volumes of the Intel Architecture Software Devel-
oper's Manual as relevant to particular features of the architecture. This chapter provides a
collection of al the relevant compatibility information for all Intel Architecture processors and
also describes the basic differences with respect to the 16-bit Intel Architecture processors (the
Intel 8086 and Intel 286 processors).

Appendix A — Performance-Monitoring Events. Lists the events that can be counted with
the performance-monitoring counters and the codes used to select these events. Both Pentium®
processor and P6 family processor events are described.

Appendix B — Model-Specific Registers (MSRs).ists the MSRs available in the Pentium®
and P6 family processors and their functions.

Appendix C — Dual-Processor (DP) Bootup Sequence Example (Specific to Pentfum
Processor s). Gives an example of how to use the DP protocol to boot two Pentium® processors
(aprimary processor and a secondary processor) in a DP system and initialize their APICs.

Appendix D — Multiple-Processor (MP) Bootup Sequence Example (Specific to P6 Family
Processors)Gives an example of how to use of the MP protocol to boot two P6 family proces-
sors in a multiple-processor (MP) system and initialize their APICs.

Appendix E — Programming the LINTO and LINT1 Inputs. Gives an example of how to
program the LINTO and LINT2 pins for specific interrupt vectors.

1.4. NOTATIONAL CONVENTIONS

This manual uses special notation for data-structure formats, for symbolic representation of
instructions, and for hexadecima numbers. A review of this notation makes the manual easier
to read.

1.4.1. Bitand Byte Order

Inillustrations of data structuresin memory, smaller addresses appear toward the bottom of the
figure; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of a set bit is equal to two raised to the power of the bit position. Intel Archi-

I 1-5



ABOUT THIS MANUAL Intel®

tecture processors is a “little endian” machines; this means the bytes of a word are numbered
starting from the least significant byte. Figure 1-1 illustrates these conventions.

Data Structure
31 24 23 16 15 8 7 0 -«— Bit offset
28
24
20
16
12
8
4
Byte 3 Byte 2 Byte 1 Byte0 | O

A

Byte Offset

Highest
Address

Lowest
Address

Figure 1-1. Bit and Byte Order

1.4.2. Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are markeseaged. When

bits are marked as reserved, it is essential for compatibility with future processors that software
treat these bits as having a future, though unknown, effect. The behavior of reserved bits should
be regarded as not only undefined, but unpredictable. Software should follow these guidelines
in dealing with reserved bits:

® Do not depend on the states of any reserved bits when testing the values of registers which
contain such bits. Mask out the reserved bits before testing.

® Do not depend on the states of any reserved bits when storing to memory or to aregister.
® Do not depend on the ability to retain information written into any reserved bits.

®* When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved bitsin Intel Archi-
tecture registers. Depending upon the values of reserved register bits will
make software dependent upon the unspecified manner in which the
processor handles these bits. Depending upon reserved values risks incom-
patibility with future processors.



Intel® ABOUT THIS MANUAL

1.4.3. Instruction Operands

When instructions are represented symbolically, a subset of the Intel Architecture assembly
language is used. In this subset, an instruction has the following format:

label: mnemonic argumentl, argument2, argument3
where:
® Alabd isanidentifier whichisfollowed by acolon.

® A mnemonic is areserved name for a class of instruction opcodes which have the same
function.

®* The operands argumentl, argument2, and argument3 are optional. There may be from zero
to three operands, depending on the opcode. When present, they take the form of either
literals or identifiers for data items. Operand identifiers are either reserved names of
registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:
LOADREG: MOV EAX, SUBTOTAL

In this example LOADREG is alabel, MOV isthe mnemonic identifier of an opcode, EAX is
the destination operand, and SUBTOTAL is the source operand. Some assembly languages put
the source and destination in reverse order.

1.4.4. Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by
the character H (for example, F82EH). A hexadecimal digit is a character from the following
set:0,1,2,3,4,56,7,89A,B,C,D,E,andF.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the
character B (for example, 1010B). The “B” designation is only used in situations where confu-
sion as to the type of number might arise.

1.45. Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte address is used to
locate the byte or bytes of memory. The range of memory that can be addressed is called an
address space.

I 1-7



ABOUT THIS MANUAL Intel®

The processor also supports segmented addressing. This is a form of addressing where a
program may have many independent address spaces, called segments. For example, aprogram
can keep its code (instructions) and stack in separate segments. Code addresses would always
refer to the code space, and stack addresses would always refer to the stack space. The following
notation is used to specify a byte address within a segment:

Segment-register: Byte-address

For example, the following segment addressidentifiesthe byte at address FF79H in the segment
pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS
register points to the code segment and the EIP register contains the address of the instruction.

CS:EIP

1.4.6. Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. However, some exceptions, such as break-
points, occur under other conditions. Some types of exceptions may provide error codes. An
error code reports additional information about the error. An example of the notation used to
show an exception and error code is shown below.

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a
type of fault isreported. Under some conditions, exceptions which produce error codes may not
be able to report an accurate code. In this case, the error code is zero, as shown below for a
general-protection exception.

#GP(0)

Refer to Chapter 5, Interrupt and Exception Handling, in the Intel Architecture Software Devel-
oper’s Manual, Volume 3or alist of exception mnemonics and their descriptions.

1-8 I



Intel® ABOUT THIS MANUAL

1.5. RELATED LITERATURE

The following books contain additional material related to Intel processors:

® |ntel Pentium® Pro Processor Specification Update, Order Number 242689.

® |ntel Pentium® Processor Specification Update, Order Number 242480.

® AP-485, Intel Processor Identification and the CPUID Instruction, Order Number 241618.

® AP-578, Software and Hardware Considerations for FPU Exception Handlers for Intel
Architecture Processors, Order Number 242415-001.

® Pentium® Pro Processor Family Developer's Manual, Volume 1: Specificatio@sder
Number 242690-001.

®  Pentium® Processor Family Developer’s Manu&rder Number 241428,

®* Intel486™Microprocessor Data BoglOrder Number 240440.

®* Intel486™ SX CPU/Intel487™ SX Math Coprocessor Data BOotier Number 240950.
® Intel486™ DX2 Microprocessor Data BadRrder Number 241245.

® Intel486™ Microprocessor Product Brief BqdBrder Number 240459.

®* Intel386™ Processor Hardware Reference Man@ater Number 231732.

® Intel386™ Processor System Software Writer's Guinider Number 231499.

® Intel386™ High-Performance 32-Bit CHMOS Microprocessor with Integrated Memory
ManagementOrder Number 231630.

® 376 Embedded Processor Programmer’s Reference Manual, Order Number 240314.
® 80387 DX User’'s Manual Programmer’s Reference, Order Number 231917.

® 376 High-Performance 32-Bit Embedded Processor, Order Number 240182.

® Intel386™ SX Microprocesso@rder Number 240187.

® Microprocessor and Peripheral Handbook (Vol. 1), Order Number 230843.

® AP-528, Optimizations for Intel’s 32-Bit Processors, Order Number 242816-001.

I 1-9



ABOUT THIS MANUAL

1-10



| nstruction For mat

2






CHAPTER 2
INSTRUCTION FORMAT

This chapter describes the instruction format for al Intel Architecture processors.

2.1. GENERAL INSTRUCTION FORMAT

All Intel Architecture instruction encodings are subsets of the general instruction format shown
in Figure 2-1. Instructions consist of optional instruction prefixes (in any order), one or two
primary opcode bytes, an addressing-form specifier (if required) consisting of the ModR/M byte
and sometimesthe SIB (Scale-Index-Base) byte, a displacement (if required), and an immediate
datafield (if required).

Instruction : ;
Prefixes Opcode ModR/M SIB Displacement Immediate
Up to four 1 or 2 byte 1 byte 1 byte Address Immediate
prefixes of opcode (if required)  (if required) displacement data of
1-byte each of1,2,0r4 1,2,0or4
(optional) / \ bytes or none bytes or none
7 65 32 0 7 65 32 0
Mod O';g(%e R/IM Scale | Index Base

Figure 2-1. Intel Architecture Instruction Format

2.2. INSTRUCTION PREFIXES

Theinstruction prefixes are divided into four groups, each with a set of allowable prefix codes:
® Lock and repeat prefixes.

— FOH—LOCK prefix.

— F2H—REPNE/REPNZ prefix (used only with string instructions).

— F3H—REP prefix (used only with string instructions and Streaming SIMD Exten-
sions).

— F3H—REPE/REPZ prefix (used only with string instructions and Streaming SIMD
Extensions).

I 2-1



INSTRUCTION FORMAT

®  Segment override.

2EH—CS segment override prefix.

36H—SS segment override prefix.

3EH—DS segment override prefix.

26H—ES segment override prefix.

64H—FS segment override prefix.

65H—GS segment override prefix.

® QOperand-size override, 66H

® Address-size override, 67H

For each instruction, one prefix may be used from each of these groups and be placed in any
order. The effect of redundant prefixes (more than one prefix from a group) is undefined and
may vary from processor to processor.

e  Streaming SIMD Extensions prefix, OFH

The nature of Streaming SIMD Extensions alows the use of existing instruction formats.
Instructions use the ModR/M format and are preceded by the OF prefix byte. In general, opera-
tionsare not duplicated to provide two directions (i.e. separate load and store variants). For more
information, see Section B.4.1., “Instruction Prefixes” in Appendixrfruction Formats and
Encodings.

2.3.

The primary opcode is either 1 or 2 bytes. An additional 3-bit opcode field is sometimes encoded
in the ModR/M byte. Smaller encoding fields can be defined within the primary opcode. These

fields define the direction of the operation, the size of displacements, the register encoding,
condition codes, or sign extension. The encoding of fields in the opcode varies, depending on

OPCODE

the class of operation.

2.4.

Most instructions that refer to an operand in memory have an addressing-form specifier byte
(called the ModR/M byte) following the primary opcode. The ModR/M byte contains three

MODR/M AND SIB BYTES

fields of information:

®* The mod field combines with the r/m field to form 32 possible values: eight registers and
24 addressing modes.

® The reg/opcode field specifies either a register number or three more hits of opcode infor-

mation. The purpose of the reg/opcode field is specified in the primary opcode.

®* Ther/mfield can specify aregister as an operand or can be combined with the mod field to
encode an addressing mode.

2-2



Intel® INSTRUCTION FORMAT

Certain encodings of the ModR/M byte require a second addressing byte, the SIB byte, to fully
specify the addressing form. The base-plus-index and scale-plus-index forms of 32-bit
addressing require the SIB byte. The SIB byte includes the following fields:

® The scale field specifies the scale factor.

® Theindex field specifies the register number of the index register.
®* The basefield specifies the register number of the base register.
Refer to Section 2.6. for the encodings of the ModR/M and SIB bytes.

2.5. DISPLACEMENT AND IMMEDIATE BYTES

Some addressing forms include a displacement immediately following either the ModR/M or
SIB byte. If adisplacement isrequired, it can be 1, 2, or 4 bytes.

If the instruction specifies an immediate operand, the operand always follows any displacement
bytes. An immediate operand can be 1, 2, or 4 bytes.

2.6. ADDRESSING-MODE ENCODING OF MODR/M AND SIB
BYTES

The values and the corresponding addressing forms of the ModR/M and SIB bytes are shownin
Tables 2-1 through 2-3. The 16-bit addressing forms specified by the ModR/M byte arein Table
2-1, and the 32-bit addressing forms specified by the ModR/M byte are in Table 2-2. Table 2-3
shows the 32-bit addressing forms specified by the SIB byte.

In Tables 2-1 and 2-2, the first column (labeled “Effective Address”) lists 32 different effective
addresses that can be assigned to one operand of an instruction by using the Mod and R/M fields
of the ModR/M byte. The first 24 give the different ways of specifying a memory location; the
last eight (specified by the Mod field encoding 11B) give the ways of specifying the general
purpose, MMX™ technology, and SIMD floating-point registers. Each of the register encodings
list five possible registers. For example, the first register-encoding (selected by the R/M field
encoding of 000B) indicates the general-purpose registers EAX, AX or AL, the MMX™ tech-
nology register MMO, or the SIMD floating-point register XMMO. Which of these five registers

is used is determined by the opcode byte and the operand-size attribute, which select either the
EAX register (32 bits) or AX register (16 bits).

The second and third columns in Tables 2-1 and 2-2 gives the binary encodings of the Mod and
R/M fields in the ModR/M byte, respectively, required to obtain the associated effective address
listed in the first column. All 32 possible combinations of the Mod and R/M fields are listed.

Across the top of Tables 2-1 and 2-2, the eight possible values of the 3-bit Reg/Opcode field are
listed, in decimal (sixth row from top) and in binary (seventh row from top). The seventh row is
labeled “REG=", which represents the use of these three bits to give the location of a second
operand, which must be a general-purpose register, an MMX™ technology register, or a SIMD
floating-point register. If the instruction does not require a second operand to be specified, then
the 3 bits of the Reg/Opcode field may be used as an extension of the opcode, which is repre-

I 2-3



INSTRUCTION FORMAT Intel®

sented by the sixth row, labeled “/digit (Opcode)”. The five rows above give the byte, word, and
doubleword general-purpose registers; the MMX™ technology registers; the Streaming SIMD
Extensions registers; and SIMD floating-point registers that correspond to the register numbers,
with the same assignments as for the R/M field when Mod field encoding is 11B. As with the
R/M field register options, which of the five possible registers is used is determined by the
opcode byte along with the operand-size attribute.

The body of Tables 2-1 and 2-2 (under the label “Value of ModR/M Byte (in Hexadecimal)”)
contains a 32 by 8 array giving all of the 256 values of the ModR/M byte, in hexadecimal. Bits
3, 4 and 5 are specified by the column of the table in which a byte resides, and the row specifies
bits 0, 1 and 2, and also bits 6 and 7.

2-4 I



Intel® INSTRUCTION FORMAT

Table 2-1. 16-Bit Addressing Forms with the ModR/M Byte

r8(/r) AL CcL DL BL AH CH DH BH
r16(/r) AX CX DX BX SP BP! Sl DI
r32(/r) EAX ECX | EDX |EBX ESP EBP ESI EDI
mm(/r) MMO | MM1 | MM2 | MM3 | MM4 | MM5 | MM6 | MM7
xmm(/r) XMMO | XMM1 | XMM2 | XMM3 | XMM4 | XMM5 | XMM6 | XMM7
/digit (Opcode) 0 1 2 3 4 5 6 7
REG = 000 001 010 011 100 101 110 111
Effective
Address Mod | R/M Value of ModR/M Byte (in Hexadecimal)
[BX+SI] 00 000 00 08 10 18 20 28 30 38
[BX+DI] 001 01 09 11 19 21 29 31 39
[BP+SI] 010 02 0A 12 1A 22 2A 32 3A
[BP+DI] 011 03 0B 13 1B 23 2B 33 3B
[S1] 100 04 oc 14 1C 24 2C 34 3C
[D1] 101 05 oD 15 1D 25 2D 35 3D
disp162 110 06 OE 16 1E 26 2E 36 3E
[BX] 111 07 OF 17 1F 27 2F 37 3F
[BX+SI]+disp8°® 01 000 40 48 50 58 60 68 70 78
[BX+DI]+disp8 001 41 49 51 59 61 69 71 79
[BP+SI]+disp8 010 42 4A 52 5A 62 6A 72 A
[BP+DI]+disp8 011 43 4B 53 5B 63 6B 73 7B
[SI]+disp8 100 44 4C 54 5C 64 6C 74 7C
[DI]+disp8 101 45 4D 55 5D 65 6D 75 7D
[BP]+disp8 110 46 4E 56 5E 66 6E 76 7E
[BX]+disp8 111 47 4F 57 5F 67 6F 77 7F
[BX+SI]+disp16 10 000 80 88 20 98 A0 A8 BO B8
[BX+Dl]+disp16 001 81 89 91 99 Al A9 B1 B9
[BP+SI]+disp16 010 82 8A 92 9A A2 AA B2 BA
[BP+DI]+disp16 011 83 8B 93 9B A3 AB B3 BB
[SI]+disp16 100 84 8C 94 9C A4 AC B4 BC
[DI]+disp16 101 85 8D 95 9D A5 AD B5 BD
[BP]+disp16 110 86 8E 96 9E A6 AE B6 BE
[BX]+disp16 111 87 8F 97 9F A7 AF B7 BF
EAX/AXIAL/IMMO/XMMO 11 000
ECX/CX/CLIMM1/XMM1 001 Co cs DO D8 EO E8 FO F8
EDX/DX/DL/MM2/XMM2 010 C1 (04°] D1 D9 EQ E9 F1 F9
EBX/BX/BL/MM3/XMM3 011 c2 CA D2 DA E2 EA F2 FA
ESP/SP/AHMM4/XMM4 100 C3 CB D3 DB E3 EB F3 FB
EBP/BP/CH/MM5/XMM5 101 C4 CcC D4 DC E4 EC F4 FC
ESI/SI/DH/MM6/XMM6 110 C5 CD D5 DD ES ED F5 FD
EDI/DI/BH/MM7/XMM7 111 C6 CE D6 DE E6 EE F6 FE
Cc7 CF D7 DF E7 EF F7 FF

NOTES:

1. The default segment register is SS for the effective addresses containing a BP index, DS for other effec-
tive addresses.

2. The “disp16” nomenclature denotes a 16-bit displacement following the ModR/M byte, to be added to the
index.

3. The “disp8” nomenclature denotes an 8-bit displacement following the ModR/M byte, to be sign-extended
and added to the index.

I 2-5



INSTRUCTION FORMAT Intel®

Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte

r8(/r) AL CL DL BL AH CH DH BH
r16(/r) AX CcX DX BX SP BP Sl DI
r32(/r) EAX | ECX |EDX |EBX |ESP |EBP |ESI EDI
mm(/r) MMO | MM1 | MM2 |MM3 |MM4 |MM5 |MM6 | MM7
xmm(/r) XMMO | XMM1 | XMM2 | XMM3 | XMM4 | XMM5 | XMM6 | XMM7
/digit (Opcode) 0 1 2 3 4 5 6 7
REG = 000 001 010 011 100 101 110 111

Effective

Address Mod | R/IM Value of ModR/M Byte (in Hexadecimal)
[EAX] 00 000 00 08 10 18 20 28 30 38
[ECX] 001 01 09 11 19 21 29 31 39
[EDX] 010 02 0A 12 1A 22 2A 32 3A
[EBX] 011 03 0B 13 1B 23 2B 33 3B
=11 100 | 04 ocC 14 1C 24 2C 34 3C
disp32? 101 05 oD 15 1D 25 2D 35 3D
[ESI] 110 06 OE 16 1E 26 2E 36 3E
[EDI] 111 07 OF 17 1F 27 2F 37 3F
disp8[EAX]® 01 000 40 48 50 58 60 68 70 78
disp8[ECX] 001 41 49 51 59 61 69 71 79
disp8[EDX] 010 42 4A 52 5A 62 6A 72 A
disp8[EBX]; 011 43 4B 53 5B 63 6B 73 7B
disp8[--1[--] 100 44 4C 54 5C 64 6C 74 7C
disp8[EBP] 101 45 4D 55 5D 65 6D 75 7D
disp8[ESI] 110 46 4E 56 5E 66 6E 76 TE
disp8[EDI] 111 47 4F 57 5F 67 6F 77 7F
disp32[EAX] 10 000 80 88 90 98 A0 A8 BO B8
disp32[ECX] 001 81 89 91 99 Al A9 B1 B9
disp32[EDX] 010 82 8A 92 9A A2 AA B2 BA
disp32[EBX] 011 83 8B 93 9B A3 AB B3 BB
disp32[--][--] 100 84 8C 94 9C Ad AC B4 BC
disp32[EBP] 101 85 8D 95 9D A5 AD B5 BD
disp32[ESI] 110 86 8E 96 9E A6 AE B6 BE
disp32[EDI] 111 87 8F 97 9F A7 AF B7 BF
EAX/AXIAL/IMMO/XMMO 11 000 Cco Cc8 DO D8 EO E8 FO F8
ECX/CX/CLIMM1/XMM1 001 C1 Cc9 D1 D9 El E9 F1 F9
EDX/DX/DL/IMM2XMM2 010 C2 CA D2 DA E2 EA F2 FA
EBX/BX/BL/MM3/XMM3 011 C3 CB D3 DB E3 EB F3 FB
ESP/SP/AH/MM4/XMM4 100 C4 CcC D4 DC E4 EC F4 FC
EBP/BP/CH/MM5/XMM5 101 C5 CD D5 DD E5 ED F5 FD
ESI/SI/DH/MM6/XMM6 110 C6 CE D6 DE E6 EE F6 FE
EDI/DI/BH/MM7/XMM7 111 Cc7 CF D7 DF E7 EF F7 FF

NOTES:

1. The [--][--] nomenclature means a SIB follows the ModR/M byte.
2. The disp32 nomenclature denotes a 32-bit displacement following the SIB byte, to be added to the index.

3. The disp8 nomenclature denotes an 8-bit displacement following the SIB byte, to be sign-extended and
added to the index.

2-6 I



intal.

INSTRUCTION FORMAT

Table 2-3isorganized similarly to Tables 2-1 and 2-2, except that itsbody givesthe 256 possible
values of the SIB byte, in hexadecimal. Which of the 8 general-purpose registers will be used as
baseisindicated acrossthetop of the table, along with the corresponding values of the basefield
(bits 0, 1 and 2) in decimal and binary. The rows indicate which register is used as the index
(determined by bits 3, 4 and 5) along with the scaling factor (determined by bits 6 and 7).

Table 2-3. 32-Bit Addressing Forms with the SIB Byte
r32 EAX ECX EDX EBX ESP * ESI EDI
Base = 0 1 2 3 4 5 6 7
Base = 000 001 010 011 100 101 110 111
Scaled Index SS Index Value of SIB Byte (in Hexadecimal)
[EAX] 00 000 00 01 02 03 04 05 06 07
[ECX] 001 08 09 0A 0B ocC oD OE OF
[EDX] 010 10 11 12 13 14 15 16 17
[EBX] 011 18 19 1A 1B 1C 1D 1E 1F
none 100 20 21 22 23 24 25 26 27
[EBP] 101 28 29 2A 2B 2C 2D 2E 2F
[ESI] 110 30 31 32 33 34 35 36 37
[EDI] 111 38 39 3A 3B 3c 3D 3E 3F
[EAX*2] 01 000 40 41 42 43 44 45 46 47
[ECX*2] 001 48 49 4A 4B 4C 4D 4E 4F
[EDX*2] 010 50 51 52 53 54 55 56 57
[EBX*2] 011 58 59 5A 5B 5C 5D 5E 5F
none 100 60 61 62 63 64 65 66 67
[EBP*2] 101 68 69 6A 6B 6C 6D 6E 6F
[ESI*2] 110 70 71 72 73 74 75 76 77
[EDI*2] 111 78 79 TA 7B 7C 7D TE TF
[EAX*4] 10 000 80 81 82 83 84 85 86 87
[ECX*4] 001 88 89 8A 8B 8C 8D 8E 8F
[EDX*4] 010 90 91 92 93 94 95 96 97
[EBX*4] 011 98 89 9A 9B 9C 9D 9E 9F
none 100 A0 Al A2 A3 A4 A5 A6 A7
[EBP*4] 101 A8 A9 AA AB AC AD AE AF
[ESI*4] 110 BO B1 B2 B3 B4 B5 B6 B7
[EDI*4] 111 B8 B9 BA BB BC BD BE BF
[EAX*8] 11 000 (0] C1l Cc2 C3 C4 C5 C6 Cc7
[ECX*8] 001 C8 C9 CA CB CcC CD CE CF
[EDX*8] 010 DO D1 D2 D3 D4 D5 D6 D7
[EBX*8] 011 D8 D9 DA DB DC DD DE DF
none 100 EO E1l E2 E3 E4 E5 E6 E7
[EBP*8] 101 ES E9 EA EB EC ED EE EF
[ESI*8] 110 FO F1 F2 F3 F4 F5 F6 F7
[EDI*8] 111 F8 F9 FA FB FC FD FE FF
NOTE:

1. The [*] nomenclature means a disp32 with no base if MOD is 00, [EBP] otherwise. This provides the
following addressing modes:

disp32[index]
disp8[EBP][index]
disp32[EBP][index]

(MOD=00).
(MOD=01).
(MOD=10).

2-7



INSTRUCTION FORMAT

2-8



| nstruction Set
Reference






CHAPTER 3
INSTRUCTION SET REFERENCE

This chapter describes the complete Intel Architecture instruction set, including the integer,
floating-point, MMX™ technology, Streaming SIMD Extensions, and system instructions. The
instruction descriptions are arranged in alphabetical order. For each instruction, the forms are
given for each operand combination, including the opcode, operands required, and a description.
Also given for each instruction are a description of the instruction and its operands, an opera-
tional description, a description of the effect of the instructions on flags in the EFLAGS register,
and a summary of the exceptions that can be generated.

3.1. INTERPRETING THE INSTRUCTION REFERENCE PAGES

This section describes the information contained in the various sections of the instruction refer-
ence pages that make up the majority of this chapter. It also explains the notational conventions
and abbreviations used in these sections.

3.1.1. Instruction Format

The following is an example of the format used for each Intel Architecture instruction descrip-
tion in this chapter:

I 3-1



INSTRUCTION SET REFERENCE Intel ®

CMC—Complement Carry Flag

Opcode Instruction Description
F5 CcMC Complement carry flag

3.1.1.1. OPCODE COLUMN

The “Opcode” column gives the complete object code produced for each form of the instruction.
When possible, the codes are given as hexadecimal bytes, in the same order in which they appeal
in memory. Definitions of entries other than hexadecimal bytes are as follows:

® /digit—A digit between 0 and 7 indicates that the ModR/M byte of the instruction uses
only the r/m (register or memory) operand. The reg field contains the digit that provides an
extension to the instruction's opcode.

® /r—Indicatesthat the ModR/M byte of the instruction contains both a register operand and
an r/m operand.

® cb, cw, cd, cp—A 1-byte (cb), 2-byte (cw), 4-byte (cd), or 6-byte (cp) value following the
opcode that is used to specify a code offset and possibly a new value for the code segment
register.

® b, iw, id—A 1-byte (ib), 2-byte (iw), or 4-byte (id) immediate operand to the instruction
that follows the opcode, ModR/M bytes or scale-indexing bytes. The opcode determines if
the operand is a signed value. All words and doublewords are given with the low-order
byte first.

®  +rb, +rw, +rd— A register code, from 0 through 7, added to the hexadecimal byte given at
the left of the plus sign to form a single opcode byte. The register codes are given in Table
3-1.

® +i—A number used in floating-point instructions when one of the operandsis ST(i) from
the FPU register stack. The number i (which can range from 0 to 7) is added to the
hexadecimal byte given at the left of the plus sign to form a single opcode byte.

3-2 I



Intel® INSTRUCTION SET REFERENCE

Table 3-1. Register Encodings Associated with the +rb, +rw, and +rd Nomenclature

rb rw rd
AL = 0 AX = 0 EAX = 0
CL = 1 CX = 1 ECX = 1
DL = 2 DX = 2 EDX = 2
BL = 3 BX = 3 EBX = 3
rb rw rd
AH = 4 sP = 4 ESP = 4
CH = 5 BP = 5 EBP = 5
DH = 6 SI = 6 ESI = 6
BH = 7 DI = 7 EDI = 7
3.1.1.2. INSTRUCTION COLUMN

The “Instruction” column gives the syntax of the instruction statement as it would appear in an
ASM386 program. The following is a list of the symbols used to represent operands in the
instruction statements:

rel8—A relative address in the range from 128 bytes before the end of the instruction to
127 bytes after the end of the instruction.

rel16 and rel32—A relative address within the same code segment as the instruction
assembled. The rel16 symbol applies to instructions with an operand-size attribute of 16
bits; the rel32 symbol applies to instructions with an operand-size attribute of 32 bits.

ptr16:16 and ptr16:32—A far pointer, typically in a code segment different from that of
the instruction. The notatidl6: 16 indicates that the value of the pointer has two parts. The
value to the left of the colon is a 16-bit selector or value destined for the code segment
register. The value to the right corresponds to the offset within the destination segment.
The ptrl6:16 symbol is used when the instruction's operand-size attribute is 16 bits; the
ptr16:32 symbol is used when the operand-size attribute is 32 bits.

r8—One of the byte general-purpose registers AL, CL, DL, BL, AH, CH, DH, or BH.
r 16—One of the word general-purpose registers AX, CX, DX, BX, SP, BP, SI, or DI.

r32—One of the doubleword general-purpose registers EAX, ECX, EDX, EBX, ESP, EBP,
ESI, or EDI.

imm8—An immediate byte value. The imm8 symbol is a signed number between —128
and +127 inclusive. For instructions in which imm8 is combined with a word or
doubleword operand, the immediate value is sign-extended to form a word or doubleword.
The upper byte of the word is filled with the topmost bit of the immediate value.

imm16—An immediate word value used for instructions whose operand-size attribute is
16 bits. This is a number between —32,768 and +32,767 inclusive.

3-3



INSTRUCTION SET REFERENCE Intel ®

3-4

imm32—An immediate doubleword value used for instructions whose operand-
size attribute is 32 bits. It allows the use of a number between +2,147,483,647 and
-2,147,483,648 inclusive.

r/m8—A byte operand that is either the contents of a byte general-purpose register (AL,
BL, CL, DL, AH, BH, CH, and DH), or a byte from memory.

r/m16—A word general-purpose register or memory operand used for instructions whose
operand-size attribute is 16 bits. The word general-purpose registers are: AX, BX, CX,
DX, SP, BP, SI, and DI. The contents of memory are found at the address provided by the
effective address computation.

r/m32—A doubleword general-purpose register or memory operand used for instructions
whose operand-size attribute is 32 bits. The doubleword general-purpose registers are:
EAX, EBX, ECX, EDX, ESP, EBP, ESI, and EDI. The contents of memory are found at the
address provided by the effective address computation.

m—A 16- or 32-bit operand in memory.

m8—A byte operand in memory, usually expressed as a variable or array name, but
pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the
string instructions and the XLAT instruction.

m16—A word operand in memory, usually expressed as a variable or array name, but
pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with the
string instructions.

m32—A doubleword operand in memory, usually expressed as a variable or array name,
but pointed to by the DS:(E)SI or ES:(E)DI registers. This nomenclature is used only with
the string instructions.

m64—A memory quadword operand in memory. This nomenclature is used only with the
CMPXCHGSB instruction.

m128—A memory double quadword operand in memory. This nomenclature is used only
with the Streaming SIMD Extensions.

m16:16, m16:32—A memory operand containing a far pointer composed of two numbers.
The number to the left of the colon corresponds to the pointer's segment selector. The
number to the right corresponds to its offset.

m16& 32, m16& 16, m32& 32—A memory operand consisting of data item pairs whose
sizes are indicated on the left and the right side of the ampersand. All memory addressing
modes are allowed. The m16&16 and m32&32 operands are used by the BOUND
instruction to provide an operand containing an upper and lower bounds for array indices.
The m16&32 operand is used by LIDT and LGDT to provide a word with which to load
the limit field, and a doubleword with which to load the base field of the corresponding
GDTR and IDTR registers.

moffs8, moffsl6, moffs32—A simple memory variable (memory offset) of type byte,
word, or doubleword used by some variants of the MOV instruction. The actual address is
given by a simple offset relative to the segment base. No ModR/M byte is used in the



Intel® INSTRUCTION SET REFERENCE

instruction. The number shown with moffs indicates its size, which is determined by the
address-size attribute of the instruction.

® Sreg—A segment register. The segment register bit assignments are ES=0, CS=1, SS=2,
DS=3, FS=4, and GS=5.

®* m32real, m6dreal, m80real—A single-, double-, and extended-real (respectively)
floating-point operand in memory.

®* mil6int, m32int, m64int—A word-, short-, and long-integer (respectively) floating-point
operand in memory.

® ST or ST(0)—The top element of the FPU register stack.
® ST(i)—The i" element from the top of the FPU register staick.q through 7)

®* mm—An MMX™ technology register. The 64-bit MMX™ technology registers are:
MMO through MM7.

* xmm—A SIMD floating-point register. The 128-bit SIMD floating-point registers are:
XMMO through XMM7.

* mm/m32—The low order 32 bits of an MMX™ technology register or a 32-bit memory
operand. The 64-bit MMX™ technology registers are: MMO through MM7. The contents
of memory are found at the address provided by the effective address computation.

®* mm/m64—An MMX™ technology register or a 64-bit memory operand. The 64-bit
MMX™ technology registers are: MMO through MM7. The contents of memory are found
at the address provided by the effective address computation.

® xmm/m32—A SIMD floating-points register or a 32-bit memory operand. The 128-bit
SIMD floating-point registers are XMMO through XMM7. The contents of memory are
found at the address provided by the effective address computation.

*  xmm/m64—A SIMD floating-point register or a 64-bit memory operand. The 64-bit
SIMD floating-point registers are XMMO through XMM7. The contents of memory are
found at the address provided by the effective address computation.

® xmm/m128—A SIMD floating-point register or a 128-bit memory operand. The 128-bit
SIMD floating-point registers are XMMO through XMM7. The contents of memory are
found at the address provided by the effective address computation.

3.1.1.3. DESCRIPTION COLUMN

The “Description” column following the “Instruction” column briefly explains the various
forms of the instruction. The following “Description” and “Operation” sections contain more
details of the instruction's operation.

3.1.1.4. DESCRIPTION

The “Description” section describes the purpose of the instructions and the required operands.
It also discusses the effect of the instruction on flags.

I 3-5



INSTRUCTION SET REFERENCE Intel ®

3.1.2. Operation

The “Operation” section contains an algorithmic description (written in pseudo-code) of the
instruction. The pseudo-code uses a notation similar to the Algol or Pascal language. The algo-
rithms are composed of the following elements:

Comments are enclosed within the symbol pairs “(*” and “*)".

Compound statements are enclosed in keywords, such as|F, THEN, ELSE, and FI for an if
statement, DO and OD for ado statement, or CASE ... OF and ESAC for a case statement.

A register name implies the contents of the register. A register name enclosed in brackets
implies the contents of the location whose address is contained in that register. For
example, ES:[DI] indicates the contents of the location whose ES segment relative address
isin register DI. [SI] indicates the contents of the address contained in register Sl relative
to SI's default segment (DS) or overridden segment.

Parentheses around the “E” in a general-purpose register name, such as (E)SI, indicates
that an offset is read from the Sl register if the current address-size attribute is 16 or is read
from the ESI register if the address-size attribute is 32.

Brackets are also used for memory operands, where they mean that the contents of the
memory location is a segment-relative offset. For example, [SRC] indicates that the
contents of the source operand is a segment-relative offset.

A — B;indicates that the value of B is assigned to A.

The symbols =, #, =, and < are relational operators used to compare two values, meaning
equal, not equal, greater or equal, less or equal, respectively. A relational expression such
asA =B isTRUEif thevalue of A isequal to B; otherwiseitis FALSE.

The expression “<< COUNT” and “>> COUNT” indicates that the destination operand
should be shifted left or right, respectively, by the number of bits indicated by the count
operand.

The following identifiers are used in the algorithmic descriptions:

3-6

OperandSize and AddressSize—The OperandSize identifier represents the operand-size
attribute of the instruction, which is either 16 or 32 bits. The AddressSize identifier
represents the address-size attribute, which is either 16 or 32 bits. For example, the
following pseudo-code indicates that the operand-size attribute depends on the form of the
CMPS instruction used.

IF instruction = CMPSW
THEN OperandSize — 16;
ELSE
IF instruction = CMPSD
THEN OperandSize ~ 32;
Fl,
Fl;



Intel® INSTRUCTION SET REFERENCE

Refer to Section 3.8., Operand-Sze and Address-Size Attributes in Chapter 3, Basic
Execution Environment of the Intel Architecture Software Developer's Manual, Volume 1
for general guidelines on how these attributes are determined.

StackAddr Size—Represents the stack address-size attribute associated with the
instruction, which has a value of 16 or 32 bits. For more information, refer to Section
4.2.3., Address-Sze Attributes for Stack Accesses in Chapter 4,Procedure Calls,
Interrupts, and Exceptions of thelntel Architecture Software Developer’s Manual, Volume

1

SRC—Represents the source operand.

DEST—Represents the destination operand.

The following functions are used in the algorithmic descriptions:

ZeroExtend(value)—Returns a value zero-extended to the operand-size attribute of the
instruction. For example, if the operand-size attribute is 32, zero extending a byte value of
—10 converts the byte from F6H to a doubleword value of 000000F6H. If the value passed
to the ZeroExtend function and the operand-size attribute are the same size, ZeroExtend
returns the value unaltered.

SignExtend(value)—Returns a value sign-extended to the operand-size attribute of the
instruction. For example, if the operand-size attribute is 32, sign extending a byte
containing the value —10 converts the byte from F6H to a doubleword value of
FFFFFFF6H. If the value passed to the SignExtend function and the operand-size attribute
are the same size, SignExtend returns the value unaltered.

Satur ateSignedWor dToSignedByte—Converts a signed 16-bit value to a signed 8-bit
value. If the signed 16-bit value is less than —128, it is represented by the saturated value
—128 (80H); if it is greater than 127, it is represented by the saturated value 127 (7FH).

Satur ateSignedDwor dToSignedWor d—Converts a signed 32-bit value to a signed 16-bit
value. If the signed 32-bit value is less than —32768, it is represented by the saturated value
—32768 (8000H); if it is greater than 32767, it is represented by the saturated value 32767
(7FFFH).

Satur ateSignedWor dToUnsignedByte—Converts a signed 16-bit value to an unsigned
8-bit value. If the signed 16-bit value is less than zero, it is represented by the saturated
value zero (00H); if it is greater than 255, it is represented by the saturated value 255
(FFH).

Satur ateToSignedByte—Represents the result of an operation as a signed 8-bit value. If
the result is less than —128, it is represented by the saturated value —128 (80H); if it is
greater than 127, it is represented by the saturated value 127 (7FH).

Satur ateToSignedWor d—Represents the result of an operation as a signed 16-bit value.
If the result is less than —32768, it is represented by the saturated value —32768 (8000H); if
it is greater than 32767, it is represented by the saturated value 32767 (7FFFH).

SaturateToUnsignedByte—Represents the result of an operation as a signed 8-bit value.
If the result is less than zero it is represented by the saturated value zero (00H); if it is
greater than 255, it is represented by the saturated value 255 (FFH).

3-7



INSTRUCTION SET REFERENCE Intel ®

SaturateToUnsignedWord—Represents the result of an operation as a signed 16-bit
value. If the result is less than zero it is represented by the saturated value zero (O0H); if it
is greater than 65535, it is represented by the saturated value 65535 (FFFFH).

LowOrderWord(DEST * SRC)—Multiplies a word operand by a word operand and
stores the least significant word of the doubleword result in the destination operand.

HighOrderWord(DEST * SRC)—Multiplies a word operand by a word operand and
stores the most significant word of the doubleword result in the destination operand.

Push(value)—Pushes a value onto the stack. The number of bytes pushed is determined by
the operand-size attribute of the instruction. Refer to the “Operation” section in
“PUSH—Push Word or Doubleword Onto the Stack” in this chapter for more information
on the push operation.

Pop() removes the value from the top of the stack and returns it. The statement EAX

Pop(); assigns to EAX the 32-bit value from the top of the stack. Pop will return either a

word or a doubleword depending on the operand-size attribute. Refer to the “Operation”
section in “POP—Pop a Value from the Stack” in this chapter for more information on the
pop operation.

PopRegister Stack—Marks the FPU ST(0) register as empty and increments the FPU
register stack pointer (TOP) by 1.

Switch-Tasks—Performs a task switch.

Bit(BitBase, BitOffset)—Returns the value of a bit within a bit string, which is a sequence

of bits in memory or a register. Bits are numbered from low-order to high-order within
registers and within memory bytes. If the base operand is a register, the offset can be in the
range 0..31. This offset addresses a bit within the indicated register. An example, the
function Bit[EAX, 21] is illustrated in Figure 3-1.

31 21 0

L BitOffset = 21 Q

3-8

Figure 3-1. Bit Offset for BIT[EAX,21]

If BitBase is a memory address, BitOffset can range from —2 GBits to 2 GBits. The
addressed bit is numbered (Offset MOD 8) within the byte at address (BitBase + (BitOffset
DIV 8)), where DIV is signed division with rounding towards negative infinity, and MOD
returns a positive number. This operation is illustrated in Figure 3-2.



Intel® INSTRUCTION SET REFERENCE

3.1.3. Intel C/C++ Compiler Intrinsics Equivalent

The Pentium® with MMX™ technology, Pentiufhll, and Pentium® I11 processors have charac-
teristics that enable the development of advanced multimedia applications. This section
describes the compiler intrinsic equivalents that can be used with the Intel C/C++ Compiler.

Intrinsics are special coding extensions that allow using the syntax of C function calls and C
variables instead of hardware registers. Using these intrinsics frees programmers from having
to manage registers and assembly programming. Further, the compiler optimizes the instruction
scheduling so that executables runs faster.

The following sections discuss the intrinsics APl and the MMX™ technology and SIMD
floating-point intrinsics. Each intrinsic equivalent is listed with the instruction description.
There may be additional intrinsics that do not have an instruction equivalent. It is strongly
recommended that the reader reference the compiler documentation for the complete list of
supported intrinsics. Please refer to liftel C/C++ Compiler User’s Guide for Win32* Systems With
Streaming SIMD Extension Supp(@rder Number 718195-00B). Refer to Appendix C, Compiler Intrin-

sics and Functional Equivalenfisr more information on using intrinsics.

Most of theintrinsicsthat use__m64 operands have two different names. If two intrinsic names
are shown for the same equivalent, the first nameistheintrinsic for Intel C/C++ Compiler ver-
sions prior to 4.0 and the second name should be used with the Intel C/C++ Compiler version
4.0 and future versions. The Intel C/C++ Compiler version 4.0 will support the old intrinsic
names. Programs written using pre-4.0 intrinsic names will compile with version 4.0. Version
4.0 intrinsic names will not compile on pre-4.0 compilers.

3.1.3.1. THE INTRINSICS API

The benefit of coding with MMX™ technology intrinsics and SIMD floating-point intrinsics is
that you can use the syntax of C function calls and C variables instead of hardware registers.
This frees you from managing registers and programming assembly. Further, the compiler opti-
mizes the instruction scheduling so that your executable runs faster. For each computational and
data manipulation instruction in the new instruction set, there is a corresponding C intrinsic that
implements it directly. The intrinsics allow you to specify the underlying implementation
(instruction selection) of an algorithm yet leave instruction scheduling and register allocation to
the compiler.

I 3-9



INSTRUCTION SET REFERENCE Intel ®

3.1.3.2. MMX™ TECHNOLOGY INTRINSICS

The MMX™ technology intrinsics are based on a new ___m64 data type to represent the specific
contents of an MMX™ technology register. You can specify values in bytes, short integers, 32-
bit values, or a 64-bit object. The __m64 data type, however, is not a basic ANSI C data type,
and therefore you must observe the following usage restrictions:

* Use__m64 data only on the left-hand side of an assignment, as a return value, or as a
parameter. You cannot use it with other arithmetic expressions ("+", ">>", and so on).

e Use___m64 objectsin aggregates, such as unions to access the byte elements and structures; the
address of an __m64 object may be taken.

e Use ___m64 data only with the MMX™ technology intrinsics described in this guide and
the Intel C/C++ Compiler User's Guide for Win32* Systems With Streaming SIMD Extension
Support(Order Number 718195-00B). Refer to Appendix C, Compiler Intrinsics and Functional
Equivalentsfor more information on using intrinsics.

3.1.3.3. SIMD FLOATING-POINT INTRINSICS

The___m128 datatype is used to represent the contents of an xmm register, which is either four
packed single-precision floating-point values or one scalar single-precision number. The
__m128 datatypeis not abasic ANSI C datatype and therefore some restrictions are placed on
its usage:

* Use__mi28 only on the left-hand side of an assignment, as a return value, or as a
parameter. Do not useit in other arithmetic expressions such as"+" and ">>".

¢ Donotinitiadize _m128 with literals; there is no way to express 128-hit constants.

¢ Use _ ml28 objects in aggregates, such as unions (for example, to access the float
elements) and structures. The address of an___m128 object may be taken.

* Use _ ml28 data only with the intrinsics described in this user’s gRéfie.to

Appendix C, Compiler Intrinsics and Functional Equivalents for more information on using

intrinsics.
The compiler aligns __m128 local data to 16B boundaries on the stack. Global __m128 data is
also 16B-aligned. (To align float arrays, you can use the alignment declspec described in the
following section.) Because the new instruction set treats the SIMD floating-point registers in
the same way whether you are using packed or scalar data, there is no ___m32 datatype to repre-
sent scalar data as you might expect. For scalar operations, you should use the __m128 objects
and the “scalar” forms of the intrinsics; the compiler and the processor implement these opera-
tions with 32-bit memory references.

The suffixes ps and ss are used to denote “packed single” and “scalar single” precision opera-
tions. The packed floats are represented in right-to-left order, with the lowest word (right-most)
being used for scalar operations: [z, y, X, w]. To explain how memory storage reflects this,
consider the following example.

3-10 I



Intel® INSTRUCTION SET REFERENCE

The operation

float a[4]={1.0,2.0,3.0,4.0};
__ml128t=_mm_load_ps(a);

produces the same result as follows:
__ml128t=_mm_set _ps(4.0, 3.0, 2.0, 1.0);
In other words,

t=[4.0,3.0,20,1.0]

where the “scalar” element is 1.0.

Some intrinsics are “composites” because they require more than one instruction to implement
them. You should be familiar with the hardware features provided by the Streaming SIMD
Extensions and MMX™ technology when writing programs with the intrinsics.

Keep the following three important issues in mind:

* Certain intrinsics, such as _mm loadr ps and _mm _cmpgt ss, are not directly
supported by the instruction set. While these intrinsics are convenient programming
aids, be mindful of their implementation cost.

* Floating-point data loaded or stored as __m128 objects must generally be 16-byte-
aligned.

* Some intrinsics require that their argument be immediates, that is, constant integers
(literals), due to the nature of the instruction.

* The result of arithmetic operations acting on two NaN (Not a Number) arguments is
undefined. Therefore, FP operations using NaN arguments will not match the expected
behavior of the corresponding assembly instructions.

For amore detailed description of each intrinsic and additional information related to its usage,

refer to the Intel C/C++ Compiler User’s Guide for Win32* Systems With Streaming SIMD Extension
Support(Order Number 718195-00B). Refer to Appendix C, Compiler Intrinsics and Functional Equiva-
lentsfor more information on using intrinsics.

3.1.4. Flags Affected

The “Flags Affected” section lists the flags in the EFLAGS register that are affected by the
instruction. When a flag is cleared, it is equal to O; when it is set, it is equal to 1. The arithmetic
and logical instructions usually assign values to the status flags in a uniform manner. For more
information, refer to Appendix AAFLAGS Cross-Reference, of thelntel Architecture Software
Developer’s Manual, Volume Mon-conventional assignments are described in the “Operation”
section. The values of flags listedwasdefined may be changed by the instruction in an inde-
terminate manner. Flags that are not listed are unchanged by the instruction.

I 3-11



INSTRUCTION SET REFERENCE Intel ®

7 5 07 07 0
BitBase + 1 BitBase BitBase — 1
LBitOffset =+13
7 07 07 5 0

BitBase BitBase - 1 BitBase - 2
BitOffset = —llJ

Figure 3-2. Memory Bit Indexing

3.1.5. FPU Flags Affected

The floating-point instructions have an “FPU Flags Affected” section that describes how each
instruction can affect the four condition code flags of the FPU status word.

3.1.6. Protected Mode Exceptions

The “Protected Mode Exceptions” section lists the exceptions that can occur when the instruc-
tion is executed in protected mode and the reasons for the exceptions. Each exception is given
a mnemonic that consists of a pound sign (#) followed by two letters and an optional error code
in parentheses. For example, #GP(0) denotes a general protection exception with an error code
of 0. Table 3-2 associates each two-letter mnemonic with the corresponding interrupt vector
number and exception name. Refer to Chaptbitér,rupt and Exception Handling, of thelntel
Architecture Software Developer's Manual, Volumé&oB a detailed description of the excep-

tions.

Application programmers should consult the documentation provided with their operating
systems to determine the actions taken when exceptions occur.

3.1.7. Real-Address Mode Exceptions

The “Real-Address Mode Exceptions” section lists the exceptions that can occur when the
instruction is executed in real-address mode.

3-12 I



intal.

INSTRUCTION SET REFERENCE

Table 3-2. Exception Mnemonics, Names, and Vector Numbers

Vector
No. Mnemonic Name Source
0 #DE Divide Error DIV and IDIV instructions.
1 #DB Debug Any code or data reference.
3 #BP Breakpoint INT 3 instruction.
4 #OF Overflow INTO instruction.
5 #BR BOUND Range Exceeded BOUND instruction.
6 #UD Invalid Opcode (Undefined UD2 instruction or reserved opcode.!
Opcode)
7 #NM Device Not Available (No Math Floating-point or WAIT/FWAIT
Coprocessor) instruction.
8 #DF Double Fault Any instruction that can generate an
exception, an NMI, or an INTR.
10 #TS Invalid TSS Task switch or TSS access.
11 #NP Segment Not Present Loading segment registers or accessing
system segments.
12 #SS Stack Segment Fault Stack operations and SS register loads.
13 #GP General Protection Any memory reference and other
protection checks.
14 #PF Page Fault Any memory reference.
16 #MF Floating-Point Error (Math Fault) Floating-point or WAIT/FWAIT
instruction.
17 #AC Alignment Check Any data reference in memory.?
18 #MC Machine Check Model dependent.®
19 #XF SIMD Floating-Point Numeric Streaming SIMD Extensions
Error
NOTES:

1. The UD2 instruction was introduced in the Pentium® Pro processor.

2. This exception was introduced in the Intel486™ processor.

3. This exception was introduced in the Pentium® processor and enhanced in the Pentium® Pro processor.

3.1.8.

Virtual-8086 Mode Exceptions

The “Virtual-8086 Mode Exceptions” section lists the exceptions that can occur when the

instruction is executed in virtual-8086 mode.

3-13




INSTRUCTION SET REFERENCE Intel ®

3.1.9. Floating-Point Exceptions

The “Floating-Point Exceptions” section lists additional exceptions that can occur when a
floating-point instruction is executed in any mode. All of these exception conditions result in a
floating-point error exception (#MF, vector number 16) being generated. Table 3-3 associates
each one- or two-letter mnemonic with the corresponding exception name. Refer to Section 7.8.,
Floating-Point Exception Conditionsin Chapter 7Floating-Point Unit of thelntel Architecture
Software Developer’s Manual, Volumgfdr a detailed description of these exceptions.

Table 3-3. Floating-Point Exception Mnemonics and Names

Vector
No. Mnemonic Name Source
16 Floating-point invalid operation:
#IS - Stack overflow or underflow - FPU stack overflow or underflow
#IA - Invalid arithmetic operation - Invalid FPU arithmetic operation
16 #Z Floating-point divide-by-zero FPU divide-by-zero
16 #D Floating-point denormalized Attempting to operate on a denormal
operation number
16 #0 Floating-point numeric overflow FPU numeric overflow
16 #U Floating-point numeric underflow FPU numeric underflow
16 #P Floating-point inexact result Inexact result (precision)
(precision)

3.1.10. SIMD Floating-Point Exceptions - Streaming SIMD
Extensions Only

The “SIMD Floating-Point Exceptions” section lists additional exceptions that can occur when

a SIMD floating-point instruction is executed in any mode. All of these exception conditions
result in a SIMD floating-point error exception (#XF, vector number 19) being generated. Table
3-4 associates each one-or two-letter mnemonic with the corresponding exception name. For a
detailed description of these exceptions, refer to Chapferogramming with the Sreaming

SIMD Extension, of thelntel Architecture Software Developer’s Manual, Volume 1

3-14 I



Intel® INSTRUCTION SET REFERENCE

Table 3-4. SIMD Floating-Point Exception Mnemonics and Names

Vector No. Mnemonic Name Source
6 #UD Invalid opcode Memory access
6 #UD Invalid opcode | Refer to Note 1 &
Table 3-5

7 #NM Device not Refer to Note 1 &
available Table 3-5

12 #SS Stack exception Memory access

13 #GP General Refer to Note 2
protection

14 #PF Page fault Memory access

17 #AC Alignment check | Refer to Note 3

19 # Invalid operation Refer to Note 4

19 #z Divide-by-zero Refer to Note 4

19 #D Denormalized Refer to Note 4
operand

19 #0 Numeric overflow Refer to Note 5

19 #U Numeric Refer to Note 5
underflow

19 #P Inexact result Refer to Note 5

Note 1:These are system exceptions. Table 3-5 lists the causes for Interrupt 6 and Interrupt 7 with Stream-
ing SIMD Extensions.

Note 2:Executing a Streaming SIMD Extension with a misaligned 128-bit memory reference generates a
general protection exception; a 128-bit reference within the stack segment, which is not aligned to a 16-
byte boundary will also generate a GP fault, not a stack exception (SS). However, the MOVUPS instruc-
tion, which performs an unaligned 128-bit load or store, will not generate an exception for data that is not
aligned to a 16-byte boundary.

Note 3:This type of alignment check is done for operands which are less than 128-bits in size: 32-bit scalar
single and 16-bit/32-bit/64-bit integer MMX™ technology; the exception is the MOVUPS instruction,
which performs a 128-bit unaligned load or store, is also covered by this alignment check. There are
three conditions that must be true to enable #AC interrupt generation.

Note 4:Invalid, Divide-by-zero and Denormal exceptions are pre-computation exceptions, i.e., they are
detected before any arithmetic operation occurs.

Note 5:Underflow, Overflow and Precision exceptions are post-computation exceptions.

3-15



INSTRUCTION SET REFERENCE Intel ®

Table 3-5. Streaming SIMD Extensions Faults (Interrupts 6 & 7)

CRO.EM | CRO.TS | CR4.0SFXSR | CPUID.XMM Exception
1 - ” - #UD Interrupt 6
0 1 1 1 #NM Interrupt 7
- - 0 - #UD Interrupt 6
- - ° 0 #UD Interrupt 6

3.2. INSTRUCTION REFERENCE

The remainder of this chapter provides detailed descriptions of each of the Intel Architecture
instructions.

3-16 I



Intel® INSTRUCTION SET REFERENCE

AAA—ASCII Adjust After Addition

Opcode Instruction Description
37 AAA ASCII adjust AL after addition
Description

Thisinstruction adjusts the sum of two unpacked BCD valuesto create an unpacked BCD result.
The AL register is the implied source and destination operand for this instruction. The AAA
instruction is only useful when it follows an ADD instruction that adds (binary addition) two
unpacked BCD values and stores a byte result in the AL register. The AAA instruction then
adjusts the contents of the AL register to contain the correct 1-digit unpacked BCD result.

If the addition produces a decimal carry, the AH register is incremented by 1, and the CF and
AF flags are set. If there was no decimal carry, the CF and AF flags are cleared and the AH
register is unchanged. In either case, bits 4 through 7 of the AL register are cleared to 0.

Operation

IF ((AL AND OFH) > 9) OR (AF =1)
THEN
AL « (AL + 6);
AH ~ AH +1;
AF ~ 1;
CF « 1,
ELSE
AF ~ 0;
CF « 0
Fl,
AL — AL AND OFH;

Flags Affected

The AF and CF flags are set to 1 if the adjustment resultsin adecimal carry; otherwisethey are
cleared to 0. The OF, SF, ZF, and PF flags are undefined.

Exceptions (All Operating Modes)

None.

I 3-17



INSTRUCTION SET REFERENCE Intel ®

AAD—ASCII Adjust AX Before Division

Opcode Instruction Description

D5 0A AAD ASCII adjust AX before division

D5 ib (No mnemonic) Adjust AX before division to number base imm8
Description

This instruction adjusts two unpacked BCD digits (the least-significant digit in the AL register
and the most-significant digit in the AH register) so that a division operation performed on the
result will yield a correct unpacked BCD value. The AAD instruction is only useful when it
precedes a DIV instruction that divides (binary division) the adjusted value in the AX register
by an unpacked BCD value.

The AAD instruction setsthe value in the AL register to (AL + (10 * AH)), and then clearsthe
AH register to 00H. The value in the AX register is then equal to the binary equivalent of the
original unpacked two-digit (base 10) number in registers AH and AL.

The generalized version of this instruction alows adjustment of two unpacked digits of any

number base (refer to the “Operation” section below), by settinignth@ byte to the selected
number base (for example, 08H for octal, OAH for decimal, or OCH for base 12 numbers). The
AAD mnemonic is interpreted by all assemblers to mean adjust ASCII (base 10) values. To
adjust values in another number base, the instruction must be hand coded in machine code (D5
imm8).

Operation

tempAL ~ AL,

tempAH ~ AH;

AL — (tempAL + (tempAH Oimm8)) AND FFH; (* imm8 is set to OAH for the AAD mnemonic *)
AH ~ 0

The immediate valuarim8) is taken from the second byte of the instruction.

Flags Affected
The SF, ZF, and PF flags are set according to the result; the OF, AF, and CF flags are undefined.

Exceptions (All Operating Modes)

None.

3-18 I



Intel® INSTRUCTION SET REFERENCE

AAM—ASCII Adjust AX After Multiply

Opcode Instruction Description

D4 0A AAM ASCII adjust AX after multiply

D4 ib (No mnemonic) Adjust AX after multiply to number base imm8
Description

Thisinstruction adjusts the result of the multiplication of two unpacked BCD valuesto create a
pair of unpacked (base 10) BCD values. The AX register is the implied source and destination
operand for this instruction. The AAM instruction is only useful when it follows an MUL
instruction that multiplies (binary multiplication) two unpacked BCD values and stores aword
result in the AX register. The AAM instruction then adjusts the contents of the AX register to
contain the correct 2-digit unpacked (base 10) BCD resullt.

The generalized version of thisinstruction allows adjustment of the contents of the AX to create

two unpacked digits of any number base (refer to the “Operation” section below). Here, the
imm8 byte is set to the selected number base (for example, 08H for octal, OAH for decimal, or
OCH for base 12 numbers). The AAM mnemonic is interpreted by all assemblers to mean adjust
to ASCII (base 10) values. To adjust to values in another number base, the instruction must be
hand coded in machine code (Pdn3).

Operation

tempAL ~ AL,
AH — tempAL / imm8; (* imm8 is set to 0AH for the AAD mnemonic *)
AL —~ tempAL MOD immS,

The immediate valuerim8) is taken from the second byte of the instruction.

Flags Affected
The SF, ZF, and PF flags are set according to the result. The OF, AF, and CF flags are undefined.

Exceptions (All Operating Modes)

None with the default immediate value of OAH. If, however, an immediate value of 0 is used, it
will cause a #DE (divide error) exception.

I 3-19



INSTRUCTION SET REFERENCE Intel ®

AAS—ASCII Adjust AL After Subtraction

Opcode Instruction Description
3F AAS ASCII adjust AL after subtraction
Description

This instruction adjusts the result of the subtraction of two unpacked BCD values to create a
unpacked BCD result. The AL register is the implied source and destination operand for this
instruction. The AAS instruction is only useful when it follows a SUB instruction that subtracts
(binary subtraction) one unpacked BCD value from another and stores a byte result in the AL
register. The AAA instruction then adjusts the contents of the AL register to contain the correct
1-digit unpacked BCD result.

If the subtraction produced adecimal carry, the AH register isdecremented by 1, and the CF and
AF flags are set. If no decimal carry occurred, the CF and AF flags are cleared, and the AH
register is unchanged. In either case, the AL register isleft with its top nibble set to 0.

Operation

IF (AL AND OFH) > 9) OR (AF =1)
THEN
AL —« AL - 6;
AH « AH-1;
AF 1,
CF « 1,
ELSE
CF « 0;
AF  0;
FI,
AL — AL AND OFH;

Flags Affected

The AF and CF flags are set to 1 if there is a decimal borrow; otherwise, they are cleared to 0.
The OF, SF, ZF, and PF flags are undefined.

Exceptions (All Operating Modes)
None.

3-20 I



Intel® INSTRUCTION SET REFERENCE

ADC—Add with Carry

Opcode Instruction Description
14 ib ADC AL,imm8 Add with carry imm8to AL
15 iw ADC AX,imm16 Add with carry imm16to AX
15id ADC EAX,imm32 Add with carry imm32to EAX
80/2ib ADC r/m8,imm8 Add with carry imm8to r/m8
81/2 iw ADC r/m16,imm16 Add with carry imm16to r/m16
81/2id ADC r/m32,imm32 Add with CF imm32 to r/m32
83/2ib ADC r/m16,imm8 Add with CF sign-extended imm8 to r/m16
83/2ib ADC r/m32,imm8 Add with CF sign-extended imm8 into r/m32
10/r ADC r/m8,r8 Add with carry byte register to r/m8
11/r ADC r/m16,r16 Add with carry r16to /m16
11 /r ADC r/m32,r32 Add with CF r32to r/m32
121/r ADC r8,r/m8 Add with carry r/m8 to byte register
13/r ADC r16,i/m16 Add with carry /m16to r16
131/r ADC r32,/m32 Add with CF r/m32to r32
Description

This instruction adds the destination operand (first operand), the source operand (second
operand), and the carry (CF) flag and stores the result in the destination operand. The destination
operand can be a register or a memory location; the source operand can be an immediate, a
register, or amemory location. (However, two memory operands cannot be used in one instruc-
tion.) The state of the CF flag represents a carry from a previous addition. When an immediate
valueis used as an operand, it is sign-extended to the length of the destination operand format.

The ADC instruction does not distinguish between signed or unsigned operands. Instead, the
processor eval uates the result for both data types and sets the OF and CF flagsto indicate acarry
in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed resullt.

The ADC instruction is usually executed as part of a multibyte or multiword addition in which
an ADD instruction is followed by an ADC instruction.

Operation
DEST ~ DEST + SRC + CF;

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

I 3-21



INSTRUCTION SET REFERENCE Intel ®

ADC—Add with Carry (Continued)

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
anull segment selector.

#SS(0) If amemory operand effective address is outside the SS segment limit.
#PF(fault-code) If apage fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
#SS If amemory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If apage fault occurs.

#AC(0) If ;jlignment checking is enabled and an unaligned memory reference is
made.

3-22 I



intal.

INSTRUCTION SET REFERENCE

ADD—Add
Opcode Instruction Description
04 ib ADD AL,imm8 Add imm8to AL
05 iw ADD AX,imm16 Add imm16to AX
05 id ADD EAX,imm32 Add imm32to EAX
80/0ib ADD r/m8,imm8 Add imm8to r/m8
81 /0 iw ADD r/m16,imm16 Add imm16to r/m16
81/0id ADD r/m32,imm32 Add imm32to r/m32
83/0ib ADD r/m16,imm8 Add sign-extended imm8to r/m16
83/0ib ADD r/m32,imm8 Add sign-extended imm8to r/m32
00/r ADD r/m8,r8 Add r8to r/m8
0l/r ADD r/m16,r16 Add r16to r/m16
0l/r ADD r/m32,r32 Add r32 to /m32
02/r ADD r8,r/m8 Add r/m8to r8
03/r ADD r16,r/m16 Add r/m16to ri6
03/r ADD r32,r/m32 Add r/m32to r32
Description

This instruction adds the first operand (destination operand) and the second operand (source
operand) and stores the result in the destination operand. The destination operand can be a
register or amemory location; the source operand can be animmediate, aregister, or amemory
location. (However, two memory operands cannot be used in one instruction.) When an imme-
diate value is used as an operand, it is sign-extended to the length of the destination operand
format.

The ADD instruction does not distinguish between signed or unsigned operands. Instead, the
processor eval uates the result for both data types and sets the OF and CF flagsto indicate acarry
in the signed or unsigned result, respectively. The SF flag indicates the sign of the signed resullt.

Operation
DEST ~ DEST + SRC;

Flags Affected
The OF, SF, ZF, AF, CF, and PF flags are set according to the result.

I 3-23



INSTRUCTION SET REFERENCE Intel ®

ADD—Add (Continued)

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
anull segment selector.

#SS(0) If amemory operand effective address is outside the SS segment limit.
#PF(fault-code) If apage fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
#SS If amemory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If apage fault occurs.

#AC(0) If ;jlignment checking is enabled and an unaligned memory reference is
made.

3-24 I



Intel® INSTRUCTION SET REFERENCE

ADDPS—Packed Single-FP Add

Opcode Instruction Description
OF,58,/r ADDPS xmm1, xmm2/m128  Add packed SP FP numbers from XMM2/Mem to XMM1.

Description
The ADDPS instruction adds the packed SP FP numbers of both their operands.

ADD PS xmm1, xmm2/M128

Xmm1 | 4.0 | 3.0 | 20 | 1.0 |
+ + + +

Xmm2/ | 1.0 | 2.0 | 3.0 | 4.0 |
m128 — — ~

Xmm1 | 5.0 | 5.0 | 5.0 | 5.0 |

Figure 3-3. Operation of the ADDPS Instruction

Operation

DEST[31-0] = DEST[31-0] + SRC/m128[31-0];
DEST[63-32] = DEST[63-32] + SRC/m128[63-32];
DEST[95-64] = DEST[95-64] + SRC/m128[95-64];

DEST[127-96] = DEST[127-96] + SRC/m128[127-96];

Intel C/C++ Compiler Intrinsic Equivalent
_ m128 mm_add_ps(_ m128 a, _ m128 b)
Adds the four SP FP values of aand b.

I 3-25



INSTRUCTION SET REFERENCE Intel ®

ADDPS—Packed Single-FP Add (Continued)

Exceptions

General protection exception if not aligned on 16-byte boundary, regardless of segment.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#UD

#NM

#XM

#UD

#UD
#UD

For an illegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments.

For anillegal addressin the SS segment.
For a page fault

If CRO.EM = 1.

If TShitin CROis set.

For an unmasked Streaming SIMD Extension numeric exception
(CRA.OSXMMEXCEPT =1).

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCEPT =0).

If CR4.OSFX SR(bit 9) = 0.
If CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions

Interrupt 13

#UD
#NM
#XM

#UD

If any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

If CRO.EM = 1.
If TShitin CRO s set.

For an unmasked Streaming SIMD Extension numeric exception
(CRA.OSXMMEXCEPT =1).

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCEPT =0).

Virtual 8086 Mode Exceptions

Same exceptions asin Real Address Mode.

#PF(fault-code)

3-26

For a page fault.



Intel® INSTRUCTION SET REFERENCE

ADDSS—Scalar Single-FP Add

Opcode Instruction Description
F3,0F58, /r ADDSS xmml, xmm2/m32  Add the lower SP FP number from XMM2/Mem to XMM1.

Description

The ADDSS instruction adds the lower SP FP numbers of both their operands; the upper three
fields are passed through from xmmLl.

ADD SS xmm1, xmm2/m32

Xmm1 | | | | 1.0 |
+ + + +

Xmm?2/ | | | | 4.0 |
m32 - - -

Xmm1 | | | | 5.0 |

Figure 3-4. Operation of the ADDSS Instruction

Operation

DEST[31-0] = DEST[31-0] + SRC/m32[31-0];
DEST[63-32] = DEST[63-32];

DEST[95-64] = DEST[95-64];

DEST[127-96] = DEST[127-96];

Intel C/C++ Compiler Intrinsic Equivalent
_ m128 _mm_add_ss(_ m128 a, __m128 b)

Addsthe lower SP FP (single-precision, floating-point) values of aand b; the upper three SP FP
values are passed through from a.

I 3-27



INSTRUCTION SET REFERENCE Intel ®

ADDSS—Scalar Single-FP Add (Continued)

Exceptions

None.

Numeric Exceptions

Overflow, Underflow, Invalid, Precision, Denormal.

Protected Mode Exceptions

#GP(0) For an illegal memory operand effective address in the CS, DS, ES,
FS, or GS segments.

#SS(0) For anillegal addressin the SS segment.

#PF(fault-code) For a page fault.

#UD If CRO.EM = 1.

#NM If TShitin CROis set.

#AC For unaligned memory reference. To enable #AC exceptions, three

conditions must be true (CRO.AM is set; EFLAGS.AC is set; and
current CPL is 3).

#XM For an unmasked Streaming SIMD Extension numeric exception
(CR4A.OSXMMEXCEPT =1).

#UD For an unmasked Streaming SIMD Extension numeric exception
(CRA.OSXMMEXCEPT =0).

#UD If CR4.0SFXSR(bit 9) = 0.

#UD If CPUID.XMM(EDX hit 25) = 0.

3-28 I



Intel® INSTRUCTION SET REFERENCE

ADDSS—Scalar Single-FP Add (Continued)

Real Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from O to OFFFFH.

#UD If CRO.EM = 1.

#NM If TShitin CROis set.

#XM For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extension numeric exception
(CR4.0SXMMEXCPT =0).

#UD If CR4.0OSFXSR(bit 9) = 0.

#UD If CPUID.XMM(EDX hit 25) = 0.

Virtual 8086 Mode Exceptions
Same exceptions asin Real Address Mode.
#AC For unaligned memory reference if the current privilege level is 3.

#PF (fault-code) For a page fault.

I 3-29



INSTRUCTION SET REFERENCE

AND—Logical AND

Opcode Instruction Description
24 ib AND AL,imm8 AL AND imm8
25 iw AND AX,imm16 AX AND imm16
25 id AND EAX,imm32 EAX AND imm32
80/4 ib AND r/m8,imm8 r/m8 AND imm8
81 /4 iw AND r/m16,imm16 r/m16 AND imm16
81/4 id AND r/m32,imm32 r/m32 AND imm32
83 /4 ib AND r/m16,imm8 r/m16 AND imm8 (sign-extended)
83 /4 ib AND r/m32,imm8 r/m32 AND imm8 (sign-extended)
20 /r AND r/m8,r8 r/m8 AND r8
211r AND r/m16,r16 r/m16 AND r16
211r AND r/m32,r32 r/m32 AND r32
221r AND r8,r/m8 r8 AND r/m8
231Ir AND r16,r/m16 r16 AND r/m16
231Ir AND r32,r/m32 r32 AND r/m32
Description

Thisinstruction performs abitwise AND operation on the destination (first) and source (second)
operands and stores the result in the destination operand location. The source operand can be an
immediate, a register, or a memory location; the destination operand can be a register or a
memory location. Two memory operands cannot, however, be used in one instruction. Each bit
of the instruction result is a 1 if both corresponding bits of the operands are 1; otherwise, it

becomes a 0.

Operation

DEST —~ DEST AND SRC;

Flags Affected

The OF and CF flags are cleared; the SF, ZF, and PF flags are set according to the result. The
state of the AF flag is undefined.

3-30



Intel® INSTRUCTION SET REFERENCE

AND—Logical AND (Continued)

Protected Mode Exceptions
#GP(0) If the destination operand points to a nonwritable segment.

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If amemory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If amemory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If :{; ignment checking is enabled and an unaligned memory reference is
made.

I 3-31



INSTRUCTION SET REFERENCE Intel ®

ANDNPS—BIt-wise Logical And Not For Single-FP

Opcode Instruction Description

OF,55,/r ANDNPS xmm1, xmm2/m128 Invert the 128 bits in XMMIand then AND the result
with 128 bits from XMM2/Mem.

Description

The ANDNPS instructions returns a bit-wise logical AND between the complement of XMM1
and XMM2/Mem.

ANDNPS xmm1, xmm2/M128

xmm1 [ oxoooo1111 | ox1110000 | 0x00001111 | ox11110000 |
& & & &

Xmm2/ | 0x11110000 | 0x00001111 |  0x11110000 |  0x00001111 |
m128 _ _ —

xmm1 | 0x00001111 | = 0x11110000 |  ox00001111 |  ox11110000 |

Figure 3-5. Operation of the ANDNPS Instruction
Operation
DEST[127-0] = NOT (DEST[127-0]) AND SRC/m128[127-0];

Intel C/C++ Compiler Intrinsic Equivalent
__m128 mm_andnot_ps(__ml128 a, _ m128 b)
Computes the bitwise AND-NOT of the four SP FP values of aand b.

3-32 I



Intel® INSTRUCTION SET REFERENCE

ANDNPS—BIt-wise Logical And Not for Single-FP (Continued)

Exceptions
General protection exception if not aligned on 16-byte boundary, regardless of segment.

Numeric Exceptions
None.

Protected Mode Exceptions

#GP(0) For anillegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments.

#SS(0) For anillegal addressin the SS segment.

#PF(fault-code) For a page fault.

#UD If CRO.EM = 1.

#NM If TSbhitin CRO s set.

#UD If CR4.OSFXSR(bit 9) = 0.

#UD If CPUID.XMM(EDX hit 25) = 0.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to OFFFFH

#UD If CRO.EM = 1.

#NM If TShitin CROis set.

Virtual-8086 Mode Exceptions
Same exceptions asin Real Address Mode.
#PF(fault-code) For a page fault.

#UD If CR4.OSFXSR(bit 9) = 0.
#UD If CPUID.XMM(EDX hit 25) = 0.
Comments

The usage of Repeat Prefix (F3H) with ANDNPS is reserved. Different processor implementa-
tions may handlethis prefix differently. Usage of this prefix with ANDNPS risksincompatibility
with future processors.

I 3-33



INSTRUCTION SET REFERENCE Intel®

ANDPS—BiIt-wise Logical And For Single FP

Opcode Instruction Description
OF,54,/r ANDPS xmm1, xmm2/m128 Logical AND of 128 bhits from XMM2/Mem to XMM1
register.
Description

The ANDPS instruction returns a bit-wise logical AND between XMM1 and XMM2/Mem.

ANDPS xmm1, xmm2/m128

Xxmm1 | 0x00001111 [ 0x11110000 |  0x00001111 |  0x11110000 |
& & & &

erfgg | ox11110000 | 0x00001111 [  0x11110000 |  0x00001111 |

Xmm1 | 0x00000000 | 0X00000000 |  0X00000000 |  0x00000000 |

Figure 3-6. Operation of the ANDPS Instruction

Operation
DEST[127-0] AND= SRC/m128[127-0];

Intel C/C++ Compiler Intrinsic Equivalent
_ ml128 _mm_and_ps(_ m128 a, _ m128 b)
Computes the bitwise And of the four SP FP values of aand b.

Exceptions
General protection exception if not aligned on 16-byte boundary, regardless of segment.

3-34 I



Intel® INSTRUCTION SET REFERENCE

ANDPS—Bit-wise Logical And for Single-FP (Continued)

Numeric Exceptions

None.

Protected Mode Exceptions

#GP(0) For anillegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments

#SS(0) For anillegal addressin the SS segment.

#PF(fault-code) For a page fault.

#UD If CRO.EM = 1.

#NM If TShitin CROis set.

#UD If CR4.0SFXSR(bit 9) = 0.

#UD If CPUID.XMM(EDX hit 25) = 0.

Real-Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from O to OFFFFH.

#UD If CRO.EM = 1.

#NM If TShitin CROis set.

#UD If CR4.OSFXSR(bit 9) = 0.

#UD If CPUID.XMM(EDX hit 25) = 0.

Virtual-8086 Mode Exceptions
Same exceptions asin Real Address Mode.
#PF(fault-code) For a page fault.

Comments

The usage of Repeat Prefix (F3H) with ANDPS is reserved. Different processor implementa-
tions may handle this prefix differently. Usage of this prefix with ANDPS risks incompatibility
with future processors.

I 3-35



INSTRUCTION SET REFERENCE Intel ®

ARPL—Adjust RPL Field of Segment Selector

Opcode Instruction Description
63 /r ARPL r/m16,r16 Adjust RPL of /m16 to not less than RPL of r16
Description

Thisinstruction compares the RPL fields of two segment selectors. The first operand (the desti-
nation operand) contains one segment selector and the second operand (source operand)
containsthe other. (The RPL field islocated in bits 0 and 1 of each operand.) If the RPL field of
the destination operand is less than the RPL field of the source operand, the ZF flag is set and
the RPL field of the destination operand isincreased to match that of the source operand. Other-
wise, the ZF flag is cleared and no change is made to the destination operand. (The destination
operand can be a word register or a memory location; the source operand must be a word
register.)

The ARPL instruction is provided for use by operating-system procedures (however, it can also

be used by applications). It is generally used to adjust the RPL of a segment selector that has

been passed to the operating system by an application program to match the privilege level of

the application program. Here the segment selector passed to the operating system is placed in

the destination operand and segment selector for the application program’s code segment is
placed in the source operand. (The RPL field in the source operand represents the privilege level
of the application program.) Execution of the ARPL instruction then insures that the RPL of the
segment selector received by the operating system is no lower (does not have a higher privilege)
than the privilege level of the application program. (The segment selector for the application
program’s code segment can be read from the stack following a procedure call.)

Refer to Chapter 4.10.4Checking Caller Access Privileges (ARPL Instruction) in Chapter 4,
Protection of thelntel Architecture Software Developer's Manual, VolumiBmore informa-
tion about the use of thisinstruction.

Operation

IF DEST(RPL) < SRC(RPL)
THEN

ZF ~ 1,

DEST(RPL) —~ SRC(RPL);
ELSE

ZF < 0;
FI,

Flags Affected

The ZF flag is set to 1 if the RPL field of the destination operand is less than that of the source
operand; otherwise, is cleared to O.

3-36 I



Intel® INSTRUCTION SET REFERENCE

ARPL—Adjust RPL Field of Segment Selector (Continued)

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
anull segment selector.

#SS(0) If amemory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions
#UD The ARPL instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The ARPL ingtruction is not recognized in virtual-8086 mode.

I 3-37



INSTRUCTION SET REFERENCE Intel ®

BOUND—Check Array Index Against Bounds

Opcode Instruction Description
62 /r BOUND r16,m16&16 Check if r16 (array index) is within bounds specified by
m16&16
62 /r BOUND r32,m32&32 Check if r32 (array index) is within bounds specified by
m16&16
Description

This instruction determines if the first operand (array index) is within the bounds of an array
specified the second operand (bounds operand). The array index isasigned integer located in a
register. The bounds operand is a memory location that contains a pair of signed doubleword-
integers (when the operand-size attribute is 32) or a pair of signed word-integers (when the
operand-size attributeis 16). The first doubleword (or word) isthe lower bound of the array and
the second doubleword (or word) is the upper bound of the array. The array index must be
greater than or equal to the lower bound and less than or equal to the upper bound plus the
operand size in bytes. If the index is not within bounds, a BOUND range exceeded exception
(#BR) is signalled. (When a this exception is generated, the saved return instruction pointer
points to the BOUND instruction.)

The bounds limit data structure (two words or doublewords containing the lower and upper
limits of the array) is usualy placed just before the array itself, making the limits addressable
via a constant offset from the beginning of the array. Because the address of the array already
will be present in aregister, this practice avoids extra bus cycles to obtain the effective address
of the array bounds.

Operation

IF (Arraylndex < LowerBound OR Arraylndex > (UppderBound + OperandSize/8]))
(* Below lower bound or above upper bound *)
THEN
#BR,;
Fl;

Flags Affected
None.

3-38 I



intal.

INSTRUCTION SET REFERENCE

BOUND—Check Array Index Against Bounds (Continued)

Protected Mode Exceptions

#BR
#UD
#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If the bounds test fails.
If second operand is not a memory location.

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
If amemory operand effective address is outside the SS segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#BR
#UD
#GP

#SS

If the bounds test fails.
If second operand is not a memory location.

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#BR
#UD
#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If the bounds test fails.
If second operand is not a memory location.

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made.

3-39



INSTRUCTION SET REFERENCE Intel ®

BSF—Bit Scan Forward

Opcode Instruction Description

OF BC BSF r16,r/m16 Bit scan forward on r/m16

OF BC BSF r32,r/m32 Bit scan forward on r/m32
Description

This instruction searches the source operand (second operand) for the least significant set bit (1
bit). If aleast significant 1 bit is found, its bit index is stored in the destination operand (first
operand). The source operand can be aregister or amemory location; the destination operand is
aregister. The bit index is an unsigned offset from bit O of the source operand. If the contents
source operand are 0, the contents of the destination operand is undefined.

Operation

IFSRC=0
THEN
ZF ~ 1,
DEST is undefined;
ELSE
ZF ~ 0O;
temp ~ O;
WHILE Bit(SRC, temp) = 0
DO
temp ~ temp + 1,
DEST -~ temp;
OD;
Fl;

Flags Affected

The ZF flag is set to 1 if all the source operand is O; otherwise, the ZF flag is cleared. The CF,
OF, SF, AF, and PF, flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If amemory operand effective address is outside the SS segment limit.
#PF(fault-code) If apage fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

3-40 I



Intel® INSTRUCTION SET REFERENCE

BSF—BIt Scan Forward (Continued)

Real-Address Mode Exceptions

#GP If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
#SS If amemory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If :{; ignment checking is enabled and an unaligned memory reference is
made.

I 3-41



INSTRUCTION SET REFERENCE Intel ®

BSR—BIit Scan Reverse

Opcode Instruction Description

OF BD BSR r16,r/m16 Bit scan reverse on r/m16

OF BD BSR r32,r/m32 Bit scan reverse on r/m32
Description

Thisinstruction searches the source operand (second operand) for the most significant set bit (1
bit). If a most significant 1 bit is found, its bit index is stored in the destination operand (first
operand). The source operand can be aregister or amemory location; the destination operand is
aregister. The bit index is an unsigned offset from bit O of the source operand. If the contents
source operand are 0, the contents of the destination operand is undefined.

Operation

IFSRC=0
THEN
ZF « 1;
DEST is undefined;
ELSE
ZF - 0;
temp ~ OperandSize —1;
WHILE Bit(SRC, temp) =0
DO
temp ~ temp - 1;
DEST -~ temp;
OD;
FI;

Flags Affected

The ZF flag is set to 1 if all the source operand is O; otherwise, the ZF flag is cleared. The CF,
OF, SF, AF, and PF, flags are undefined.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If amemory operand effective address is outside the SS segment limit.
#PF(fault-code) If apage fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

3-42 I



Intel® INSTRUCTION SET REFERENCE

BSR—BIit Scan Reverse (Continued)

Real-Address Mode Exceptions

#GP If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
#SS If amemory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If :{; ignment checking is enabled and an unaligned memory reference is
made.

I 3-43



INSTRUCTION SET REFERENCE Intel ®

BSWAP—Byte Swap

Opcode Instruction Description
OF C8+rd BSWAP r32 Reverses the byte order of a 32-bit register.
Description

This instruction reverses the byte order of a 32-bit (destination) register: bits O through 7 are
swapped with bits 24 through 31, and bits 8 through 15 are swapped with bits 16 through 23.
This instruction is provided for converting little-endian values to big-endian format and vice
versa

To swap bytesin aword value (16-bit register), use the XCHG instruction. When the BSWAP
instruction references a 16-bit register, the result is undefined.

Intel Architecture Compatibility

The BSWAP instruction is not supported on Intel Architecture processors earlier than the
Intel486™ processor family. For compatibility with this instruction, include functionally
equivalent code for execution on Intel processors earlier than the Intel486™ processor family.

Operation

TEMP - DEST

DEST(7..0) — TEMP(31..24)

DEST(15..8) — TEMP(23..16)
DEST(23..16) — TEMP(15..8)
DEST(31..24) — TEMP(7..0)

Flags Affected

None.

Exceptions (All Operating Modes)

None.

3-44 I



Intel® INSTRUCTION SET REFERENCE

BT—Bit Test
Opcode Instruction Description
OF A3 BT r/m16,r16 Store selected bit in CF flag
OF A3 BT r/m32,r32 Store selected bit in CF flag
OF BA /4 ib BT r/m16,imm8 Store selected bit in CF flag
OF BA /4 ib BT r/m32,imm8 Store selected bit in CF flag
Description

Thisinstruction selectsthe bit in abit string (specified with the first operand, called the bit base)
at the hit-position designated by the bit offset operand (second operand) and stores the value of
the bit in the CF flag. The bit base operand can be aregister or amemory location; the bit offset
operand can be aregister or an immediate value. If the bit base operand specifies aregister, the
instruction takes the modulo 16 or 32 (depending on the register size) of the bit offset operand,
allowing any bit position to be selected in a 16- or 32-bit register, respectively (refer to Figure
3-1). If the bit base operand specifies amemory location, it represents the address of the bytein
memory that contains the bit base (bit O of the specified byte) of the bit string (refer to Figure
3-2). The offset operand then selects a bit position within the range —2° to 2°! — 1 for aregister
offset and 0 to 31 for an immediate offset.

Some assembl ers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. In this case, the low-
order three or five bits (three for 16-bit operands, five for 32-bit operands) of the immediate bit
offset are stored in the immediate bit offset field, and the high-order bits are shifted and
combined with the byte displacement in the addressing mode by the assembler. The processor
will ignore the high order bits if they are not zero.

When accessing a bit in memory, the processor may access four bytes starting from the memory
address for a 32-bit operand size, using by the following relationship:

Effective Address + (4 O(BitOffset DIV 32))

Or, it may access two bytes starting from the memory address for a 16-bit operand, using this
relationship:

Effective Address + (2 O(BitOffset DIV 16))

It may do so even when only a single byte needs to be accessed to reach the given bit. When
using this bit addressing mechanism, software should avoid referencing areas of memory close
to address space holes. In particular, it should avoid references to memory-mapped I/O registers.
Instead, software should use the MOV instructions to load from or store to these addresses, and
use the register form of these instructions to manipulate the data.

Operation
CF - Bit(BitBase, BitOffset)

I 3-45



INSTRUCTION SET REFERENCE Intel ®

BT—Bit Test (Continued)

Flags Affected

The CF flag contains the value of the selected bit. The OF, SF, ZF, AF, and PF flags are
undefined.

Protected Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If amemory operand effective address is outside the SS segment limit.
#PF(fault-code) If apage fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
#SS If amemory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If apage fault occurs.

#AC(0) If :dlignment checking is enabled and an unaligned memory reference is
made.

3-46 I



Intel® INSTRUCTION SET REFERENCE

BTC—Bit Test and Complement

Opcode Instruction Description

OF BB BTC r/mi16,r16 Store selected bit in CF flag and complement

OF BB BTC r/m32,r32 Store selected bit in CF flag and complement

OFBA /7 ib BTC r/m16,imm8 Store selected bit in CF flag and complement

OFBA /7 ib BTC r/m32,imm8 Store selected bit in CF flag and complement
Description

Thisinstruction selectsthe bit in abit string (specified with the first operand, called the bit base)
at the bit-position designated by the bit offset operand (second operand), stores the value of the
bit in the CF flag, and complements the selected bit in the bit string. The bit base operand can
be aregister or amemory location; the bit offset operand can be aregister or animmediate value.
If the bit base operand specifies aregister, the instruction takes the modulo 16 or 32 (depending
on the register size) of the bit offset operand, allowing any bit position to be selected in a 16- or
32-hit register, respectively (refer to Figure 3-1). If the bit base operand specifies a memory
location, it represents the address of the byte in memory that contains the bit base (bit 0 of the
specified byte) of the bit string (refer to Figure 3-2). The offset operand then selectsabit position
within the range —2%! to 2 - 1 for aregister offset and 0 to 31 for an immediate offset.

Some assembl ers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. Refer to “BT—Bit
Test” in this chapter for more information on this addressing mechanism.

Operation

CF - Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) — NOT Bit(BitBase, BitOffset);

Flags Affected

The CF flag contains the value of the selected bit before it is complemented. The OF, SF, ZF,
AF, and PF flags are undefined.

I 3-47



INSTRUCTION SET REFERENCE Intel ®

BTC—Bit Test and Complement (Continued)

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If amemory operand effective address is outside the SS segment limit.
#PF(fault-code) If apage fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
#SS If amemory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If apage fault occurs.

#AC(0) If ;Iignment checking is enabled and an unaligned memory reference is
made.

3-48 I



Intel® INSTRUCTION SET REFERENCE

BTR—BIt Test and Reset

Opcode Instruction Description

OF B3 BTR r/m16,r16 Store selected bit in CF flag and clear

OF B3 BTR r/m32,r32 Store selected bit in CF flag and clear

OFBA /6 ib BTR r/m16,imm8 Store selected bit in CF flag and clear

OFBA /6 ib BTR r/m32,imm8 Store selected bit in CF flag and clear
Description

Thisinstruction selectsthe bit in abit string (specified with the first operand, called the bit base)
at the bit-position designated by the bit offset operand (second operand), stores the value of the
bit in the CF flag, and clears the selected hit in the bit string to 0. The bit base operand can be a
register or amemory location; the bit offset operand can be aregister or an immediate value. If
the bit base operand specifies a register, the instruction takes the modulo 16 or 32 (depending
on the register size) of the bit offset operand, allowing any bit position to be selected in a 16- or
32-hit register, respectively (refer to Figure 3-1). If the bit base operand specifies a memory
location, it represents the address of the byte in memory that contains the bit base (bit 0 of the
specified byte) of the bit string (refer to Figure 3-2). The offset operand then selectsabit position
within the range —2%! to 2 - 1 for aregister offset and 0 to 31 for an immediate offset.

Some assembl ers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. Refer to “BT—Bit
Test” in this chapter for more information on this addressing mechanism.

Operation

CF - Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) — 0;

Flags Affected

The CF flag contains the value of the selected bit before it is cleared. The OF, SF, ZF, AF, and
PF flags are undefined.

I 3-49



INSTRUCTION SET REFERENCE Intel ®

BTR—BIt Test and Reset (Continued)

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If amemory operand effective address is outside the SS segment limit.
#PF(fault-code) If apage fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
#SS If amemory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If apage fault occurs.

#AC(0) If ;Iignment checking is enabled and an unaligned memory reference is
made.

3-50 I



Intel® INSTRUCTION SET REFERENCE

BTS—Bit Test and Set

Opcode Instruction Description

OF AB BTS r/m16,r16 Store selected bit in CF flag and set

OF AB BTS r/m32,r32 Store selected bit in CF flag and set

OFBA/5ib BTS r/m16,imm8 Store selected bit in CF flag and set

OFBA/5ib BTS r/m32,imm8 Store selected bit in CF flag and set
Description

Thisinstruction selectsthe bit in abit string (specified with the first operand, called the bit base)
at the bit-position designated by the bit offset operand (second operand), stores the value of the
bit in the CF flag, and sets the selected bit in the bit string to 1. The bit base operand can be a
register or amemory location; the bit offset operand can be aregister or an immediate value. If
the bit base operand specifies a register, the instruction takes the modulo 16 or 32 (depending
on the register size) of the bit offset operand, allowing any bit position to be selected in a 16- or
32-hit register, respectively (refer to Figure 3-1). If the bit base operand specifies a memory
location, it represents the address of the byte in memory that contains the bit base (bit 0 of the
specified byte) of the bit string (refer to Figure 3-2). The offset operand then selectsabit position
within the range —2%! to 2 - 1 for aregister offset and 0 to 31 for an immediate offset.

Some assembl ers support immediate bit offsets larger than 31 by using the immediate bit offset
field in combination with the displacement field of the memory operand. Refer to “BT—Bit
Test” in this chapter for more information on this addressing mechanism.

Operation

CF - Bit(BitBase, BitOffset)
Bit(BitBase, BitOffset) — 1;

Flags Affected

The CF flag contains the value of the selected bit before it is set. The OF, SF, ZF, AF, and PF
flags are undefined.

I 3-51



INSTRUCTION SET REFERENCE Intel ®

BTS—ABit Test and Set (Continued)

Protected Mode Exceptions

#GP(0) If the destination operand points to a nonwritable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If amemory operand effective address is outside the SS segment limit.
#PF(fault-code) If apage fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
#SS If amemory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If apage fault occurs.

#AC(0) If ;Iignment checking is enabled and an unaligned memory reference is
made.

3-52 I



Intel® INSTRUCTION SET REFERENCE

CALL—cCall Procedure

Opcode Instruction Description

E8 cw CALL rel16 Call near, relative, displacement relative to next instruction

E8 cd CALL rel32 Call near, relative, displacement relative to next instruction

FF /2 CALL r/m16 Call near, absolute indirect, address given in /m16

FF /2 CALL r/m32 Call near, absolute indirect, address given in /m32

9A cd CALL ptr16:16 Call far, absolute, address given in operand

9A cp CALL ptr16:32 Call far, absolute, address given in operand

FF /3 CALL m16:16 Call far, absolute indirect, address given in m16:16

FF /3 CALL m16:32 Call far, absolute indirect, address given in m16:32
Description

Thisinstruction saves procedure linking information on the stack and branches to the procedure
(called procedure) specified with the destination (target) operand. The target operand specifies
the address of the first instruction in the called procedure. This operand can be an immediate
value, a general-purpose register, or amemory location.

Thisinstruction can be used to execute four different types of calls:

® Near call—A call to a procedure within the current code segment (the segment currently
pointed to by the CS register), sometimes referred to as an intrasegment call.

® Far call—A call to a procedure located in a different segment than the current code
segment, sometimes referred to as an intersegment call.

® Inter-privilege-level far call—A far call to a procedure in a segment at a different privilege
level than that of the currently executing program or procedure.

® Task switch—A call to a procedure located in a different task.

The latter two call types (inter-privilege-level call and task switch) can only be executed in
protected mode. Refer to Section 4Calling Procedures Using CALL and RET in Chapter 4,
Procedure Calls, Interrupts, and Exceptions of the Intel Architecture Software Developer’s
Manual, Volume Jfor additional information on near, far, and inter-privilege-level calls. Refer

to Chapter 6, Task Managemenbf the Intel Architecture Software Developer’s Manual,
Volume 3for information on performing task switches with the CALL instruction.

Near Call. When executing a near call, the processor pushes the value of the EIP register
(which containsthe offset of the instruction following the CALL instruction) onto the stack (for
use later as a return-instruction pointer). The processor then branches to the address in the
current code segment specified with the target operand. The target operand specifies either an
absolute offset in the code segment (that is an offset from the base of the code segment) or a
relative offset (a signed displacement relative to the current value of the instruction pointer in
the EIP register, which points to the instruction following the CALL instruction). The CS
register is not changed on near calls.

I 3-53



INSTRUCTION SET REFERENCE Intel ®

CALL—Call Procedure (Continued)

For a near call, an absolute offset is specified indirectly in a general-purpose register or a
memory location (r/m16 or r/m32). The operand-size attribute determines the size of the target
operand (16 or 32 bits). Absol ute offsets are loaded directly into the EIP register. If the operand-
size attribute is 16, the upper two bytes of the EIP register are cleared to Os, resulting in a
maximum instruction pointer size of 16 bits. (When accessing an absol ute offset indirectly using
the stack pointer [ESP] as a base register, the base value used is the value of the ESP before the
instruction executes.)

A relative offset (rel16 or rel32) is generally specified as a label in assembly code, but at the
machine codelevel, it isencoded as asigned, 16- or 32-bit immediate value. Thisvalueisadded
to the value in the EIP register. As with absolute offsets, the operand-size attribute determines
the size of the target operand (16 or 32 bits).

Far Calls in Real-Address or Virtual-8086 Mode. When executing a far call in real-

address or virtual-8086 mode, the processor pushes the current value of both the CS and EIP

registers onto the stack for use as a return-instruction pointer. The processor then performs a “far
branch” to the code segment and offset specified with the target operand for the called proce-

dure. Here the target operand specifies an absolute far address either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with a memory locatiorm(l6:16 or m16:32). With the

pointer method, the segment and offset of the called procedure is encoded in the instruction,

using a 4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address immediate. With

the indirect method, the target operand specifies a memory location that contains a 4-byte (16-bit
operand size) or 6-byte (32-bit operand size) far address. The operand-size attribute determines
the size of the offset (16 or 32 bits) in the far address. The far address is loaded directly into the

CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of the EIP register
are cleared to 0s.

Far Calls in Protected Mode. When the processor is operating in protected mode, the CALL
instruction can be used to perform the following three types of far calls:

® Far cal to the same privilege level.
®* Far cal to adifferent privilege level (inter-privilege level call).
® Task switch (far call to another task).

In protected mode, the processor always uses the segment selector part of the far address to
access the corresponding descriptor inthe GDT or LDT. The descriptor type (code segment, call
gate, task gate, or TSS) and access rights determine the type of call operation to be performed.

If the selected descriptor isfor acode segment, afar call to acode segment at the same privilege
level is performed. (If the selected code segment is at a different privilege level and the code
segment is non-conforming, a general-protection exception is generated.) A far call to the same
privilegelevel in protected modeisvery similar to one carried out in real-address or virtual-8086
mode. The target operand specifies an absolute far address either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with amemory location (m16:16 or m16:32). The operand-
size attribute determines the size of the offset (16 or 32 hits) in the far address. The new code
segment sel ector and its descriptor are loaded into CSregister, and the offset from the instruction
isloaded into the EIP register.

3-54 I



Intel® INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

Note that a call gate (described in the next paragraph) can also be used to perform far call to a
code segment at the same privilege level. Using this mechanism provides an extralevel of indi-
rection and is the preferred method of making calls between 16-bit and 32-bit code segments.

When executing an inter-privilege-level far call, the code segment for the procedure being called

must be accessed through acall gate. The segment selector specified by the target operand iden-

tifies the call gate. Here again, the target operand can specify the call gate segment selector

either directly with a pointer (ptr16:16 or ptr16:32) or indirectly with a memory location

(m16:16 or m16:32). The processor obtains the segment selector for the new code segment and

the new instruction pointer (offset) from the call gate descriptor. (The offset from the target

operand is ignored when a cal gate is used.) On inter-privilege-level calls, the processor
switchesto the stack for the privilege level of the called procedure. The segment selector for the

new stack segment is specified in the TSS for the currently running task. The branch to the new

code segment occurs after the stack switch. (Note that when using a call gate to perform afar

call to a segment at the same privilege level, no stack switch occurs.) On the new stack, the
processor pushes the segment selector and stack pointer for the calling procedure’s stack, an
(optional) set of parameters from the calling procedures stack, and the segment selector and
instruction pointer for the calling procedure’s code segment. (A value in the call gate descriptor
determines how many parameters to copy to the new stack.) Finally, the processor branches to
the address of the procedure being called within the new code segment.

Executing a task switch with the CALL instruction, is somewhat similar to executing a call
through a call gate. Here the target operand specifies the segment selector of the task gate for
the task being switched to (and the offset in the target operand is ignored.) The task gate in turn
points to the TSS for the task, which contains the segment selectors for the task’s code and stack
segments. The TSS also contains the EIP value for the next instruction that was to be executed
before the task was suspended. This instruction pointer value is loaded into EIP register so that
the task begins executing again at this next instruction.

The CALL instruction can also specify the segment selector of the TSS directly, which elimi-
nates the indirection of the task gate. Refer to ChapiaskManagement, of thelntel Archi-
tecture Software Developer’s Manual, Volumé&oB detailed information on the mechanics of a

task switch.

Note that when you execute at task switch with a CALL instruction, the nested task flag (NT) is

set in the EFLAGS register and the new TSS’s previous task link field is loaded with the old
tasks TSS selector. Code is expected to suspend this nested task by executing an IRET instruc-
tion, which, because the NT flag is set, will automatically use the previous task link to return to
the calling task. Refer to Section 6. #ask Linking in Chapter 6Task Management of thelntel
Architecture Software Developer’s Manual, Volumdd8 more information on nested tasks.

Switching taskswith the CALL instruction differsin thisregard from the IMP instruction which

does not set the NT flag and therefore does not expect an IRET instruction to suspend the task.

I 3-55



INSTRUCTION SET REFERENCE Intel ®

CALL—Call Procedure (Continued)

Mixing 16-Bit and 32-Bit Calls. When making far calls between 16-bit and 32-bit code
segments, the calls should be made through a call gate. If the far cal is from a 32-bit code
segment to a 16-bit code segment, the call should be made from the first 64 KBytes of the 32-
bit code segment. Thisis because the operand-size attribute of theinstructionisset to 16, so only
a 16-bit return address offset is saved. Also, the call should be made using a 16-bit call gate so
that 16-bit values will be pushed on the stack. Refer to Chapter 16, Mixing 16-Bit and 32-Bit
Code, of the Intel Architecture Software Developer’s Manual, Volum&B8more information
on making calls between 16-bit and 32-bit code segments.

Operation

IF near call
THEN IF near relative call
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
THEN IF OperandSize = 32
THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); Fl;
Push(EIP);
EIP — EIP + DEST; (* DEST is rel32*)
ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); FI;
Push(IP);
EIP — (EIP + DEST) AND O000FFFFH; (* DEST is rel16 *)
Fl;
Fl;
ELSE (* near absolute call *)
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
IF OperandSize = 32
THEN
IF stack not large enough for a 4-byte return address THEN #SS(0); Fl;
Push(EIP);
EIP — DEST; (* DEST is /m32*)
ELSE (* OperandSize = 16 *)
IF stack not large enough for a 2-byte return address THEN #SS(0); Fl;
Push(IP);
EIP — DEST AND O000FFFFH; (* DEST is r/m16*)
Fl;
Fl:
FI;

IF far call AND (PE =0 OR (PE =1 AND VM = 1)) (* real-address or virtual-8086 mode *)
THEN
IF OperandSize = 32
THEN
IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;

3-56 I



Intel® INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS ~ DEST[47:32]; (* DEST is ptr16:32 or [m16:32] *)
EIP — DEST[31:0]; (* DEST is ptr16:32 or [m16:32] *)
ELSE (* OperandSize = 16 *)
IF stack not large enough for a 4-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);
Push(IP);
CS — DEST[31:16]; (* DEST is ptr16:16 or [m16:16] *)
EIP — DEST[15:0]; (* DEST is ptr16:16 or [m16:16] *)
EIP — EIP AND O000FFFFH; (* clear upper 16 bits *)
Fl;
Fl;

IF far call AND (PE = 1 AND VM = 0) (* Protected mode, not virtual-8086 mode *)
THEN
IF segment selector in target operand null THEN #GP(0); FI;
IF segment selector index not within descriptor table limits
THEN #GP(new code segment selector);
Fl;
Read type and access rights of selected segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,
task gate, or TSS THEN #GP(segment selector); Fl;
Depending on type and access rights
GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;
GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT;
Fl;

CONFORMING-CODE-SEGMENT:

IF DPL > CPL THEN #GP(new code segment selector); FlI;

IF segment not present THEN #NP(new code segment selector); Fl;

IF OperandSize = 32

THEN

IF stack not large enough for a 6-byte return address THEN #SS(0); FI;
IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS); (* padded with 16 high-order bits *)
Push(EIP);
CS — DEST(NewCodeSegmentSelector);
(* segment descriptor information also loaded *)
CS(RPL) — CPL
EIP — DEST(offset);

I 3-57



INSTRUCTION SET REFERENCE Intel ®

CALL—Call Procedure (Continued)

Fl,
END;

ELSE (* OperandSize = 16 *)

IF stack not large enough for a 4-byte return address THEN #SS(0); Fl;

IF the instruction pointer is not within code segment limit THEN #GP(0); FI;
Push(CS);

Push(IP);

CS — DEST(NewCodeSegmentSelector);

(* segment descriptor information also loaded *)

CS(RPL) — CPL

EIP — DEST(offset) AND 0000FFFFH; (* clear upper 16 bits *)

NONCONFORMING-CODE-SEGMENT:
IF (RPL > CPL) OR (DPL # CPL) THEN #GP(new code segment selector); FlI;
IF segment not present THEN #NP(new code segment selector); Fl;
IF stack not large enough for return address THEN #SS(0); Fl;
tempEIP — DEST(offset)
IF OperandSize=16

Fl;

THEN

tempEIP ~ tempEIP AND 0000FFFFH; (* clear upper 16 bits *)

IF tempEIP outside code segment limit THEN #GP(0); FI;
IF OperandSize = 32

Fl;
END;

THEN

Push(CS); (* padded with 16 high-order bits *)
Push(EIP);

CS — DEST(NewCodeSegmentSelector);

(* segment descriptor information also loaded *)
CS(RPL) ~ CPL;

EIP — tempEIP;

ELSE (* OperandSize = 16 *)

Push(CS);

Push(IP);

CS — DEST(NewCodeSegmentSelector);

(* segment descriptor information also loaded *)
CS(RPL) ~ CPL;

EIP — tempEIP;

CALL-GATE:
IF call gate DPL < CPL or RPL THEN #GP(call gate selector); Fl;
IF call gate not present THEN #NP(call gate selector); FI;
IF call gate code-segment selector is null THEN #GP(0); FI;

3-58



Intel® INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

IF call gate code-segment selector index is outside descriptor table limits
THEN #GP(code segment selector); Fl;
Read code segment descriptor;
IF code-segment segment descriptor does not indicate a code segment
OR code-segment segment descriptor DPL > CPL
THEN #GP(code segment selector); Fl;
IF code segment not present THEN #NP(new code segment selector); Fl;
IF code segment is non-conforming AND DPL < CPL
THEN go to MORE-PRIVILEGE;
ELSE go to SAME-PRIVILEGE;
Fl;
END;

MORE-PRIVILEGE:
IF current TSS is 32-bit TSS
THEN
TSSstackAddress — new code segment (DPL (08) + 4
IF (TSSstackAddress + 7) >TSS limit
THEN #TS(current TSS selector); FI;
newSS ~ TSSstackAddress + 4;
newESP ~ stack address;
ELSE (* TSS is 16-bit *)
TSSstackAddress — new code segment (DPL 04) + 2
IF (TSSstackAddress + 4) > TSS limit
THEN #TS(current TSS selector); FI;
newESP ~ TSSstackAddress;
newSS ~ TSSstackAddress + 2;
FI;
IF stack segment selector is null THEN #TS(stack segment selector); Fl;
IF stack segment selector index is not within its descriptor table limits
THEN #TS(SS selector); Fl
Read code segment descriptor;
IF stack segment selector's RPL # DPL of code segment
OR stack segment DPL # DPL of code segment
OR stack segment is not a writable data segment
THEN #TS(SS selector); Fl
IF stack segment not present THEN #SS(SS selector); Fl;
IF CallGateSize = 32
THEN
IF stack does not have room for parameters plus 16 bytes
THEN #SS(SS selector); FI;
IF CallGate(InstructionPointer) not within code segment limit THEN #GP(0); FI;
SS « newsSs;
(* segment descriptor information also loaded *)

I 3-59



INSTRUCTION SET REFERENCE Intel ®

CALL—Call Procedure (Continued)

Fl,

ESP — newESP;

CS:EIP — CallGate(CS:InstructionPointer);

(* segment descriptor information also loaded *)
Push(oldSS:oldESP); (* from calling procedure *)

temp — parameter count from call gate, masked to 5 bits;
Push(parameters from calling procedure’s stack, temp)
Push(oldCS:oldEIP); (* return address to calling procedure *)

ELSE (* CallGateSize = 16 *)

IF stack does not have room for parameters plus 8 bytes
THEN #SS(SS selector); Fl;

IF (CallGate(InstructionPointer) AND FFFFH) not within code segment limit
THEN #GP(0); FI,

SS < newsSsS;

(* segment descriptor information also loaded *)

ESP — newESP;

CS:IP ~ CallGate(CS:InstructionPointer);

(* segment descriptor information also loaded *)

Push(oldSS:oldESP); (* from calling procedure *)

temp — parameter count from call gate, masked to 5 bits;

Push(parameters from calling procedure’s stack, temp)

Push(oldCS:oldEIP); (* return address to calling procedure *)

CPL ~ CodeSegment(DPL)
CS(RPL) —~ CPL

END;

SAME-PRIVILEGE:
IF CallGateSize = 32

Fl,

THEN

IF stack does not have room for 8 bytes
THEN #SS(0); FI;
IF EIP not within code segment limit then #GP(0); FlI;
CS:EIP — CallGate(CS:EIP) (* segment descriptor information also loaded *)
Push(oldCS:oldEIP); (* return address to calling procedure *)

ELSE (* CallGateSize = 16 *)

IF stack does not have room for parameters plus 4 bytes
THEN #SS(0); FI,

IF IP not within code segment limit THEN #GP(0); FI;

CS:IP — CallGate(CS:instruction pointer)

(* segment descriptor information also loaded *)

Push(oldCS:oldIP); (* return address to calling procedure *)

CS(RPL) — CPL

END;

3-60



Intel® INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

TASK-GATE:
IF task gate DPL < CPL or RPL
THEN #GP(task gate selector);
FI;
IF task gate not present
THEN #NP(task gate selector);
Fl;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
OR index not within GDT limits
THEN #GP(TSS selector);
FI;
Access TSS descriptor in GDT;

IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector);
FI;
IF TSS not present
THEN #NP(TSS selector);
Fl;
SWITCH-TASKS (with nesting) to TSS;
IF EIP not within code segment limit
THEN #GP(0);
FI;
END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL or RPL
OR TSS descriptor indicates TSS not available
THEN #GP(TSS selector);
Fl;
IF TSS is not present
THEN #NP(TSS selector);
FI;
SWITCH-TASKS (with nesting) to TSS
IF EIP not within code segment limit
THEN #GP(0);
Fl;
END;

Flags Affected
All flagsare affected if atask switch occurs; no flags are affected if atask switch does not occur.

I 3-61



INSTRUCTION SET REFERENCE Intel ®

CALL—Call Procedure (Continued)

Protected Mode Exceptions

#GP(0) If target offset in destination operand is beyond the new code segment
limit.
If the segment selector in the destination operand is null.
If the code segment selector in the gate is null.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
anull segment selector.

#GP(selector) If code segment or gate or TSS selector index is outside descriptor table
limits.
If the segment descriptor pointed to by the segment selector in the

destination operand is not for a conforming-code segment, noncon-
forming-code segment, call gate, task gate, or task state segment.

If the DPL for a nonconforming-code segment is not equal to the CPL or
the RPL for the segment’s segment selector is greater than the CPL.

If the DPL for a conforming-code segment is greater than the CPL.

If the DPL from a call-gate, task-gate, or TSS segment descriptor is less
than the CPL or than the RPL of the call-gate, task-gate, or TSS's segment
selector.

If the segment descriptor for a segment selector from a call gate does not
indicate it is a code segment.

If the segment selector from a call gate is beyond the descriptor table
limits.

If the DPL for a code-segment obtained from a call gate is greater than the
CPL.

If the segment selector for a TSS has its local/global bit set for local.
If a TSS segment descriptor specifies that the TSS is busy or not available.

#SS(0) If pushing the return address, parameters, or stack segment pointer onto
the stack exceeds the bounds of the stack segment, when no stack switch
occurs.

If a memory operand effective address is outside the SS segment limit.

#SS(selector) If pushing the return address, parameters, or stack segment pointer onto
the stack exceeds the bounds of the stack segment, when a stack switch
occurs.

3-62 I



intal.

INSTRUCTION SET REFERENCE

CALL—Call Procedure (Continued)

#NP(selector)

#TS(selector)

#PF(fault-code)
#AC(0)

If the SSregister is being loaded as part of a stack switch and the segment
pointed to is marked not present.

If stack segment does not have room for the return address, parameters, or
stack segment pointer, when stack switch occurs.

If a code segment, data segment, stack segment, call gate, task gate, or
TSSis not present.

If the new stack segment selector and ESP are beyond the end of the TSS.
If the new stack segment selector isnull.

If the RPL of the new stack segment selector inthe TSSis not equal to the
DPL of the code segment being accessed.

If DPL of the stack segment descriptor for the new stack segment is not
equal to the DPL of the code segment descriptor.

If the new stack segment is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table
limits.

If a page fault occurs.

If an unaligned memory access occurs when the CPL is 3 and alignment
checking is enabled.

Real-Address Mode Exceptions

#GP

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the target offset is beyond the code segment limit.

Virtual-8086 Mode Exceptions

#GP(0)

#PF(fault-code)
#AC(0)

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the target offset is beyond the code segment limit.
If a page fault occurs.

If an unaligned memory access occurs when alignment checking is
enabled.

3-63



INSTRUCTION SET REFERENCE Intel ®

CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword

Opcode Instruction Description

98 cBwW AX < sign-extend of AL

98 CWDE EAX < sign-extend of AX
Description

These instructions double the size of the source operand by means of sign extension (refer to
Figure 6-5 in Chapter 6, Instruction Set Summary of the Intel Architecture Software Developer’s
Manual, Volume )L The CBW (convert byte to word) instruction copies the sign (bit 7) in the
source operand into every bit in the AH register. The CWDE (convert word to doubleword)
instruction copies the sign (bit 15) of the word in the AX register into the higher 16 bits of the
EAX register.

The CBW and CWDE mnemonics reference the same opcode. The CBW instruction isintended
for use when the operand-size attribute is 16 and the CWDE instruction for when the operand-
size attribute is 32. Some assemblers may force the operand size to 16 when CBW is used and
to 32 when CWDE isused. Others may treat these mnemonics as synonyms (CBW/CWDE) and
use the current setting of the operand-size attribute to determine the size of values to be
converted, regardless of the mnemonic used.

The CWDE instruction is different from the CWD (convert word to double) instruction. The
CWD instruction uses the DX:AX register pair as a destination operand; whereas, the CWDE
instruction uses the EAX register as a destination.

Operation

IF OperandSize = 16 (* instruction = CBW *)
THEN AX ~ SignExtend(AL);
ELSE (* OperandSize = 32, instruction = CWDE *)
EAX ~ SignExtend(AX);
Fl;
Flags Affected

None.

Exceptions (All Operating Modes)

None.

3-64 I



Intel® INSTRUCTION SET REFERENCE

CDQ—Convert Double to Quad
Refer to entry for CWD/CDQ — Convert Word to Doubleword/Convert Doubleword to Quad-
word.

3-65



INSTRUCTION SET REFERENCE Intel ®

CLC—Clear Carry Flag

Opcode Instruction Description
F8 CLC Clear CF flag
Description

Thisinstruction clears the CF flag in the EFLAGS register.

Operation
CF - 0

Flags Affected
The CF flag is cleared to 0. The OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

3-66 I



Intel® INSTRUCTION SET REFERENCE

CLD—cClear Direction Flag

Opcode Instruction Description
FC CLD Clear DF flag
Description

Thisinstruction clears the DF flag in the EFLAGS register. When the DF flag is set to 0O, string
operations increment the index registers (ESI and/or EDI).

Operation
DF « 0;

Flags Affected
The DF flag is cleared to 0. The CF, OF, ZF, SF, AF, and PF flags are unaffected.

Exceptions (All Operating Modes)

None.

I 3-67



INSTRUCTION SET REFERENCE Intel ®

CLI—Clear Interrupt Flag

Opcode Instruction Description
FA CLI Clear interrupt flag; interrupts disabled when interrupt
flag cleared
Description

Thisinstruction clearsthe IF flag in the EFLAGS register. No other flags are affected. Clearing
the IF flag causes the processor to ignore maskable external interrupts. The IF flag and the CLI
and STI instruction have no affect on the generation of exceptions and NMI interrupts.

The following decision table indicates the action of the CLI instruction (bottom of the table)
depending on the processor’s mode of operating and the CPL and IOPL of the currently running
program or procedure (top of the table).

PE = 0 1 1 1
VM = X 0 X 0
CPL X <I0PL > |OPL X
10PL X X =3 X <3
IF -0 Y Y N
#GP(0) N N \%

NOTES:

X Don't care

N Action in column 1 not taken
Y Action in column 1 taken

3-68 I



Intel® INSTRUCTION SET REFERENCE

CLI—Clear Interrupt Flag (Continued)

Operation
IF PE = 0 (* Executing in real-address mode *)
THEN
IF « 0;
ELSE
IFVM =0 (* Executing in protected mode *)
THEN
IF CPL < IOPL
THEN
IF « 0;
ELSE
#GP(0);
FI;
FI;
ELSE (* Executing in Virtual-8086 mode *)
IFIOPL=3
THEN
IF <0
ELSE
#GP(0);
Fl;

Fl;
Fl;
Flags Affected

The IF iscleared to O if the CPL isequal to or less than the IOPL; otherwise, it is not affected.
The other flags in the EFLAGS register are unaffected.

Protected Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

#GP(0) If the CPL is greater (has less privilege) than the IOPL of the current
program or procedure.

3-69



INSTRUCTION SET REFERENCE Intel ®

CLTS—Clear Task-Switched Flag in CRO

Opcode Instruction Description
OF 06 CLTS Clears TS flag in CRO
Description

This instruction clears the task-switched (TS) flag in the CRO register. This instruction is
intended for use in operating-system procedures. It is a privileged instruction that can only be
executed at a CPL of 0. It is alowed to be executed in real-address mode to alow initialization
for protected mode.

The processor setsthe TS flag every time a task switch occurs. The flag is used to synchronize
the saving of FPU context in multitasking applications. Refer to the description of the TS flag
in Section 2.5., Control Registersin Chapter 2, System Architecture Overview of the Intel Archi-
tecture Software Developer's Manual, Volum&oB more information about this flag.

Operation
CRO(TS) - 0;

Flags Affected
The TSflag in CRO register is cleared.

Protected Mode Exceptions
#GP(0) If the CPL is greater than O.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions
#GP(0) If the CPL is greater than O.

3-70 I



Intel® INSTRUCTION SET REFERENCE

CMC—Complement Carry Flag

Opcode Instruction Description
F5 CcMC Complement CF flag
Description

Thisinstruction complements the CF flag in the EFLAGS register.

Operation
CF —~ NOT CF;

Flags Affected

The CF flag contains the complement of its original value. The OF, ZF, SF, AF, and PF flagsare
unaffected.

Exceptions (All Operating Modes)
None.

I 3-71




INSTRUCTION SET REFERENCE

CMOVcc—Conditional Move

Opcode Instruction Description

OF 47 /r CMOVA r16, /m16 Move if above (CF=0 and ZF=0)

OF 47 /r CMOVA r32, /m32 Move if above (CF=0 and ZF=0)

OF 43 /r CMOVAE r16, r/m16 Move if above or equal (CF=0)

OF 43 /r CMOVAE r32, /m32 Move if above or equal (CF=0)

OF 42 /r CMOVB r16, r/m16 Move if below (CF=1)

OF 42 /r CMOVB r32, r/m32 Move if below (CF=1)

OF 46 /r CMOVBE r16, r/mi16 Move if below or equal (CF=1 or ZF=1)

OF 46 /r CMOVBE r32, /m32 Move if below or equal (CF=1 or ZF=1)

OF 42 /r CMOVC r16, /m16 Move if carry (CF=1)

OF 42 /r CMOVC r32, /m32 Move if carry (CF=1)

OF 44 /r CMOVE r16, r/m16 Move if equal (ZF=1)

OF 44 /r CMOVE r32, r/m32 Move if equal (ZF=1)

OF 4F /r CMOVG r16, /m16 Move if greater (ZF=0 and SF=OF)

OF 4F /r CMOVG r32, /m32 Move if greater (ZF=0 and SF=OF)

OF 4D /r CMOVGE r16, r/m16 Move if greater or equal (SF=OF)

OF 4D /r CMOVGE r32, r/m32 Move if greater or equal (SF=OF)

OF 4C /r CMOVL r16, r/m16 Move if less (SF<>OF)

OF 4C /r CMOVL r32, r/m32 Move if less (SF<>OF)

OF 4E /r CMOVLE r16, r/m16 Move if less or equal (ZF=1 or SF<>OF)

OF 4E /r CMOVLE r32, r/m32 Move if less or equal (ZF=1 or SF<>OF)

OF 46 /r CMOVNA r16, r/m16 Move if not above (CF=1 or ZF=1)

OF 46 /r CMOVNA r32, /m32 Move if not above (CF=1 or ZF=1)

OF 42 /r CMOVNAE r16, /m16 Move if not above or equal (CF=1)

OF 42 /r CMOVNAE r32, /m32 Move if not above or equal (CF=1)

OF 43 /r CMOVNB r16, r/m16 Move if not below (CF=0)

OF 43 /r CMOVNB r32, /m32 Move if not below (CF=0)

OF 47 /r CMOVNBE r16, /m16 Move if not below or equal (CF=0 and ZF=0)

OF 47 /r CMOVNBE r32, /m32 Move if not below or equal (CF=0 and ZF=0)

OF 43 /r CMOVNC r16, r/m16 Move if not carry (CF=0)

OF 43 /r CMOVNC r32, r/m32 Move if not carry (CF=0)

OF 45 /r CMOVNE r16, r/m16 Move if not equal (ZF=0)

OF 45 /r CMOVNE r32, /m32 Move if not equal (ZF=0)

OF 4E /r CMOVNG r16, /m16 Move if not greater (ZF=1 or SF<>OF)

OF 4E /r CMOVNG r32, /m32 Move if not greater (ZF=1 or SF<>OF)

OF 4C /r CMOVNGE r16, /m16 Move if not greater or equal (SF<>OF)

OF 4C /r CMOVNGE r32, /m32 Move if not greater or equal (SF<>OF)

OF 4D /r CMOVNL r16, r/m16 Move if not less (SF=OF)

OF 4D /r CMOVNL r32, /m32 Move if not less (SF=OF)

OF 4F /r CMOVNLE r16, r/m16 Move if not less or equal (ZF=0 and SF=0F)

OF 4F /r CMOVNLE r32, r/m32 Move if not less or equal (ZF=0 and SF=0F)
3-72



intal.

INSTRUCTION SET REFERENCE

CMOVcc—Conditional Move (Continued)

Opcode Instruction Description

OF 41 /r CMOVNO r16, /m16 Move if not overflow (OF=0)

OF 41 /r CMOVNO r32, /m32 Move if not overflow (OF=0)

OF 4B /r CMOVNP r16, /m16 Move if not parity (PF=0)

OF 4B /r CMOVNP r32, /m32 Move if not parity (PF=0)

OF 49 /r CMOVNS r16, /m16 Move if not sign (SF=0)

OF 49 /r CMOVNS r32, /m32 Move if not sign (SF=0)

OF 45 /r CMOVNZ r16, r/m16 Move if not zero (ZF=0)

OF 45 /r CMOVNZ r32, r/m32 Move if not zero (ZF=0)

OF 40 /r CMOVO ri16, r/mi6 Move if overflow (OF=0)

OF 40 /r CMOVO r32, r/m32 Move if overflow (OF=0)

OF 4A /r CMOVP r16, r/m16 Move if parity (PF=1)

OF 4A /r CMOVP r32, r/m32 Move if parity (PF=1)

OF 4A /r CMOVPE r16, r/m16 Move if parity even (PF=1)

OF 4A /r CMOVPE r32, r/m32 Move if parity even (PF=1)

OF 4B /r CMOVPO ri16, r/m16 Move if parity odd (PF=0)

OF 4B /r CMOVPO r32, r/m32 Move if parity odd (PF=0)

OF 48 /r CMOVS r16, r/m16 Move if sign (SF=1)

OF 48 /r CMOVS r32, r/m32 Move if sign (SF=1)

OF 44 /r CMOVZ r16, /m16 Move if zero (ZF=1)

OF 44 /r CMOVZ r32, /m32 Move if zero (ZF=1)
Description

The CMOVcc instructions check the state of one or more of the status flags in the EFLAGS
register (CF, OF, PF, SF, and ZF) and perform a move operation if the flags are in a specified
state (or condition). A condition code (cc) is associated with each instruction to indicate the
condition being tested for. If the condition is not satisfied, amoveis not performed and execu-
tion continues with the instruction following the CMOV cc instruction.

These instructions can move a 16- or 32-bit value from memory to ageneral-purpose register or
from one general-purpose register to another. Conditional moves of 8-bit register operands are

not supported.

The conditions for each CMOV cc mnemonic is given in the description column of the above
table. The terms “less” and “greater” are used for comparisons of signed integers and the terms
“above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two ways, two
mnemonics are defined for some opcodes. For example, the CMOVA (conditional move if
above) instruction and the CMOVNBE (conditional move if not below or equal) instruction are
alternate mnemonics for the opcode OF 47H.

I 3-73



INSTRUCTION SET REFERENCE Intel ®

CMOVcc—Conditional Move (Continued)

The CMOVcc instructions are new for the Pentium® Pro processor family; however, they may

not be supported by all the processors in the family. Software can determine if the CMOVcc
instructions are supported by checking the processor’s feature information with the CPUID
instruction (refer to “COMISS—Scalar Ordered Single-FP Compare and Set EFLAGS” in this
chapter).

Operation

temp —~ DEST
IF condition TRUE
THEN
DEST ~ SRC
ELSE
DEST -~ temp
Fl,

Flags Affected

None.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

3-74 I



Intel® INSTRUCTION SET REFERENCE

CMOVcc—Conditional Move (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If :cli ignment checking is enabled and an unaligned memory reference is
made.

3-75



INSTRUCTION SET REFERENCE Intel ®

CMP—Compare Two Operands

Opcode Instruction Description

3Cib CMP AL, imm8 Compare imm8 with AL

3D iw CMP AX, imm16 Compare imm16 with AX

3D id CMP EAX, imm32 Compare imm32 with EAX

80 /7 ib CMP r/m8, imm8 Compare imm8 with r/m8

81 /7 iw CMP r/m16, imm16 Compare imm16 with r/m16

81/7id CMP r/m32,imm32 Compare imm32 with r/m32

83/7ib CMP r/m16,imm8 Compare imm8 with r/m16

83/7ib CMP r/m32,imm8 Compare imm8 with r/m32

38/r CMP r/m8,r8 Compare r8with r/m8

39/r CMP r/m16,r16 Compare r16 with /mi16

39/r CMP r/m32,r32 Compare r32 with r/m32

3AIr CMP r8,r/m8 Compare r/m8 with r8

3B/r CMP r16,r/m16 Compare r/m16 with r16

3B/r CMP r32,r/m32 Compare r/m32 with r32
Description

This instruction compares the first source operand with the second source operand and sets the
status flags in the EFLAGS register according to the results. The comparison is performed by
subtracting the second operand from the first operand and then setting the status flags in the
same manner asthe SUB instruction. When an immediate valueis used as an operand, it issign-
extended to the length of the first operand.

The CMP instruction is typically used in conjunction with a conditional jump (Jcc), condition
move (CMOVcc), or SETcc instruction. The condition codes used by the Jcc, CMOVcc, and
SETcc instructions are based on the results of a CMP instruction. Appendix B, EFLAGS Condi-
tion Codes, in the Intel Architecture Software Developer's Manual, Volumehtws the rela
tionship of the status flags and the condition codes.

Operation

temp — SRC1 - SignExtend(SRC?2);
ModifyStatusFlags; (* Modify status flags in the same manner as the SUB instruction*)

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are set according to the result.

3-76 I



Intel® INSTRUCTION SET REFERENCE

CMP—Compare Two Operands (Continued)

Protected Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment sel ector.
#SS(0) If amemory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If amemory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

I 3-77



INSTRUCTION SET REFERENCE Intel®

CMPPS—Packed Single-FP Compare

Opcode Instruction Description
OF,C2,/r,ib CMPPS xmm1, Compare packed SP FP numbers from XMM2/Mem to packed SP
xmm2/m128, imm8  FP numbers in XMM1 register using imm8 as predicate.

Description

For eachindividual pair of SP FP numbers, the CMPPS instruction returnsan all "1" 32-bit mask

or an all "0" 32-bit mask, using the comparison predicate specified by imm8.

CMPPS xmm1, xmm2/m128, imm8 (imm8=0)
Xmm1 | 10.0 | 2.0 [ 9.0 | 1.0 |
Xmm2/ | 10.0 | 1.0 | 9.0 | 4.0 |
Xmm1 | 11111111 | 00000000 | 11111111 | oooooooo |
True False True False

Figure 3-7. Operation of the CMPPS (Imm8=0) Instruction

CMPPS xmm1, xmm2/m128,imm8 (Imm8=1)
xmm1 | 10.0 | 2.0 | 9.0 | 1.0 |
< < < <
Xmm2! 3.0 | 10 | 9.0 [ 4.0 |
xmm1 | 00000000 | 11111111 | 00000000 | 11111111 |
False True False True

Figure 3-8. Operation of the CMPPS (Imm8=1) Instruction

3-78



Intel® INSTRUCTION SET REFERENCE

CMPPS—Packed Single-FP Compare (Continued)

CMPPS xmm1, xmm2/m128, imm8 (imm8=2)
Xmm1 | 10.0 | 2.0 [ 9.0 | 1.0 |
<= <= <= <=
Xmm2/ | 3.0 | 1.0 | 9.0 | 4.0 |
xmm1 [ oooooooo | mmmmr | pmmmn | 11111111 |
False True True True
Figure 3-9. Operation of the CMPPS (Imm8=2) Instruction
CMPPS xmm1, xmm2/m128,imm8 (Imm8=3)
xmm1 | 10.0 | ONaN | 9.0 | 1.0 |
? ? ? ?
Xmma/ 3.0 [ 11.0 | 9.0 [ oNaN |
xmmi | 00000000 |  amamaz [ 00000000 | 11111111 |
False True False True
Figure 3-10. Operation of the CMPPS (Imm8=3) Instruction
3-79




INSTRUCTION SET REFERENCE

CMPPS—Packed Single-FP Compare (Continued)

intgl.

CMPPS xmm1, xmm2/m128, imm8 (imm8=4)
Xmm1 | 10.0 | 2.0 [ 9.0 | 1.0 |
1= = 1= 1=
Xmm2/ | 3.0 | 1.0 | 9.0 | 4.0 |
m128 ¢ ¢ ¢ ¢
xmml [ wmammmn | 1mmmn | oooooooo | 11111111 |
True True False True

Figure 3-11. Operation of the CMPPS (Imm8=4) Instruction

CMPPS xmm1, xmm2/m128,imm8 (Imm8=5)
xmm1 | 10.0 | 2.0 | 9.0 | 1.0 |
I< I< I< I<
Xmm2/ 3.0 [ 11.0 | 9.0 [ 40 |
xmmi [ 111111117 | ooooooo0 | 1mama1ar | oooooooo |
True False True False

Figure 3-12. Operation of the CMPPS (Imm8=5) Instruction

3-80




Intel® INSTRUCTION SET REFERENCE

CMPPS—Packed Single-FP Compare (Continued)

CMPPS xmm1, xmm2/m128, imm8 (imm8=6)
Xmm1 | 10.0 | 2.0 [ 9.0 | 1.0 |
I<= I<= <= l<=
Xmm2/ | 3.0 | 1.0 | 9.0 | 4.0 |
Xmmi1 |  11m111112 | 00000000 | oooooooo | oooooooo |
True False False False

Figure 3-13. Operation of the CMPPS (Imm8=6) Instruction

CMPPS xmm1, xmm2/m128,imm8 (Imm8=7)
xmm1 | 10.0 | ONaN | 9.0 | 1.0 |
17 17 17 1?7
Xmm2/ 3.0 [ 11.0 | 9.0 [ ONaN |
xmmi [ 11111111z | ooooooo0 | 1mama1ar | oooooooo |
True False True False

Figure 3-14. Operation of the CMPPS (Imm8=7) Instruction

I 3-81




INSTRUCTION SET REFERENCE Intel ®

CMPPS—Packed Single-FP Compare (Continued)

Note that a subsequent computational instruction which uses this mask as an input operand will

not generate a fault, since a mask of all "0's" corresponds to an FP value of +0.0 and a mask of
all "1's" corresponds to an FP value of -gNaN. Some of the comparisons can be achieved only
through software emulation. For these comparisons the programmer must swap the operands,
copying registers when necessary to protect the data that will now be in the destination, and then
perform the compare using a different predicate. The predicate to be used for these emulations
is listed in the table under the heading "Emulation”. The following table shows the different
comparison types:

Predicate Description Relation Emulation imm8 Result if Q/SNaN
Encoding NaN Operand
Operand Signals
Invalid
eq equal xmml == 000B False No
xmm2
It less-than xmm1l < 001B False Yes
xmmz2
le less-than-or-equal xmml <= 010B False Yes
xmm2
greater than xmm1 > swap, False Yes
xmm2 protect, It
greater-than-or- xmm1l >= swap False Yes
equal xmm2 protect, le
unord unordered xmm1l ? 011B True No
xmmz2
neq not-equal I(xmm1l == 100B True No
xmmz2)
nlt not-less-than I(xmm1 < 101B True Yes
xmmz2)
nle not-less-than-or- I(xmm1l <= 110B True Yes
equal xmmz2)
not-greater-than I(xmm1 > swap, True Yes
xmmz2) protect, nlt
not-greater-than-or- | /(xmm1 >= swap, True Yes
equal xmmz2) protect, nle
ord ordered I(xmm1 ? 111B False No
xmmz2)
NOTE:

The greater-than, greater-than-or-equal, not-greater-than, and not-greater-than-or-equal relations are not
directly implemented in hardware.

3-82 I



intal.

CMPPS—Packed Single-FP Compare (Continued)

Operation

IF (imm8 = 0) THEN
OP ="EQ";
ELSE
IF (imms8 = 1) THEN
OP ="LT";
ELSE
IF (imm8 = 2) THEN
OP ="LE";
ELSE
IF (imms8 = 3) THEN
OP = "UNORD";
ELSE
IF (imms8 = 4) THEN
OP = "NE";
ELSE
IF (imm8 = 5) THEN
OP = "NLT";
ELSE
IF (imm8 = 6) THEN
OP = "NLE";
ELSE
IF (imm8 = 7) THEN
OP = "ORD";
FI
FI
Fi
Fi
Fi
FI
FI
FI

CMPO = DEST[31-0] OP SRC/m128[31-0];
CMP1 = DEST[63-32] OP SRC/m128[63-32];
CMP2 = DEST [95-64] OP SRC/m128[95-64];
CMP3 = DEST[127-96] OP SRC/m128[127-96];

IF (CMPO = TRUE) THEN
DEST[31-0] = OXFFFFFFFF;
DEST[63-32] = OXFFFFFFFF;
DEST[95-64] = OXFFFFFFFF;
DEST[127-96] = OXFFFFFFFF;

INSTRUCTION SET REFERENCE

3-83



INSTRUCTION SET REFERENCE

CMPPS—Packed Single-FP Compare (Continued)

ELSE
DEST[31-0] = 0X00000000;
DEST[63-32] = 0X00000000;
DEST[95-64] = 0X00000000;
DEST[127-96] = 0X00000000;

FI

Intel C/C++ Compiler Intrinsic Equivalents
__m128 _mm_cmpeqg_ps(__ml128a, __ml28b)
Compare for equality.

_m128 _mm_cmplt_ps(_ m128 a, __m128b)
Compare for less-than.

__m128 _mm_cmple_ps(__m128 a, __m128 b)
Compare for less-than-or-equal.

__m128 _mm_cmpgt_ps(__m128 a, __m128b)
Compare for greater-than.

__ml128 _mm_cmpge_ps(__m128 a, __m128 b)
Compare for greater-than-or-equal.

__m128 mm_cmpneq_ps(__m128a, __m128 b)
Compare for inequality.

__m128 _mm_cmpnlt_ps(__ml128a, __mi128b)
Compare for not-less-than.

__m128 _mm_cmpngt_ps(__m128 a, _ m128 b)
Compare for not-greater-than.

__m128 _mm_cmpnge_ps(__m128a, ___m128 b)
Compare for not-greater-than-or-equal .

__m128 _mm_cmpord_ps(__m128a, __m128 b)
Compare for ordered.

__m128 mm_cmpunord_ps(__m128 a, _ m128 b)
Compare for unordered.

__m128 _mm_cmpnle_ps(__m128a, __m128 b)
Compare for not-less-than-or-equal.

3-84



intal.

INSTRUCTION SET REFERENCE

CMPPS—Packed Single-FP Compare (Continued)

Exceptions

General protection exception if not aligned on 16-byte boundary, regardless of segment.

Numeric Exceptions

Invalid, if sNaN operands, denormal.

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#UD

#NM

#XM

#UD

#UD
#UD

For anillegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments.

For anillegal addressin the SS segment.
For a page fault.

If CRO.EM = 1.

If TShitin CROis set.

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCEPT =1).

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCEPT =0).

If CR4.OSFX SR(bit 9) = 0.
If CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions

Interrupt 13

#UD
#NM
#XM

#UD

#UD
#UD

If any part of the operand would lie outside of the effective address space
from O to OFFFFH.

If CRO.EM =1.
If TSbitin CROs set.

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCEPT =1).

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCPT =0).

If CR4.OSFXSR(bit 9) = 0.
If CPUID.XMM(EDX bit 25) = 0.

3-85



INSTRUCTION SET REFERENCE Intel ®

CMPPS—Packed Single-FP Compare (Continued)

Virtual Mode Exceptions
Same exceptions asin Real Address Mode.
#PF(fault-code) For a page fault.

Comments

Compilers and assemblers should implement the following 2-operand pseudo-opsin addition to
the 3-operand CMPPS instruction:

Pseudo-Op Implementation

CMPEQPS xmm1, xmm2 CMPPS xmm1,xmmz2, 0
CMPLTPS xmm1, xmm?2 CMPPS xmm1,xmmz2, 1
CMPLEPS xmm1, xmm2 CMPPS xmml,xmmz2, 2
CMPUNORDPS xmm1, xmm2 | CMPPSxmm1,xmm2, 3
CMPNEQPS xmm1, xmm2 CMPPS xmml1,xmm2, 4
CMPNLTPS xmm1, xmm?2 CMPPS xmm1,xmm2, 5
CMPNLEPS xmm1, xmm2 CMPPS xmm1,xmm2, 6
CMPORDPS xmm1, xmm2 CMPPS xmm1,xmmz2, 7

The greater-than relations not implemented in hardware require more than one instruction to
emulate in software and therefore should not be implemented as pseudo-ops. (For these, the
programmer should reverse the operands of the corresponding less than relations and use move
instructions to ensure that the mask is moved to the correct destination register and that the
source operand is left intact.)

Bits 7-4 of the immediate field are reserved. Different processors may handle them differently.
Usage of these hits risks incompatibility with future processors.

3-86 I



Intel® INSTRUCTION SET REFERENCE

CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands

Opcode Instruction Description

A6 CMPS m8, m8 Compares byte at address DS:(E)SI with byte at address
ES:(E)DI and sets the status flags accordingly

A7 CMPS m16, m16 Compares word at address DS:(E)SI with word at address
ES:(E)DI and sets the status flags accordingly

A7 CMPS m32, m32 Compares doubleword at address DS:(E)SI with doubleword
at address ES:(E)DI and sets the status flags accordingly

A6 CMPSB Compares byte at address DS:(E)SI with byte at address
ES:(E)DI and sets the status flags accordingly

A7 CMPSW Compares word at address DS:(E)SI with word at address
ES:(E)DI and sets the status flags accordingly

A7 CMPSD Compares doubleword at address DS:(E)SI with doubleword
at address ES:(E)DI and sets the status flags accordingly

Description

Thisinstruction compares the byte, word, or double word specified with the first source operand
with the byte, word, or double word specified with the second source operand and sets the status
flags in the EFLAGS register according to the results. Both the source operands are located in
memory. The address of the first source operand is read from either the DS:ESI or the DS:SI
registers (depending on the address-size attribute of the instruction, 32 or 16, respectively). The
address of the second source operand is read from either the ES:EDI or the ES:DI registers
(again depending on the address-size attribute of the instruction). The DS segment may be over-
ridden with a segment override prefix, but the ES segment cannot be overridden.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the CMPS
mnemonic) allows the two source operands to be specified explicitly. Here, the source operands
should be symbols that indicate the size and location of the source values. This explicit-operands
form is provided to allow documentation; however, note that the documentation provided by this
form can be misleading. That is, the source operand symbols must specify the yoeresite)

of the operands (bytes, words, or doublewords), but they do not have to specify théamarrect

tion. The locations of the source operands are always specified by the DS:(E)SI and ES:(E)DI
registers, which must be loaded correctly before the compare string instruction is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
CMPS instructions. Here also the DS:(E)SI and ES:(E)DI registers are assumed by the processor
to specify the location of the source operands. The size of the source operands is selected with
the mnemonic: CMPSB (byte comparison), CMPSW (word comparison), or CMPSD (double-
word comparison).

I 3-87



INSTRUCTION SET REFERENCE Intel ®

CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands
(Continued)

After the comparison, the (E)S| and (E)DI registers are incremented or decremented automati-
cally according to the setting of the DF flag in the EFLAGS register. (If the DF flag is O, the
(E)SI and (E)DI register are incremented; if the DF flag is 1, the (E)SI and (E)DI registers are
decremented.) The registers are incremented or decremented by one for byte operations, by two
for word operations, or by four for doubleword operations.

The CMPS, CMPSB, CMPSW, and CMPSD instructions can be preceded by the REP prefix for

block comparisons of ECX bytes, words, or doublewords. More often, however, these instruc-
tionswill be used in a LOOP construct that takes some action based on the setting of the status

flags before the next comparison is made. Refer to “REP/REPE/REPZ/REPNE
/REPNZ—Repeat String Operation Prefix” in this chapter for a description of the REP prefix.

Operation

temp —~SRC1 - SRC2;
SetStatusFlags(temp);
IF (byte comparison)
THEN IF DF =0
THEN
(E)SI — (E)SI + 1;
(E)DI — (E)DI + 1;
ELSE
(E)Sl - (E)SI-1;
(E)DI ~ (E)DI - 1;
FI;
ELSE IF (word comparison)
THEN IF DF =0
(E)SI ~ (E)SI + 2;
(E)DI — (E)DI + 2;
ELSE
(E)SI - (E)SI-2;
(E)DI —~ (E)DI - 2;
Fl;
ELSE (* doubleword comparison*)
THEN IF DF =0
(E)SI ~ (E)SI + 4;
(E)DI —~ (E)DI + 4;
ELSE
(E)SI ~ (E)SI-4;
(E)DI — (E)DI —4;
Fl;
Fl;

3-88 I



intal.

INSTRUCTION SET REFERENCE

CMPS/CMPSB/CMPSW/CMPSD—Compare String Operands

(Continued)

Flags Affected

The CF, OF, SF, ZF, AF, and PF flags are set according to the temporary result of the comparison.

Protected Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
If amemory operand effective address is outside the SS segment limit.
If apage fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.
If apage fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made.

3-89



INSTRUCTION SET REFERENCE Intel ®

CMPSS—Scalar Single-FP Compare

Opcode Instruction Description
F3,0F,C2,/rib CMPSS xmml1, Compare lowest SP FP number from XMM2/Mem to lowest
xmm2/m32, imm8 SP FP number in XMM!1 register using imm8 as predicate.
Description

For the lowest pair of SP FP numbers, the CM PSS instruction returns an all "1" 32-bit mask or

an al "0" 32-bit mask, using the comparison predicate specified by imm8. The values for the

upper three pairs of SP FP numbers are not compared. Note that a subsequent computational
instruction, which uses this mask as an input operand, will not generate afault, since amask of

all "0"s corresponds to an FP value of +0.0, and a mask of all "1's" corresponds to an FP value
of -gNaN. Some comparisons can be achieved only through software emulation. For those
comparisons, the programmer must swap the operands, copying registers when necessary to
protect the data that will now be in the destination, and then perform the compare using a
different predicate. The predicate to be used for these emulations is listed under the heading
"Emulation."

3-90 I



intal.

CMPSS—Scalar Single-FP Compare (Continued)

The following table shows the different comparison types:

INSTRUCTION SET REFERENCE

Predi- Description Relation Emulation imm8 Result if gNaN
cate Encoding NaN Operand
Operand | Signals
Invalid
eq equal Xxmml == xmm2 000B False No
It less-than xmml < xmmz2 001B False Yes
le less-than-or-equal xmm1 <= xmm2 010B False Yes
greater than xmm1l > xmm2 swap, False Yes
protect, It
greater-than-or-equal xmml >= xmm2 swap False Yes
protect, le
unord | unordered xmml ? xmm2 011B True No
neq not-equal I(xmm1 == xmm2) 100B True No
nit not-less-than I(xmm1 < xmm2) 101B True Yes
nle not-less-than-or-equal I(xmm1 <= xmm2) 110B True Yes
not-greater-than I(xmm1 >xmmz2) | swap, True Yes
protect, nlt
not-greater-than-or-equal | /(xmm1 >= xmm2) | swap, True Yes
protect, nle
ord ordered I(xmm1 ? xmm2) 111B False No
NOTE:

* The greater-than, greater-than-or-equal, not-greater-than, and not-greater-than-or-equal relations are not

directly implemented in hardware.

3-91



INSTRUCTION SET REFERENCE

CMPSS—Scalar Single-FP Compare (Continued)

CMPSS xmm1, xmm2/m32, imm8 (imm8=0)
Xmm1 | | | 1.0 |
Xmm2/ | | | | 4.0 |
m32
v v v v
Xmm1 | | | [ oooooooo |
False

Figure 3-15. Operation of the CMPSS (Imm8=0) Instruction

CMPSS xmm1, xmm2/m32,imm8 (Imm8=1)
xmm1 | | | [ 1.0 |
<
xmmg | | | 4.0 |
xmm1 | | [ [ 11111114 |
True

Figure 3-16. Operation of the CMPSS (Imm8=1) Instruction

3-92



intal.

INSTRUCTION SET REFERENCE

CMPSS—Scalar Single-FP Compare (Continued)

CMPSS xmm1, xmm2/m32, imm8

(imm8=2)
Xmm1 | | | | 1.0 |
<=
Xmmz2/ | | | | 4.0 |
m32
v v v v
xmm1 | | | | 1111111 |
True
Figure 3-17. Operation of the CMPSS (Imm8=2) Instruction
CMPSS xmm1, xmm2/m32,imm8 (Imm8=3)
xmm1 | I I | ONaN |
?
e | | | 4.0 |

Xmm1| |

v

1M1 |

True

Figure 3-18. Operation of the CMPSS (Imm8=3) Instruction

3-93



INSTRUCTION SET REFERENCE Intel®

CMPSS—Scalar Single-FP Compare (Continued)

CMPSS xmm1, xmm2/m32, imm8 (imm8=4)

Xmm1l | | | | 10 |
=

Xmm2/ | | | | 4.0 |

m32

v { Y v

Xmm1 | | | | 1111111 |
True

Figure 3-19. Operation of the CMPSS (Imm8=4) Instruction

CMPSS xmm1, xmm2/m32,imm8 (Imm8=5)
Xmm1 | | | | 1.0 |
I<
xmg | I I 40 |
Xxmm1 | | | [ oooooooo |
False

Figure 3-20. Operation of the CMPSS (Imm8=5) Instruction

3-94 I




Intel® INSTRUCTION SET REFERENCE

CMPSS—Scalar Single-FP Compare (Continued)

CMPSS xmm1, xmm2/m32, imm8 (imm8=6)
Xmm1 | | | | 1.0 |
l<=
Xmmz2/ | | | | 4.0 |

m32 ¢ ¢ ¢ ¢

Xxmm1 | | | [ 00000000

False

Figure 3-21. Operation of the CMPSS (Imm8=6) Instruction

CMPSS xmm1, xmm2/m32,imm8 (Imm8=7)
Xmml | | | | 1.0 |
1?
xmg | I [ onan |
Xxmm1 | | | [ oooooooo |
False

Figure 3-22. Operation of the CMPSS (Imm8=7) Instruction

3-95




INSTRUCTION SET REFERENCE Intel ®

CMPSS—Scalar Single-FP Compare (Continued)

Operation

IF (imm8 = 0) THEN
OP = "EQ";
ELSE
IF (imm8 = 1) THEN
OP ="LT";
ELSE
IF (imm8 = 2) THEN
OP ="LE";
ELSE
IF (imm8 = 3) THEN
OP = "UNORD";
ELSE
IF (imm8 = 4) THEN
OP ="NE";
ELSE
IF (imm8 = 5) THEN
OP = "NLT";
ELSE
IF (imm8 = 6) THEN
OP = "NLE";
ELSE
IF (imm8 = 7) THEN
OP ="ORD";
FI
FI
FI
FI
FI
FI
FI
Fi
CMPO = DEST[31-0] OP SRC/m128[31-0];

IF (CMPO = TRUE) THEN
DEST[31-0] = OXFFFFFFFF;
DEST[63-32] = DEST[63-32];
DEST[95-64] = DEST[95-64];
DEST[127-96] = DEST[127-96];

ELSE
DEST[31-0] = 0X00000000;
DEST[63-32] = DEST[63-32];
DEST[95-64] = DEST[95-64];
DEST[127-96] = DEST[127-96];

Fi

3-96 I



Intel® INSTRUCTION SET REFERENCE

CMPSS—Scalar Single-FP Compare (Continued)

Intel C/C++ Compiler Intrinsic Equivalents
__m128 _mm_cmpeqg_ss(__ml28a, __ml28b)
Compare for equality.

__ml128 _mm_cmplt_ss(__m128 a, __m128b)
Compare for less-than.

_ml128 _mm_cmple_ss(__m128 a, __m128 b)
Compare for less-than-or-equal.

__m128 _mm_cmpgt_ss(__ml1l28a, __mi128b)
Compare for greater-than.

__m128 _mm_cmpge_ss(__ml128a, __ml28b)
Compare for greater-than-or-equal.

__m128 _mm_cmpneqg_ss(__ml128 a, __mi128 b)
Compare for inequality.

__m128 _mm_cmpnlt_ss(__m128 a, __m128 b)
Compare for not-less-than.

__m128 _mm_cmpnle_ss(__m128 a, __m128 b)
Compare for not-less-than-or-equal .

__m128 mm_cmpngt_ss(__m128 a, __ml128 b)
Compare for not-greater-than.

__m128 _mm_cmpnge_ss(__ml128a, __ml128b)
Compare for not-greater-than-or-equal .

__ml128 _mm_cmpord_ss(__mil28 a, ___ml28b)
Compare for ordered.

_m128 mm_cmpunord_ss(__m128a, __m128b)
Compare for unordered.

I 3-97



INSTRUCTION SET REFERENCE Intel ®

CMPSS—Scalar Single-FP Compare (Continued)

Exceptions

None.

Numeric Exceptions
Invalid if sNaN operand, invalid if gNaN and predicate as listed in above table, denormal.

Protected Mode Exceptions

#GP(0)

#SS(0)

#PF (fault-code)
#UD

#NM

#AC

#XM
#UD

#UD
#UD

For an illegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments.

For anillegal addressin the SS segment.
For a page fault.

If CRO.EM = 1.

If TShitin CRO is set.

For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true (CRO.AM isset; EFLAGS.AC is set; current CPL is 3).

For an unmasked Streaming SIMD Extension numeric exception
(CR4A.OSXMMEXCEPT =1).

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCEPT =0).

If CR4.OSFX SR(bit 9) = 0.
If CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions

Interrupt 13

#UD
#NM
#XM

#UD

#UD
#UD

3-98

If any part of the operand would lie outside of the effective address space
from O to OFFFFH.

If CRO.EM = 1.
If TShitin CROis set.

For an unmasked Streaming SIMD Extension numeric exception
(CR4A.OSXMMEXCEPT =1).

For an unmasked Streaming SIMD Extension numeric exception
(CRA.OSXMMEXCEPT =0).

If CR4.OSFX SR(bit 9) = 0.
If CPUID.XMM(EDX bit 25) = 0.



Intel® INSTRUCTION SET REFERENCE

CMPSS—Scalar Single-FP Compare (Continued)

Virtual 8086 Mode Exceptions
Same exceptions asin Real Address Mode.
#AC For unaligned memory reference if the current privilege level is 3.

#PF (fault-code) For a page fault.

Comments

Compilers and assemblers should implement the following 2-operand pseudo-opsin addition to
the 3-operand CMPSS instruction.

Pseudo-Op Implementation

CMPEQSS xmm1, xmm2 CMPSS xmm1,xmm2, 0
CMPLTSS xmm1, xmm2 CMPSS xmml,xmmz2, 1
CMPLESS xmm1, xmm?2 CMPSS xmm1,xmmz2, 2
CMPUNORDSS xmm1, xmm2 | CMPSS xmml,xmm2, 3
CMPNEQSS xmm1, xmm2 CMPSS xmml,xmm2, 4
CMPNLTSS xmm1, xmm2 CMPSS xmml,xmm2, 5
CMPNLESS xmm1, xmm?2 CMPSS xmm1,xmmz2, 6
CMPORDSS xmm1, xmm2 CMPSS xmml,xmmz2, 7

The greater-than relations not implemented in hardware require more than one instruction to
emulate in software and therefore should not be implemented as pseudo-ops. (For these, the
programmer should reverse the operands of the corresponding less than relations and use move
instructions to ensure that the mask is moved to the correct destination register and that the
source operand is left intact.)

Bits 7-4 of the immediate field are reserved. Different processors may handle them differently.
Usage of these bits risks incompatibility with future processors.

I 3-99



INSTRUCTION SET REFERENCE Intel ®

CMPXCHG—Compare and Exchange

Opcode Instruction Description

OF BO/r CMPXCHG r/m8,r8 Compare AL with /m8. If equal, ZF is set and r8is loaded
into r/m8. Else, clear ZF and load r/m8into AL.

OF B1/r CMPXCHG r/m16,r16 Compare AX with /m16. If equal, ZF is set and r16is
loaded into r/m16. Else, clear ZF and load r/m16into AL

OF B1/r CMPXCHG r/m32,r32 Compare EAX with /m32. If equal, ZF is set and r32 is
loaded into r/m32. Else, clear ZF and load r/m32into AL

Description

This instruction compares the value in the AL, AX, or EAX register (depending on the size of
the operand) with thefirst operand (destination operand). If the two values are equal, the second
operand (source operand) is loaded into the destination operand. Otherwise, the destination
operand isloaded into the AL, AX, or EAX register.

Thisinstruction can be used with aLOCK prefix to allow the instruction to be executed atomi-

cally. To simplify the interface to the processor’s bus, the destination operand receives a write
cycle without regard to the result of the comparison. The destination operand is written back if
the comparison fails; otherwise, the source operand is written into the destination. (The
processor never produces a locked read without also producing a locked write.)

Intel Architecture Compatibility

This instruction is not supported on Intel processors earlier than the Intel486™ processors.

Operation

(* accumulator = AL, AX, or EAX, depending on whether *)
(* a byte, word, or doubleword comparison is being performed*)
IF accumulator = DEST
THEN
ZF 1
DEST ~ SRC
ELSE
ZF -0
accumulator — DEST
Fl;

Flags Affected

The ZF flag is set if the values in the destination operand and register AL, AX, or EAX are equal;
otherwise it is cleared. The CF, PF, AF, SF, and OF flags are set according to the results of the
comparison operation.

3-100 I



Intel® INSTRUCTION SET REFERENCE

CMPXCHG—Compare and Exchange (Continued)

Protected Mode Exceptions

#GP(0) If the destination is located in a nonwritable segment.

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment sel ector.
#SS(0) If amemory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
#SS If amemory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

I 3-101



INSTRUCTION SET REFERENCE Intel ®

CMPXCHG8B—Compare and Exchange 8 Bytes

Opcode Instruction Description

OF C7 /1 m64 CMPXCHG8B m64  Compare EDX:EAX with mé4. If equal, set ZF and load
ECX:EBX into m64. Else, clear ZF and load m64 into
EDX:EAX.

Description

Thisinstruction comparesthe 64-bit valuein EDX:EAX with the operand (destination operand).
If the values are equal, the 64-bit value in ECX:EBX is stored in the destination operand. Other-
wise, the value in the destination operand isloaded into EDX:EAX. The destination operand is
an 8-byte memory location. For the EDX:EAX and ECX:EBX register pairs, EDX and ECX
contain the high-order 32 bitsand EAX and EBX contain thelow-order 32 bits of a64-bit value.

Thisinstruction can be used with aLOCK prefix to allow the instruction to be executed atomi-

cally. To simplify the interface to the processor’s bus, the destination operand receives a write
cycle without regard to the result of the comparison. The destination operand is written back if
the comparison fails; otherwise, the source operand is written into the destination. (The
processor never produces a locked read without also producing a locked write.)

Intel Architecture Compatibility
This instruction is not supported on Intel processors earlier than the Peptapessors.

Operation

IF (EDX:EAX = DEST)
ZF -1
DEST — ECX:EBX
ELSE
ZF <0
EDX:EAX — DEST

Flags Affected

The ZF flag is set if the destination operand and EDX:EAX are equal; otherwise it is cleared.
The CF, PF, AF, SF, and OF flags are unaffected.

3-102 I



Intel® INSTRUCTION SET REFERENCE

CMPXCHG8B—Compare and Exchange 8 Bytes (Continued)

Protected Mode Exceptions

#UD If the destination operand is not a memory location.

#GP(0) If the destination is located in a nonwritable segment.
If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#UD If the destination operand is not a memory location.

#GP If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If amemory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#UD If the destination operand is not a memory location.

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If :clj ignment checking is enabled and an unaligned memory reference is
made.

I 3-103



INSTRUCTION SET REFERENCE Intel®

COMISS—Scalar Ordered Single-FP Compare and Set EFLAGS

Opcode Instruction Description
OF,2F/r COMISS xmml, Compare lower SP FP number in XMM1 register with lower SP
xmm2/m32 FP number in XMM2/Mem and set the status flags accordingly
Description

The COMISS instruction compares two SP FP numbers and sets the ZF,PF,CF bits in the
EFLAGSregister asdescribed above. Although the datatypeis packed single-FP, only the lower
SP numbers are compared. In addition, the OF, SF, and AF bits in the EFLAGS register are
zeroed out. The unordered predicate is returned if either input isaNaN (gNaN or sNaN).

COMISS xmm1, xmm2/m32

Xxmm1 | 4.0 | 5.0 | 6.0 | QNaN |

Xmm2/ | 3.0 | 4.0 | 5.0 | 4.0 |
m32 — — — —

xmm1 | 4.0 | 5.0 | 6.0 | QNaN |

Figure 3-23. Operation of the COMISS Instruction, Condition One
EFLAGS: OF,SFAF=000

EFLAGS: ZF,PFCF=111
MXCSR flags: Invalid flag is set

3-104 I



intal.

COMISS—Scalar Ordered Single-FP Compare And Set EFLAGS

(Continued)

INSTRUCTION SET REFERENCE

COMISS xmm1, xmm2/m32

Xmm1 | 4.0 [ 5.0 6.0 9.0 |
Xmm2/ 3.0 [ 40 5.0 6.0 |
xmm1 | 4.0 [ 5.0 6.0 9.0 |

Figure 3-24. Operation of the COMISS Instruction, Condition Two

EFLAGS: OF,SF,AF=000
EFLAGS: ZF,PF,CF=000

MXCSR flags: Invalid flag is set

COMISS xmm1, xmm2/m32

Xxmm1 | 4.0 | 5.0 6.0 2.0 |

Xmm?2/ | 3.0 | 4.0 5.0 6.0 |
m32 - — —_ —

Xmm1 | 4.0 | 5.0 6.0 2.0 |

Figure 3-25. Operation of the COMISS Instruction, Condition Three

EFLAGS: OF,SF,AF=000
EFLAGS: ZF,PF,CF=001

MXCSR flags: Invalid flag is set

3-105




INSTRUCTION SET REFERENCE Intel ®

COMISS—Scalar Ordered Single-FP Compare And Set EFLAGS
(Continued)

COMISS xmm1, xmm2/m32

xmm1 | 4.0 [ 5.0 [ 60 [ 6.0 |
ey 3.0 [ 40 [ 50 I 60 |
xmm1 | 4.0 [ 5.0 [ 6.0 [ 6.0 |

Figure 3-26. Operation of the COMISS Instruction, Condition Four
EFLAGS: OF,SFAF=000

EFLAGS: ZF,PF,CF=100
MXCSR flags: Invalid flag is set

3-106



Intel® INSTRUCTION SET REFERENCE

COMISS—Scalar Ordered Single-FP Compare And Set EFLAGS
(Continued)

Operation

OF =0;
SF =0;
AF =0;

IF (DEST[31-0] UNORD SRC/m32[31-0]) = TRUE) THEN
ZF=1;
PF=1;
CF=1;
ELSE
IF (DEST[31-0] GTRTHAN SRC/m32[31-0]) = TRUE)THEN
ZF =0;
PF =0;
CF=0;
ELSE
IF (DEST[31-0] LESSTHAN SRC/m32[31-0]) = TRUE THEN
ZF=0;
PF =0;
CF=1;
ELSE
ZF =1,
PF=0;
CF=0;
Fl
Fl
FI

I 3-107



INSTRUCTION SET REFERENCE Intel ®

COMISS—Scalar Ordered Single-FP Compare And Set EFLAGS
(Continued)

Intel C/C++ Compiler Intrinsic Equivalents
int_mm_comieqg_ss(__m128 a, __ m128hb)

Compares the lower SP FP value of aand b for aequal to b. If aand b are equal, 1 is returned.
Otherwise O isreturned.

int_mm_comilt_ss(__m128 a, __m128 b)

Compares the lower SP FP value of aand b for alessthan b. If aislessthan b, 1 is returned.
Otherwise O isreturned.

int_mm_comile_ss(__m128 a, _ m128 b)

Comparesthe lower SP FP value of aand b for alessthan or equal to b. If aislessthan or equal
to b, lisreturned. Otherwise O is returned.

int_mm_comigt_ss(__m128 a, __ m128 b)

Compares the lower SP FP value of aand b for agreater than b. If ais greater than b are equal,
lisreturned. Otherwise O is returned.

int_mm_comige_ss(__m128 a, _ m128hb)

Compares the lower SP FP value of aand b for a greater than or equal to b. If ais greater than
or equal to b, 1 isreturned. Otherwise O is returned.

int_mm_comineq_ss(__m128 a, __m128 b)

Compares the lower SP FP value of aand b for anot equal to b. If aand b are not equal, 1 is
returned. Otherwise O is returned.

Exceptions

None.

3-108 I



intal.

INSTRUCTION SET REFERENCE

COMISS—Scalar Ordered Single-FP Compare And Set EFLAGS

(Continued)

Numeric Exceptions

Invalid (if sNaN or gNaN operands), Denormal. Integer EFLAGS values will not be updated in
the presence of unmasked numeric exceptions.

#GP(0)

#SS(0)

#PF (fault-code)
#UD

#NM

#AC

#XM
#UD

#UD
#UD

For anillegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments.

For anillegal addressin the SS segment.
For a page fault.

If CRO.EM =1.

If TShitin CROis set.

For unaligned memory reference. To enable #A C exceptions, three condi-
tions must be true(CRO.AM is set; EFLAGS.AC is set; current CPL is 3).

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCEPT =1).

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCEPT =0).

If CR4.OSFX SR(bit 9) = 0.
If CPUID.XMM (EDX bit 25) = 0.

Real Address Mode Exceptions

Interrupt 13

#UD
#NM
#XM

#UD

#UD
#UD

If any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

If CRO.EM = 1.
If TSbitin CRO s set.

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCEPT =1).

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCEPT =0).

If CR4.OSFX SR(bit 9) = 0.
If CPUID.XMM(EDX bit 25) = 0.

3-109



INSTRUCTION SET REFERENCE Intel ®

COMISS—Scalar Ordered Single-FP Compare And Set EFLAGS
(Continued)

Virtual 8086 Mode Exceptions
Same exceptions asin Real Address Mode.
#AC For unaligned memory referenceif the current privilege level is 3.

#PF (fault-code) For a page fault.

Comments

COMISS differs from UCOMISS and COMISS in that it signals an invalid numeric exception
when a source operand is either agNaN or an sNaN operand; UCOMISS signalsinvalid only a
source operand is an sNaN.

The usage of Repeat (F2H, F3H) and Operand-Size (66H) prefixes with COMISS is reserved.
Different processor implementations may handle this prefix differently. Usage of this prefix
with COMISS risks incompatibility with future processors.

3-110 I



Intel® INSTRUCTION SET REFERENCE

CPUID—CPU ldentification

Opcode Instruction Description
OF A2 CPUID EAX ~ Processor identification information
Description

Thisinstruction provides processor identificationinformationin registers EAX, EBX, ECX, and
EDX. Thisinformation identifies Intel as the vendor, gives the family, model, and stepping of
processor, feature information, and cache information. An input value loaded into the EAX
register determines what information is returned, as shown in Table 3-6.

Table 3-6. Information Returned by CPUID Instruction

Initial EAX
Value Information Provided about the Processor
0 EAX Maximum CPUID Input Value (2 for the Pentium® Pro processor and 1 for
the Pentium®processor and the later versions of Intel486™ processor that
support the CPUID instruction).
EBX “Genu”
ECX “ntel”
EDX “inel”
1 EAX Version Information (Type, Family, Model, and Stepping ID)
EBX Reserved
ECX Reserved
EDX Feature Information
2 EAX Cache and TLB Information
EBX Cache and TLB Information
ECX Cache and TLB Information
EDX Cache and TLB Information

The CPUID instruction can be executed at any privilege level to serialize instruction execution.
Seriaizing instruction execution guarantees that any modifications to flags, registers, and
memory for previous instructions are completed before the next instruction is fetched and
executed. For more information, refer to Section 7.4., Serializing Instructions in Chapter 7,
Multiple-Processor Management of the Intel Architecture Software Developer’s Manual,
Volume 3

When the input value in register EAX is 0, the processor returns the highest value the CPUID
instruction recognizes in the EAX register (refer to Table 3-6). A vendor identification string is
returned in the EBX, EDX, and ECX registers. For Intel processors, the vendor identification
string is “Genuinelntel” as follows:

EBX ~ 756e6547h (* "Genu", with G in the low nibble of BL *)
EDX — 49656e69h (* "inel", with i in the low nibble of DL *)
ECX « 6¢c65746eh (* "ntel", with n in the low nibble of CL *)

I 3-111



INSTRUCTION SET REFERENCE

CPUID—CPU Identification (Continued)

intgl.

When the input value is 1, the processor returns version information in the EAX register and
feature information in the EDX register (refer to Figure 3-27).

31

14 131211

8 7

43 0

EAX

Family

Model

Stepping
ID

Processor Type

Family (01108B for the Pentium® Pro Processor Family)—/

Model (Beginning with 0001B)

23 KM

1 - Streaming SIMD Extensions
F - Farsh PR DL

Figure 3-27. Version and Feature Information in Registers EAX and EDX

The version information consists of an Intel Architecture family identifier, amodel identifier, a
stepping 1D, and a processor type. The model, family, and processor type for the first processor

in the Intel Pentium® Pro family is asfollows:

®* Model—0001B
®  Family—0110B
® Processor Type—00B

3-112



Intel® INSTRUCTION SET REFERENCE

CPUID—CPU ldentification (Continued)

Refer to AP-485, Intel Processor Identification and the CPUID Instruction (Order Number
241618), the Intel Pentium® Pro Processor Specification Update (Order Number 242689), and
the Intel Pentium® Processor Specification Update (Order Number 242480) for more informa-

tion on identifying earlier Intel Architecture processors.

The available processor types are given in Table 3-7. Intel rel eases information on stepping IDs

as needed.
Table 3-7. Processor Type Field
Type Encoding
Original OEM Processor 00oB
Intel OverDrive® Processor 01B
Dual processor* 10B
Intel reserved. 11B

* Not applicable to Intel386™ and Intel486™ processors.

3-113



INSTRUCTION SET REFERENCE

intgl.

CPUID—CPU Identification (Continued)

Table 3-8 shows the encoding of the feature flags in the EDX register. A feature flag set to 1
indicates the corresponding feature is supported. Software should identify Intel asthe vendor to
properly interpret the feature flags.

Table 3-8. Feature Flags Returned in EDX Register

Bit Feature Description

0 | FPU—Floating- Processor contains an FPU and executes the Intel 387 instruction set.
Point Unit on Chip

1 | VME—Virtual- Processor supports the following virtual-8086 mode enhancements:
8086 Mode * CR4.VME bit enables virtual-8086 mode extensions.

Enhancements * CR4.PVI bit enables protected-mode virtual interrupts.
» Expansion of the TSS with the software indirection bitmap.
* EFLAGS.VIF bit (virtual interrupt flag).
* EFLAGS.VIP bit (virtual interrupt pending flag).

2 | DE—Debugging Processor supports 1/0O breakpoints, including the CR4.DE bit for enabling
Extensions debug extensions and optional trapping of access to the DR4 and DR5

registers.

3 | PSE—Page Size Processor supports 4-Mbyte pages, including the CR4.PSE bit for enabling
Extensions page size extensions, the modified bit in page directory entries (PDES), page

directory entries, and page table entries (PTES).

4 | TSC—Time Processor supports the RDTSC (read time stamp counter) instruction, including
Stamp Counter the CR4.TSD bit that, along with the CPL, controls whether the time stamp

counter can be read.

5 | MSR—Model Processor supports the RDMSR (read model-specific register) and WRMSR
Specific Registers | (write model-specific register) instructions.

6 | PAE—Physical Processor supports physical addresses greater than 32 bits, the extended
Address page-table-entry format, an extra level in the page translation tables, and 2-
Extension MByte pages. The CR4.PAE bit enables this feature. The number of address

bits is implementation specific. The Pentium® Pro processor supports 36 bits of
addressing when the PAE bit is set.

7 | MCE—Machine Processor supports the CR4.MCE bit, enabling machine check exceptions.
Check Exception However, this feature does not define the model-specific implementations of

machine-check error logging, reporting, or processor shutdowns. Machine-
check exception handlers might have to check the processor version to do
model-specific processing of the exception or check for presence of the
machine-check feature.

8 | CX8—CMPXCHG | Processor supports the CMPXCHGS8B (compare and exchange 8 bytes)
8B Instruction instruction.

9 | APIC Processor contains an on-chip Advanced Programmable Interrupt Controller

(APIC) and it has been enabled and is available for use.

10 | Reserved

3-114




intal.

CPUID—CPU ldentification (Continued)

INSTRUCTION SET REFERENCE

Bit Feature Description

11 SEP—Fast System Call | Indicates whether the processor supports the Fast System Call
instructions, SYSENTER and SYSEXIT.

12 MTRR—Memory Type | Processor supports machine-specific memory-type range registers

Range Registers (MTRRs). The MTRRs contains bit fields that indicate the processor’s
MTRR capabilities, including which memory types the processor
supports, the number of variable MTRRs the processor supports, and
whether the processor supports fixed MTRRs.

13 PGE—PTE Global Flag | Processor supports the CR4.PGE flag enabling the global bit in both
PTDEs and PTEs. These bits are used to indicate translation lookaside
buffer (TLB) entries that are common to different tasks and need not be
flushed when control register CR3 is written.

14 MCA—Machine Check | Processor supports the MCG_CAP (machine check global capability)

Architecture MSR. The MCG_CAP register indicates how many banks of error
reporting MSRs the processor supports.

15 | CMOV—Conditional Processor supports the CMOV cc instruction and, if the FPU feature flag
Move and Compare (bit 0) is also set, supports the FCMOVcc and FCOMI instructions.
Instructions

16 FGPAT—Page Attribute | Processor supports CMOVcc, and if the FPU feature flag (bit 0) is also
Table set, supports the FMOVCC and FCOMI instructions.

17 PSE-36—36-bit Page Processor supports 4MB pages with 36 bit physical addresses.

Size Extension

18 PN—Processor Processor supports the 96-bit Processor Number feature, and the

Number feature is enabled
19-22 | Reserved

23 MMX™ Technology Processor supports the MMX™ instruction set. These instructions
operate in parallel on multiple data elements (8 bytes, 4 words, or 2
doublewords) packed into quadword registers or memory locations.

24 FXSR—Fast Indicates whether the processor supports the FXSAVE and FXRSTOR
FP/MMX™ instructions for fast save and restore of the floating point context.
Technology/Streaming | Presence of this bit also indicates that CR4.0SFXSR is available for an
SIMD Extensions operating system to indicate that it uses the fast save/restore
save/restore instructions.

25 XMM—Streaming Processor supports the Streaming SIMD Extensions instruction set.
SIMD Extensions

26-31 | Reserved

3-115




INSTRUCTION SET REFERENCE Intel ®

CPUID—CPU Identification (Continued)

When the input value is 2, the processor returns information about the processor’s internal
caches and TLBs in the EAX, EBX, ECX, and EDX registers. The encoding of these registers
is as follows:

®* The least-significant byte in register EAX (register AL) indicates the number of times the
CPUID instruction must be executed with an input value of 2 to get a complete description
of the processor’s caches and TLBs. The Pefftibra family of processorswill return a 1.

®* The most significant bit (bit 31) of each register indicates whether the register contains
valid information (cleared to 0) or isreserved (set to 1).

®* |f a register contains valid information, the information is contained in one-byte
descriptors. Table 3-9 shows the encoding of these descriptors.

Table 3-9. Encoding of Cache and TLB Descriptors

Descriptor Value Cache or TLB Description
00H Null descriptor
01H Instruction TLB: 4K-Byte Pages, 4-way set associative, 32 entries
02H Instruction TLB: 4M-Byte Pages, fully associative, two entries
03H Data TLB: 4K-Byte Pages, 4-way set associative, 64 entries
04H Data TLB: 4M-Byte Pages, 4-way set associative, eight entries
06H Instruction cache: 8K Bytes, 4-way set associative, 32 byte line size
08H Instruction cache: 16K Bytes, 4-way set associative, 32 byte line size
0AH Data cache: 8K Bytes, 2-way set associative, 32 byte line size
OCH Data cache: 16K Bytes, 2-way or 4-way set associative, 32 byte line size
40H No L2 Cache
41H L2 Unified cache: 128K Bytes, 4-way set associative, 32 byte line size
42H L2 Unified cache: 256K Bytes, 4-way set associative, 32 byte line size
43H L2 Unified cache: 512K Bytes, 4-way set associative, 32 byte line size
44H L2 Unified cache: 1M Byte, 4-way set associative, 32 byte line size
45H L2 Unified cache: 2M Byte, 4-way set associative, 32 byte line size

3-116 I



Intel® INSTRUCTION SET REFERENCE

CPUID—CPU ldentification (Continued)

The first member of the Pentium® Pro processor family will return the following information
about caches and TLBs when the CPUID instruction is executed with an input value of 2:

EAX
EBX
ECX
EDX

030201 01H
OH
OH
06 04 OA 42H

These values are interpreted as follows:

® Theleast-significant byte (byte 0) of register EAX is set to 01H, indicating that the CPUID
instruction needs to be executed only once with an input value of 2 to retrieve complete
information about the processor’s caches and TLBs.

®* The most-significant bit of all four registers (EAX, EBX, ECX, and EDX) is set to O,
indicating that each register contains valid 1-byte descriptors.

® Bytes1, 2, and 3 of register EAX indicate that the processor contains the following:
— 01H—A 32-entry instruction TLB (4-way set associative) for mapping 4-KByte

pages.
02H—A 2-entry instruction TLB (fully associative) for mapping 4-MByte pages.
03H—A 64-entry data TLB (4-way set associative) for mapping 4-KByte pages.

® The descriptorsin registers EBX and ECX are valid, but contain null descriptors.

® Bytes0, 1, 2, and 3 of register EDX indicate that the processor contains the following:

42H—A 256-KByte unified cache (the L2 cache), 4-way set associative, with a
32-byte cache line size.

OAH—AnN 8-KByte data cache (the L1 data cache), 2-way set associative, with a
32-byte cache line size.

04H—AnN 8-entry data TLB (4-way set associative) for mapping 4M-byte pages.

06H—AnN 8-KByte instruction cache (the L1 instruction cache), 4-way set associative,
with a 32-byte cache line size.

Intel Architecture Compatibility

The CPUID instruction is not supported in early models of the Intel486™ processor or in any
Intel Architecture processor earlier than the Intel486™ processor. The ID flag in the EFLAGS
register can be used to determine if this instruction is supported. If a procedure is able to set or
clear this flag, the CPUID is supported by the processor running the procedure.

3-117



INSTRUCTION SET REFERENCE Intel ®

CPUID—CPU Identification (Continued)

Operation

CASE (EAX) OF
EAX =0:
EAX < highest input value understood by CPUID; (* 2 for Pentium® Pro processor *)
EBX ~ Vendor identification string;
EDX < Vendor identification string;
ECX < Vendor identification string;
BREAK;
EAX =1:
EAX[3:0] — Stepping ID;
EAX[7:4] —~ Model;
EAX[11:8] —~ Family;
EAX[13:12] — Processor type;
EAX[31:12] — Reserved;
EBX ~ Reserved;ECX ~ Reserved;
EDX — Feature flags; (* Refer to Figure 3-27 *)
BREAK;
EAX = 2:
EAX ~ Cache and TLB information;
EBX ~ Cache and TLB information;
ECX ~ Cache and TLB information;
EDX ~ Cache and TLB information;
BREAK;
DEFAULT: (* EAX > highest value recognized by CPUID *)
EAX ~ reserved, undefined;
EBX ~ reserved, undefined;
ECX « reserved, undefined;
EDX — reserved, undefined;
BREAK;
ESAC,;

Flags Affected
None.

Exceptions (All Operating Modes)
None.

3-118 I



Intel® INSTRUCTION SET REFERENCE

CVTPI2PS—Packed Signed INT32 to Packed Single-FP Conversion

Opcode Instruction Description
OF,2A,Ir CVTPI2PS xmm, mm/m64  Convert two 32-bit signed integers from MM/Mem to two SP
FP.
Description

The CVTPI2PS instruction converts signed 32-bit integersto SP FP numbers. When the conver-
sion isinexact, rounding is done according to MXCSR. A #MF fault is signalled if thereis a
pending x87 fault.

CVTPI2PS xmm1, xmm1l/m64

Xmm1 | | | | |

Mm1/
m64 | | 15 | 1 |
¢ ¢ Float Float
Xmm1 | [ [ 150 [ 1.0 |
Figure 3-28. Operation of the CVTPI2PS Instruction
Operation
DEST[31-0] (float) (SRC/m64[31-0]);

DEST[63-32] (float) (SRC/m64[63-32]);
DEST[95-64] = DEST[95-64];
DEST[127-96] = DEST[127-96];

Intel C/C++ Compiler Intrinsic Equivalent
__m128 _mm_cvt_pi2ps(__m128 a, __m64 b)
__m128 _mm_cvtpi32_ps(__m128 a, __m64 b)

Convert the two 32-bit integer values in packed form in b to two SP FP values; the upper two
SP FP values are passed through from a.

I 3-119




INSTRUCTION SET REFERENCE Intel ®

CVTPI2PS—Packed Signed INT32 to Packed Single-FP Conversion

(Continued)

Exceptions

None.

Numeric Exceptions

Precision.

Protected Mode Exceptions

#GP(0)

#SS(0)

#PF (fault-code)
#UD

#NM

#MF

#AC

#XM
#UD

#UD
#UD

3-120

For anillegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments.

For anillegal addressin the SS segment.
For a page fault.

If CRO.EM = 1.

If TShitin CROisset.

If there is a pending FPU exception.

For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true(CRO.AM is set; EFLAGS.AC is set; current CPL is 3).

For an unmasked Streaming SIMD Extension numeric exception
(CRA.OSXMMEXCEPT =1).

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCEPT =0).

If CR4.OSFX SR(bit 9) = 0.
If CPUID.XMM(EDX bit 25) = 0.



Intel® INSTRUCTION SET REFERENCE

CVTPI2PS—Packed Signed INT32 to Packed Single-FP Conversion
(Continued)

Real Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

#UD If CRO.EM = 1.

#NM If TShitin CROis set.

#MF If thereis a pending FPU exception.

#AC For unaligned memory reference.

#XM For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extension numeric exception
(CR4.0SXMMEXCPT =0).

#UD If CR4.0SFXSR(bit 9) = 0.

#UD If CPUID.XMM(EDX hit 25) = 0.

Virtual 8086 Mode Exceptions
Same exceptions asin Real Address Mode.

#AC For unaligned memory reference if the current privilege level is 3.

#PF (fault-code) For a page fault.

I 3-121



INSTRUCTION SET REFERENCE Intel ®

CVTPI2PS—Packed Signed INT32 to Packed Single-FP Conversion
(Continued)

Comments

This instruction behaves identically to original MMX™ instructions, in the presence of x87-FP
instructions:

® Transition from x87-FP to MMX™ technology (TOS=0, FP valid bits set to all valid).

® MMX™ instructions write ones (1s) to the exponent part of the corresponding x87-FP
register.

However, the use of a memory source operand with this instruction will not result in the above
transition from x87-FP to MMX™ technology.

Prioritizing for fault and assist behavior for CVTPI2PS is as follows:
Memory source

Invalid opcode (CR0O.EM=1)

2. DNA (CRO0O.TS=1)

3. #SS or #GP, for limit violation
4. #PF, page fault
5

R

=

Streaming SIMD Extensions numeric fault (i.e., precision)
edister source
1. Invalid opcode (CRO.EM=1)
2. DNA (CRO0O.TS=1)
3. #MPF, pending x87-FP fault signalled
4. After returning from #MF, x87-FP->MMX™ technology transition
5. Streaming SIMD Extensions numeric fault (i.e., precision)

3-122 I



Intel® INSTRUCTION SET REFERENCE

CVTPS2PI—Packed Single-FP to Packed INT32 Conversion

Opcode Instruction Description
OF,2D,/r CVTPS2PI mm, xmm/mé64 Convert lower two SP FP from XMM/Mem to two 32-bit
signed integers in MM using rounding specified by
MXCSR.
Description

The CVTPS2PI instruction converts the lower two SP FP numbersin xmm/m64 to signed 32-bit
integers in mm. When the conversion is inexact, the value rounded according to the MXCSR is
returned. If the converted result(s) is/are larger than the maximum signed 32 bhit value, the
Integer Indefinite value (0x80000000) will be returned.

CVTPS2PI xmm1, xmm1/m64

Xmmd | I I | |
xmma | [ 50 [ 10 ]
Int Int
Mm1 | 15 | 1 |
Figure 3-29. Operation of the CVTPS2PI Instruction
Operation

DEST[31-0] = (int) (SRC/m64[31-0]);
DEST[63-32]= (int) (SRC/M64[63-32]);

Intel C/C++ Compiler Intrinsic Equivalent
__m64 _mm_cvt_ps2pi(__m128 a)
__m64 _mm_cvtps_pi32(__m128 a)

Convert the two lower SP FP values of ato two 32-bit integers with truncation, returning the
integersin packed form.

I 3-123



INSTRUCTION SET REFERENCE Intel ®

CVTPS2PI—Packed Single-FP to Packed INT32 Conversion
(Continued)

Exceptions

None.

Numeric Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For anillegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments.

#SS(0) For anillegal addressin the SS segment.

#PF (fault-code) For a page fault.

#UD If CRO.EM = 1.

#NM If TShitin CROis set.

#MF If there is a pending FPU exception.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true(CRO.AM is set; EFLAGS.AC is set; current CPL is 3).

#XM For an unmasked Streaming SIMD Extension numeric exception
(CRA.OSXMMEXCEPT =1).

#UD For an unmasked Streaming SIMD Extension numeric exception
(CR4A.OSXMMEXCPT =0).

#UD If CR4.0SFXSR(bit 9) = 0.

#UD If CPUID.XMM(EDX hit 25) = 0.

3-124 I



Intel® INSTRUCTION SET REFERENCE

CVTPS2PI—Packed Single-FP to Packed INT32 Conversion
(Continued)

Real Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

#UD If CRO.EM = 1.

#NM If TShitin CROis set.

#MF If thereis a pending FPU exception.

#XM For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extension numeric exception
(CR4.0SXMMEXCPT =0).

#UD If CR4.0SFXSR(bit 9) = 0.

#UD If CPUID.XMM(EDX hit 25) = 0.

Virtual 8086 Mode Exceptions
Same exceptions asin Real Address Mode.
#AC For unaligned memory reference if the current privilege level is 3.

#PF (fault-code) For a page fault.

I 3-125



INSTRUCTION SET REFERENCE Intel ®

CVTPS2PI—Packed Single-FP to Packed INT32 Conversion
(Continued)

Comments

This instruction behaves identically to original MMX™ instructions, in the presence of x87-FP
instructions:

® Transition from x87-FP to MMX™ technology (TOS=0, FP valid bits set to all valid).

® MMX™ instructions write ones (1s) to the exponent part of the corresponding x87-FP
register.

Prioritizing for fault and assist behavior for CVTPS2PI is as follows:
M emory source

1. Invalid opcode (CRO.EM=1)

2. DNA (CR0.TS=1)

3. #MPF, pending x87-FP fault signalled

4. After returning from #MF, x87-FP->MMX™ technology transition
5. #SS or #GP, for limit violation

#PF, page fault

o

Streaming SIMD Extensions numeric fault (i.e., invalid, precision)
edister source

Invalid opcode (CR0O.EM=1)

DNA (CR0.TS=1)

#MF, pending x87-FP fault signalled

After returning from #MF, x87-FP->MMX™ technology transition

o N

a > e

Streaming SIMD Extensions numeric fault (i.e., precision)

3-126 I



Intel® INSTRUCTION SET REFERENCE

CVTSI2SS—Scalar Signed INT32 to Single-FP Conversion

Opcode Instruction Description
F3,0F2A,/r  CVTSI2SS xmm, r/m32 Convert one 32-bit signed integer from Integer Reg/Mem
to one SP FP.
Description

The CVTSI2SS instruction converts a signed 32-bit integer from memory or from a 32-bit
integer register to an SP FP number. When the conversion isinexact, rounding is done according
to the MXCSR.

CVTSI2SS xmm1, r/m32

Xmm | I | I |
Rm32 | 15 |
¢ ¢ ¢ Float
Xmml | | | | 15.0 |
Figure 3-30. Operation of the CVTSI2SS Instruction

Operation

DEST[31-0] = (float) (R/m32);

DEST[63-32] = DEST[63-32];

DEST[95-64] = DEST[95-64];

DEST[127-96] = DEST[127-96];

Intel C/C++ Compiler Intrinsic Equivalent
_m128 _mm_cvt_si2ss(__m128 a, int b)
__m128 _mm_cvtsi32_ss(__m128 a, int b)

Convert the 32-bit integer value b to an SP FP value; the upper three SP FP values are passed
through from a.

I 3-127



INSTRUCTION SET REFERENCE Intel ®

CVTSI2SS—Scalar Signed INT32 to Single-FP Conversion

(Continued)

Exceptions

None.

Numeric Exceptions

Precision.

Protected Mode Exceptions

#GP(0)

#SS(0)

#PF (fault-code)
#UD

#NM

#AC

#XM
#UD

#UD
#UD

3-128

For anillegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments.

For anillegal addressin the SS segment.
For a page fault.

If CRO.EM = 1.

If TShitin CROisset.

For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true(CRO.AM is set; EFLAGS.AC is set; current CPL is 3).

For an unmasked Streaming SIMD Extension numeric exception
(CRA.OSXMMEXCEPT =1).

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCEPT =0).

If CR4.OSFX SR(bit 9) = 0.
If CPUID.XMM(EDX bit 25) = 0.



Intel® INSTRUCTION SET REFERENCE

CVTSI2SS—Scalar Signed INT32 to Single-FP Conversion
(Continued)

Real Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

#UD If CRO.EM = 1.

#NM If TShitin CROis set.

#XM For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extension numeric exception
(CR4.0SXMMEXCPT =0).

#UD If CR4.OSFXSR(bit 9) = 0.

#UD If CPUID.XMM(EDX hit 25) = 0.

Virtual 8086 Mode Exceptions

Same exceptions asin Real Address Mode.

#AC For unaligned memory reference if the current privilege level is 3.
#PF (fault-code) For a page fault.

I 3-129



INSTRUCTION SET REFERENCE Intel ®

CVTSS2SI—Scalar Single-FP to Signed INT32 Conversion

Opcode Instruction Description

F3,0F2D,/r  CVTSS2SI r32, xmm/m32 Convert one SP FP from XMM/Mem to one 32 bit signed
integer using rounding mode specified by MXCSR, and
move the result to an integer register.

Description

The CVTSS2S! instruction converts an SP FP number to a signed 32-bit integer and returns it
inthe 32-bit integer register. When the conversion isinexact, the rounded val ue according to the
MXCSR isreturned. If the converted result islarger than the maximum signed 32 bit integer, the
Integer Indefinite value (0x80000000) will be returned.

CVTSS2SIr32, xmm1/m32
r32 | |
Xmml/ | | 150 |
r32 | 15 |
Figure 3-31. Operation of the CVTSS2SI Instruction
Operation

r32 = (int) (SRC/M32[31-0));

Intel C/C++ Compiler Intrinsic Equivalent

int_mm_cvt_ss2si(__m128 a)

int_mm_cvtss_si32(__m128 a)

Convert the lower SP FP value of ato a 32-bit integer according to the current rounding mode.

3-130 I



intal.

INSTRUCTION SET REFERENCE

CVTSS2SI—Scalar Single-FP to Signed INT32 Conversion

(Continued)

Exceptions

None.

Numeric Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0)

#SS(0)

#PF (fault-code)
#UD

#NM

#AC

#XM
#UD

#UD
#UD

For anillegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments.

For anillegal addressin the SS segment.
For a page fault.

If CRO.EM = 1.

If TShitin CROis set.

For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true(CRO.AM is set; EFLAGS.AC is set; current CPL is 3).

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCEPT =1).

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCEPFT =0).

If CR4.OSFX SR(bit 9) = 0.
If CPUID.XMM(EDX bit 25) = 0.

3-131



INSTRUCTION SET REFERENCE Intel ®

CVTSS2SI—Scalar Single-FP to Signed INT32 Conversion
(Continued)

Real Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

#UD If CRO.EM = 1.

#NM If TShitin CRO s set.

#XM For an unmasked Streaming SIMD Extension numeric exception
(CR4.0SXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extension numeric exception
(CR4.0SXMMEXCPT =0).

#UD If CR4.OSFXSR(bit 9) = 0.

#UD If CPUID.XMM(EDX hit 25) = 0.

Virtual 8086 Mode Exceptions
Same exceptions as in Real Address Mode.
#AC For unaligned memory reference if the current privilege level is 3.

#PF (fault-code) For a page fault.

3-132 I



Intel® INSTRUCTION SET REFERENCE

CVTTPS2Pl—PackedSingle-FP toPacked INT32Conversion (Truncate)

Opcode Instruction Description

OF,2C,Ir CVTTPS2PI mm, xmm/mé64 Convert lower two SP FP from XMM/Mem to two 32-bit
signed integers in MM using truncate.

Description

The CVTTPS2PI instruction converts the lower two SP FP numbersin xmm/m64 to two 32-bit
signed integers in mm. If the conversion is inexact, the truncated result is returned. If the
converted result(s) i/are larger than the maximum signed 32 bit value, the Integer Indefinite
value (0x80000000) will be returned.

CVTTPS2PI mm1, xmm1l/m64
Mm | I I I |
XM I I 150 | 10 |
Int Int
Mm1 | 15 | 1 |
Figure 3-32. Operation of the CVTTPS2PI Instruction
Operation

DEST[31-0] = (int) (SRC/m64[31-0]);
DEST[63-32]= (int) (SRC/M64[63-32]);

I 3-133



INSTRUCTION SET REFERENCE Intel ®

CVTTPS2PIl—Packed Single-FP to Packed INT32 Conversion
(Truncate) (Continued)

Intel C/C++ Compiler Intrinsic Equivalent

__m64 _mm_cvtt_ps2pi(__m128 a)

__m64 _mm_cvttps_pi32(__m128 a)

Convert thetwo lower SP FP values of ato two 32-hit integers according to the current rounding
mode, returning the integersin packed form.

Exceptions

None.

Numeric Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For anillegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments.

#SS(0) For anillegal addressin the SS segment.

#PF (fault-code) For a page fault.

#UD If CRO.EM = 1.

#NM If TShitin CROis set.

#MF If there is a pending FPU exception.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-
tions must be true(CRO.AM is set; EFLAGS.AC is set; current CPL is 3).

#XM For an unmasked Streaming SIMD Extension numeric exception
(CRA.OSXMMEXCEPT =1).

#UD For an unmasked Streaming SIMD Extension numeric exception
(CR4A.OSXMMEXCPT =0).

#UD If CR4.0SFXSR(bit 9) = 0.

#UD If CPUID.XMM(EDX hit 25) = 0.

3-134 I



Intel® INSTRUCTION SET REFERENCE

CVTTPS2PIl—Packed Single-FP to Packed INT32 Conversion
(Truncate) (Continued)

Real Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

#UD If CRO.EM = 1.

#NM If TShitin CROis set.

#MF If thereis a pending FPU exception.

#XM For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extension numeric exception
(CR4.0SXMMEXCPT =0).

#UD If CR4.0SFXSR(bit 9) = 0.

#UD If CPUID.XMM(EDX hit 25) = 0.

Virtual 8086 Mode Exceptions
Same exceptions asin Real Address Mode.
#AC For unaligned memory reference if the current privilege level is 3.

#PF (fault-code) For a page fault.

I 3-135



INSTRUCTION SET REFERENCE Intel ®

CVTTPS2PIl—Packed Single-FP to Packed INT32 Conversion
(Truncate) (Continued)

Comments

This instruction behaves identically to original MMX™ instructions, in the presence of x87-FP
instructions, including:

® Transition from x87-FP to MMX™ technology (TOS=0, FP valid bits set to all valid).

® MMX™ instructions write ones (1s) to the exponent part of the corresponding x87-FP
register.

Prioritizing for fault and assist behavior for CVTTPS2PI is as follows:
M emory source

1. Invalid opcode (CRO.EM=1)

2. DNA (CR0.TS=1)

3. #MPF, pending x87-FP fault signalled

4. After returning from #MF, x87-FP->MMX™ technology transition
5. #SS or #GP, for limit violation

#PF, page fault

o

Streaming SIMD Extensions numeric fault (i.e., precision)
edister source

Invalid opcode (CR0O.EM=1)

DNA (CR0.TS=1)

#MF, pending x87-FP fault signalled

After returning from #MF, x87-FP->MMX™ technology transition

o N

a > e

Streaming SIMD Extensions numeric fault (i.e., precision)

3-136 I



Intel® INSTRUCTION SET REFERENCE

CVTTSS2SI|—Scalar Single-FP to Signed INT32 Conversion
(Truncate)

Opcode Instruction Description

F3,0F,2C,/r CVTTSS2SI r32, xmm/m32 Convert lowest SP FP from XMM/Mem to one 32 bit
signed integer using truncate, and move the result to
an integer register.

Description

The CVTTSS2S! instruction converts an SP FP number to asigned 32-bit integer and returns it
in the 32-bit integer register. If the conversion isinexact, the truncated result is returned. If the
converted result is larger than the maximum signed 32 bit value, the Integer Indefinite value
(0x80000000) will be returned.

CVTTSS2SI r321, xmm1/m32
R32| |
Xmm1/
m | 1.0 |
Int
R32 | 1 |
Figure 3-33. Operation of the CVTTSS2SI Instruction
Operation

r32 = (INT) (SRC/m32[31-0));

I 3-137



INSTRUCTION SET REFERENCE Intel ®

CVTTSS2SI—Scalar Single-FP to Signed INT32 Conversion
(Truncate) (Continued)

Intel C/C++ Compiler Intrinsic Equivalent

Version 4.0 and later Intel C/C++ Compiler intrinsic:

int_mm_cvtt_ss2si(__m128 a)

int_mm_cvttss_si32(__m128 a)

Convert the lower SP FP value of ato a 32-bit integer according to the current rounding mode.
Pre-4.0 Intel C/C++ Compiler intrinsic:

_m64_m_from_int(int_i)

Version 4.0 and later Intel C/C++ Compiler intrinsic:

_m64_mm_cvttsi32_si64(int_i)

Convert the integer object i to a 64-bit __m64 object. The integer value is zero extended to 64
bits.

Pre-4.0 Intel C/C++ Compiler intrinsic:
int_m_to_int(__m64_m)

Version 4.0 and later Intel C/C++ Compiler intrinsic:
int_mm_cvtsi64_si32(__m64_m)

Convert the lower 32 bits of the __m64 object m to an integer.

Exceptions

None.

Numeric Exceptions

Invalid, Precision.

3-138 I



intal.

INSTRUCTION SET REFERENCE

CVTTSS2SI|—Scalar Single-FP to Signed INT32 Conversion
(Truncate) (Continued)

Protected Mode Exceptions

#GP(0)

#SS(0)

#PF (fault-code)
#UD

#NM

#AC

#XM
#UD

#UD
#UD

For anillegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments.

For anillegal addressin the SS segment.
For a page fault.

If CRO.EM = 1.

If TShitin CROis set.

For unaligned memory reference. To enable #A C exceptions, three condi-
tions must be true(CRO.AM is set; EFLAGS.AC is set; current CPL is 3).

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCEPT =1).

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCEPT =0).

If CR4.OSFX SR(bit 9) = 0.
If CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions

Interrupt 13

#UD
#NM
#XM

#UD

#UD
#UD

If any part of the operand would lie outside of the effective address space
from O to OFFFFH.

If CRO.EM = 1.
If TSbitin CROs set.

For an unmasked Streaming SIMD Extension numeric exception
(CR4A.OSXMMEXCEPT =1).

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCPT =0).

If CR4.OSFXSR(bit 9) = 0.
If CPUID.XMM(EDX bit 25) = 0.

3-139



INSTRUCTION SET REFERENCE Intel ®

CVTTSS2SI—Scalar Single-FP to Signed INT32 Conversion
(Truncate) (Continued)

Virtual 8086 Mode Exceptions

Same exceptions asin Real Address Mode.
#AC For unaligned memory referenceif the current privilege level is 3.

#PF (fault-code) For a page fault.

3-140 I



Intel® INSTRUCTION SET REFERENCE

CWD/CDQ—Convert Word to Doubleword/Convert Doubleword
to Quadword

Opcode Instruction Description

929 CWD DX:AX ~ sign-extend of AX

99 CDQ EDX:EAX ~ sign-extend of EAX
Description

These instructions double the size of the operand in register AX or EAX (depending on the
operand size) by means of sign extension and storestheresult in registersDX:AX or EDX:EAX,
respectively. The CWD instruction copies the sign (bit 15) of the value in the AX register into
every hit position in the DX register. For more information, refer to Figure 6-5 in Chapter 6,
Instruction Set Summaryof the Intel Architecture Software Developer’'s Manual, Volum&He
CDQ instruction copies the sign (bit 31) of the valuein the EAX register into every bit position
in the EDX register.

The CWD instruction can be used to produce adoubleword dividend from aword before aword
division, and the CDQ instruction can be used to produce a quadword dividend from a double-
word before doubleword division.

The CWD and CDQ mnemonics reference the same opcode. The CWD instruction is intended
for use when the operand-size attribute is 16 and the CDQ instruction for when the operand-size
attribute is 32. Some assemblers may force the operand size to 16 when CWD isused and to 32
when CDQ is used. Others may treat these mnemonics as synonyms (CWD/CDQ) and use the
current setting of the operand-size attribute to determine the size of values to be converted,
regardless of the mnemonic used.

Operation

IF OperandSize = 16 (* CWD instruction *)
THEN DX < SignExtend(AX);
ELSE (* OperandSize = 32, CDQ instruction *)
EDX — SignExtend(EAX);
FI;
Flags Affected

None.

Exceptions (All Operating Modes)

None.

I 3-141



INSTRUCTION SET REFERENCE Intel ®

CWDE—Convert Word to Doubleword
Refer to entry for CBW/CWDE—Convert Byte to Word/Convert Word to Doubleword.

3-142 I



Intel® INSTRUCTION SET REFERENCE

DAA—Decimal Adjust AL after Addition

Opcode Instruction Description
27 DAA Decimal adjust AL after addition
Description

This instruction adjusts the sum of two packed BCD values to create a packed BCD result. The
AL register is the implied source and destination operand. The DAA instruction is only useful
when it follows an ADD instruction that adds (binary addition) two 2-digit, packed BCD values
and stores a byteresult in the AL register. The DAA instruction then adjusts the contents of the
AL register to contain the correct 2-digit, packed BCD result. If adecimal carry is detected, the
CF and AF flags are set accordingly.

Operation

IF (((AL AND OFH) > 9) or AF = 1)
THEN
AL ~ AL +6;
CF —~ CF OR CarryFromLastAddition; (* CF OR carry from AL « AL + 6 *)
AF ~ 1;
ELSE
AF ~ 0;
FI;
IF (AL AND FOH) > 90H) or CF = 1)
THEN
AL — AL + 60H;
CF ~ 1,
ELSE
CF « 0;
FI;

Example

ADD AL, BL Before: AL=79H BL=35H EFLAGS(OSZAPC)=XXXXXX
After: AL=AEH BL=35H EFLAGS(0SZAPC)=110000

DAA Before: AL=2EH BL=35H EFLAGS(OSZAPC)=110000
After: AL=04H BL=35H EFLAGS(0SZAPC)=X00101

I 3-143



INSTRUCTION SET REFERENCE Intel ®

DAA—Decimal Adjust AL after Addition (Continued)

Flags Affected

The CF and AF flags are set if the adjustment of the value results in a decimal carry in either
digit of the result (refer to the “Operation” section above). The SF, ZF, and PF flags are set
according to the result. The OF flag is undefined.

Exceptions (All Operating Modes)

None.

3-144 I



Intel® INSTRUCTION SET REFERENCE

DAS—Decimal Adjust AL after Subtraction

Opcode Instruction Description
2F DAS Decimal adjust AL after subtraction
Description

This instruction adjusts the result of the subtraction of two packed BCD values to create a
packed BCD result. The AL register is the implied source and destination operand. The DAS
instruction is only useful when it follows a SUB instruction that subtracts (binary subtraction)
one 2-digit, packed BCD value from another and storesabyteresultinthe AL register. The DAS
instruction then adjusts the contents of the AL register to contain the correct 2-digit, packed
BCD result. If adecimal borrow is detected, the CF and AF flags are set accordingly.

Operation

IF (AL AND OFH) > 9 ORAF =1
THEN
AL « AL - 6;
CF ~ CF OR BorrowFromLastSubtraction; (* CF OR borrow from AL — AL -6 *)
AF  1;
ELSE AF — 0;
FI;
IF (AL > 9FH) or CF = 1)
THEN
AL — AL - 60H;
CF ~ 1,
ELSE CF — 0;
Fl;

Example

SUB AL, BL Before: AL=35H BL=47H EFLAGS(OSZAPC)=XXXXXX
After: AL=EEH BL=47H EFLAGS(0SZAPC)=010111

DAA Before: AL=EEH BL=47H EFLAGS(OSZAPC)=010111
After: AL=88H BL=47H EFLAGS(0SZAPC)=X10111

Flags Affected

The CF and AF flags are set if the adjustment of the value resultsin adecimal borrow in either
digit of the result (refer to the “Operation” section above). The SF, ZF, and PF flags are set
according to the result. The OF flag is undefined.

Exceptions (All Operating Modes)

None.

I 3-145



INSTRUCTION SET REFERENCE Intel ®

DEC—Decrement by 1

Opcode Instruction Description

FE /1 DEC r/m8 Decrement r/m8 by 1

FF/1 DEC r/m16 Decrement r/m16 by 1

FF/1 DEC r/m32 Decrement /m32 by 1

48+rw DEC ri6 Decrement r16 by 1

48+rd DEC r32 Decrement r32 by 1
Description

Thisinstruction subtracts one from the destination operand, while preserving the state of the CF
flag. The destination operand can be a register or a memory location. This instruction allows a
loop counter to be updated without disturbing the CF flag. (To perform a decrement operation
that updates the CF flag, use a SUB instruction with an immediate operand of 1.)

Operation
DEST ~ DEST -1,

Flags Affected
The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions

#GP(0) If the destination operand is located in a nonwritable segment.
If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If amemory operand effective address is outside the SS segment limit.
#PF(fault-code) If apage fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
#SS If amemory operand effective address is outside the SS segment limit.

3-146 I



Intel® INSTRUCTION SET REFERENCE

DEC—Decrement by 1 (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If a page fault occurs.

#AC(0) If :cli ignment checking is enabled and an unaligned memory reference is
made.

3-147



INSTRUCTION SET REFERENCE

DIV—Unsigned Divide

Opcode Instruction Description

F6 /6 DIV r/m8 Unsigned divide AX by r/m8; AL — Quotient,
AH — Remainder

F7/6 DIV r/m16 Unsigned divide DX:AX by r/m16; AX — Quotient,
DX « Remainder

F71/6 DIV r/m32 Unsigned divide EDX:EAX by r/m32 doubleword;
EAX — Quotient, EDX —~ Remainder

Description

This instruction divides (unsigned) the value in the AX register, DX:AX register pair, or
EDX:EAX register pair (dividend) by the source operand (divisor) and stores the result in the
AX (AH:AL), DX:AX, or EDX:EAX registers. The source operand can be a general-purpose
register or a memory location. The action of this instruction depends on the operand size, as
shown in the following table:

Maximum
Operand Size Dividend Divisor Quotient Remainder Quotient
Word/byte AX r/m8 AL AH 255
Doubleword/word DX:AX r/m16 AX DX 65,535
Quadword/doubleword EDX:EAX r/m32 EAX EDX 2%2 -1

Non-integral results are truncated (chopped) towards 0. The remainder is always less than the
divisor in magnitude. Overflow is indicated with the #DE (divide error) exception rather than
with the CF flag.

3-148



intal.

DIV—Unsigned Divide (Continued)

Operation
IFSRC=0

THEN #DE; (* divide error *)

Fl;

IF OpernadSize = 8 (* word/byte operation *)

THEN

temp —~ AX/SRC;
IF temp > FFH

Fl,
ELSE

IF OperandSize = 16 (* doubleword/word operation *)

Fl,
Fl;

THEN #DE; (* divide error *) ;
ELSE

AL — temp;

AH —~ AX MOD SRC;

THEN
temp — DX:AX/SRC;

IF temp > FFFFH
THEN #DE; (* divide error *) ;
ELSE
AX « temp;
DX ~ DX:AX MOD SRC;
Fl;
ELSE (* quadword/doubleword operation *)
temp — EDX:EAX/SRC;
IF temp > FFFFFFFFH
THEN #DE; (* divide error *) ;
ELSE
EAX — temp;

EDX ~ EDX:EAX MOD SRC;

Fl,

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are undefined.

INSTRUCTION SET REFERENCE

3-149



INSTRUCTION SET REFERENCE Intel ®

DIV—Unsigned Divide (Continued)

Protected Mode Exceptions

#DE

#GP(0)

#SS(0)
#PF(fault-code)
#AC(0)

If the source operand (divisor) is0
If the quotient is too large for the designated register.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.
If amemory operand effective address is outside the SS segment limit.
If apage fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#DE

#GP

#55(0)

If the source operand (divisor) isO.
If the quotient is too large for the designated register.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

If amemory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#DE

#GP(0)

#SS
#PF(fault-code)
#AC(0)

3-150

If the source operand (divisor) isO.
If the quotient is too large for the designated register.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.
If apage fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made.



Intel® INSTRUCTION SET REFERENCE

DIVPS—Packed Single-FP Divide

Opcode Instruction Description
OF,5E,/r DIVPS xmm1, xmm2/m128 Divide packed SP FP numbers in XMM1 by XMM2/Mem
Description

The DIVPS instruction divides the packed SP FP numbers of both their operands.

DIVPS xmm1, xmm2/m128

xmm1 | 100.0 | 1050.0 | 25.0 | 36.0 |
er{% 10.0 | 25.0 | 5.0 | 9.0 |
Xmm1 | 10.0 | 42.0 | 5.0 | 40 |

Figure 3-34. Operation of the DIVPS Instruction

Operation

DEST[31-0] = DEST[31-0] / (SRC/m128[31-0));
DEST[63-32] = DEST[63-32]/ (SRC/m128[63-32]);
DEST[95-64] = DEST[95-64] / (SRC/m128[95-64]);

DEST[127-96] = DEST[127-96] / (SRC/m128[127-96]):

Intel C/C++ Compiler Intrinsic Equivalent
__m128 _mm_div_ps(__m128 a, _ m128hb)
Divides the four SP FP values of aand b.

3-151



INSTRUCTION SET REFERENCE Intel ®

DIVPS—Packed Single-FP Divide (Continued)

Exceptions
General protection exception if not aligned on 16-byte boundary, regardless of segment.

Numeric Exceptions
Overflow, Underflow, Invalid, Divide by Zero, Precision, Denormal.

Protected Mode Exceptions

#GP If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#GP (O) for anillegal memory operand effective addressinthe CS, DS, ES, FS,
or GS segments.

#SS (0) for anillegal address in the SS segment.

#PF (fault-code) for a page fault.

#UD If CRO.EM = 1.

#NM If TShitin CROis set.

#XM For an unmasked Streaming SIMD Extension numeric exception
(CR4A.OSXMMEXCEPT =1)

#UD For an unmasked Streaming SIMD Extension numeric exception
(CR4A.OSXMMEXCPT =0).

#UD If CR4.0SFXSR(bit 9) = 0.

#UD If CPUID.XMM(EDX hit 25) = 0.

3-152 I



Intel® INSTRUCTION SET REFERENCE

DIVPS—Packed Single-FP Divide (Continued)

Real Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from O to OFFFFH.

#UD If CRO.EM = 1.

#NM If TShitin CROis set.

#XM For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCPT =1).

#UD For an unmasked Streaming SIMD Extension numeric exception
(CR4.0SXMMEXCPT =0).

#UD If CR4.0OSFXSR(bit 9) = 0.

#UD If CPUID.XMM(EDX hit 25) = 0.

Virtual 8086 Mode Exceptions
Same exceptions asin Real Address Mode.
#PF(fault-code). If a page fault occurs.

I 3-153



INSTRUCTION SET REFERENCE

DIVSS—Scalar Single-FP Divide

Opcode Instruction Description

F3,0F,5E,/r DIVSS xmm1, xmm2/m32 Divide lower SP FP numbers in XMM1 by XMMZ2/Mem

Description

The DIVSS instructions divide the lowest SP FP numbers of both operands; the upper three

fields are passed through from xmmd2.

DIVSS xmm1, xmm2/m32
Xxmm1 | | | | 36.0
Xmm?2/ | | | | 9.0
™ ¢ v v =
Xmm1l | | | | 4.0
Figure 3-35. Operation of the DIVSS Instruction
Operation
DEST[31-0] = DEST[31-0] / (SRC/m32[31-0]);
DEST[63-32] = DEST[63-32];
DEST[95-64] = DEST[95-64];

DEST[127-96] = DEST[127-96];

Intel C/C++ Compiler Intrinsic Equivalent
__ml128 mm_div_ss(__ml128a, __ml28hb)

Dividesthelower SP FP values of aand b; the upper three SP FP values are passed through from

a

Exceptions

None. Overflow, Underflow, Invalid, Divide by Zero, Precision, Denormal.

3-154




intal.

INSTRUCTION SET REFERENCE

DIVSS—Scalar Single-FP Divide (Continued)

Protected Mode Exceptions

#GP(0)

#SS(0)

#PF (fault-code)
#UD

#NM

#AC

#XM
#UD

#UD
#UD

For anillegal memory operand effective addressinthe CS, DS, ES, FS, or
GS segments.

For anillegal addressin the SS segment.
For a page fault.

If CRO.EM = 1.

If TShitin CROis set.

For unaligned memory reference. To enable #A C exceptions, three condi-
tions must be true(CRO.AM is set; EFLAGS.AC is set; current CPL is 3).

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCEPT =1).

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCEPT =0).

If CR4.OSFX SR(bit 9) = 0.
If CPUID.XMM(EDX bit 25) = 0.

Real Address Mode Exceptions

Interrupt 13

#UD
#NM
#XM

#UD

#UD
#UD

If any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

If CRO.EM = 1.
If TShitin CRO s set.

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCEPT =1).

For an unmasked Streaming SIMD Extension numeric exception
(CR4.OSXMMEXCEPT =0).

If CR4.OSFX SR(bit 9) = 0.
If CPUID.XMM(EDX bit 25) = 0.

Virtual 8086 Mode Exceptions

Same exceptions asin Real Address Mode.

#AC
#PF (fault-code)

For unaligned memory reference if the current privilege level is 3.

For a page fault.

3-155



INSTRUCTION SET REFERENCE Intel ®

EMMS—Empty MMX™ State

Opcode Instruction Description
OF 77 EMMS Set the FP tag word to empty.
Description

Thisinstruction setsthe values of all thetagsin the FPU tag word to empty (all ones). Thisoper-

ation marks the MMX™ technology registers as available, so they can subsequently be used by
floating-point instructions. Refer to Figure 7-11 in Chaptdfl@ating-Point Unit of the Intel
Architecture Software Developer's Manual, Voluméot the format of the FPU tag word. All

other MMX™ instructions (other than the EMMS instruction) set all the tags in FPU tag word
to valid (all zeroes).

The EMMS instruction must be used to clear the MMX™ technology state at the end of all
MMX™ technology routines and before calling other procedures or subroutines that may
execute floating-point instructions. If a floating-point instruction loads one of the registers in the
FPU register stack before the FPU tag word has been reset by the EMMS instruction, a floating-
point stack overflow can occur that will result in a floating-point exception or incorrect result.

Operation
FPUTagWord ~ FFFF

Intel C/C++ Compiler Intrinsic Equivalent
Pre-4.0 Intel C/C++ Compiler intrinsic:
void_m_empty()

Version 4.0 and later Intel C/C++ Compiler intrinsic:
void_mm_empty()

Clears the MMX™ technology state.

Flags Affected
None.

Protected Mode Exceptions

#UD If EM in CRO is set.
#NM If TS in CRO is set.
#MF If there is a pending FPU exception.

3-156 I



Intel® INSTRUCTION SET REFERENCE

EMMS—Empty MMX™ State (Continued)

Real-Address Mode Exceptions

#UD If EM in CRO is set.
#NM If TSin CROis set.
#MF If thereis a pending FPU exception.

Virtual-8086 Mode Exceptions

#UD If EM in CROis set.
#NM If TSin CROis set.
#MF If thereis apending FPU exception.

3-157



INSTRUCTION SET REFERENCE Intel ®

ENTER—Make Stack Frame for Procedure Parameters

Opcode Instruction Description

C8 iw 00 ENTER imm16,0 Create a stack frame for a procedure

C8 iw01 ENTER imm16,1 Create a nested stack frame for a procedure

C8 iwib ENTER imm16,imm8 Create a nested stack frame for a procedure
Description

Thisinstruction creates a stack frame for aprocedure. The first operand (size operand) specifies

the size of the stack frame (that is, the number of bytes of dynamic storage allocated on the stack

for the procedure). The second operand (nesting level operand) givesthelexical nesting level (0

to 31) of the procedure. The nesting level determinesthe number of stack frame pointersthat are

copied into the “display area” of the new stack frame from the preceding frame. Both of these
operands are immediate values.

The stack-size attribute determines whether the BP (16 bits) or EBP (32 bits) register specifies
the current frame pointer and whether SP (16 bits) or ESP (32 bits) specifies the stack pointer.

The ENTER and companion LEAVE instructions are provided to support block structured
languages. The ENTER instruction (when used) is typically the first instruction in a procedure
and is used to set up a new stack frame for a procedure. The LEAVE instruction is then used at
the end of the procedure (just before the RET instruction) to release the stack frame.

If the nesting level is 0, the processor pushes the frame pointer from the EBP register onto the
stack, copies the current stack pointer from the ESP register into the EBP register, and loads the
ESP register with the current stack-pointer value minus the value in the size operand. For nesting
levels of one or greater, the processor pushes additional frame pointers on the stack before
adjusting the stack pointer. These additional frame pointers provide the called procedure with
access points to other nested frames on the stack. Refer to Sectidtratdsiure Calls for
Block-Sructured Languages in Chapter 4Procedure Calls, Interrupts, and Exceptions of the

Intel Architecture Software Developer’'s Manual, Volumdat more information about the

actions of the ENTER instruction.

3-158 I



Intel® INSTRUCTION SET REFERENCE

ENTER—Make Stack Frame for Procedure Parameters (Continued)

Operation

NestingLevel — NestingLevel MOD 32
IF StackSize = 32
THEN
Push(EBP) ;
FrameTemp — ESP;
ELSE (* StackSize = 16%)
Push(BP);
FrameTemp ~ SP;
Fl;
IF NestingLevel =0
THEN GOTO CONTINUE;
FI;
IF (NestingLevel > 0)
FOR i « 1 TO (NestingLevel — 1)
DO
IF OperandSize = 32
THEN
IF StackSize = 32
EBP — EBP - 4;
Push([EBP])); (* doubleword push *)
ELSE (* StackSize = 16%)
BP ~ BP -4;
Push([BP)); (* doubleword push *)
FI;
ELSE (* OperandSize = 16 *)
IF StackSize = 32
THEN
EBP ~ EBP - 2;
Push([EBP]); (* word push *)
ELSE (* StackSize = 16%)
BP ~ BP -2;
Push([BP]); (* word push *)
Fl;
Fl;
OD;
IF OperandSize = 32
THEN
Push(FrameTemp); (* doubleword push *)
ELSE (* OperandSize = 16 *)
Push(FrameTemp); (* word push *)
Fl;
GOTO CONTINUE;
FI;

3-159



INSTRUCTION SET REFERENCE Intel ®

ENTER—Make Stack Frame for Procedure Parameters (Continued)

CONTINUE:
IF StackSize = 32
THEN
EBP ~ FrameTemp
ESP — EBP - Size;
ELSE (* StackSize = 16%)
BP — FrameTemp
SP — BP - Size;
Fl;
END;

Flags Affected
None.

Protected Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment
limit.
#PF(fault-code) If apage fault occurs.

Real-Address Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment
limit.

Virtual-8086 Mode Exceptions

#SS(0) If the new value of the SP or ESP register is outside the stack segment
limit.
#PF(fault-code) If apage fault occurs.

3-160 I



Intel® INSTRUCTION SET REFERENCE

F2XM1—Compute 2 *-1

Opcode Instruction Description
D9 FO F2XM1 Replace ST(0) with (257 — 1)
Description

This instruction calculates the exponentia value of 2 to the power of the source operand minus

1. The source operand islocated in register ST(0) and theresult isalso storedin ST(0). Thevalue

of the source operand must lie in the range —1.0 to +1.0. If the source value is outside this range,
the result is undefined.

The following table shows the results obtained when computing the exponential value of various
classes of numbers, assuming that neither overflow nor underflow occurs.

ST(0) SRC ST(0) DEST
-1.0to -0 -0.5t0 -0
-0 -0
+0 +0
+0to +1.0 +0t01.0

Values other than 2 can be exponentiated using the following formula:

XY = 20 Hlog,x)

Operation
ST(0) ~ (257 -1);

FPU Flags Affected
C1 Set to O if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0,C2,C3 Undefined.

I 3-161



INSTRUCTION SET REFERENCE Intel ®

F2XM1—Compute 2 *-1 (Continued)

Floating-Point Exceptions

#IS Stack underflow occurred.

#A Source operand is an sNaN value or unsupported format.
#D Result is adenormal value.

#U Result istoo small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TSin CRO is set.

Real-Address Mode Exceptions
#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions
#NM EM or TSin CRO is set.

3-162 I



Intel® INSTRUCTION SET REFERENCE

FABS—Absolute Value

Opcode Instruction Description
D9 E1 FABS Replace ST with its absolute value.
Description

This instruction clears the sign bit of ST(0) to create the absolute value of the operand. The
following table shows the results obtained when creating the absolute value of various classes
of numbers.

ST(0) SRC ST(0) DEST

—00 +00

-F +F

-0 +0

+0 +0

+F +F

+00 +00
NaN NaN

NOTE:
F Means finite-real number.

Operation
ST(0) ~ [ST(O)|

FPU Flags Affected

C1l Set to 0 if stack underflow occurred; otherwise, cleared to O.
C0, C2,C3 Undefined.

Floating-Point Exceptions
#1S Stack underflow occurred.

Protected Mode Exceptions
#NM EM or TSin CROis set.

I 3-163



INSTRUCTION SET REFERENCE

FABS—Absolute Value (Continued)

Real-Address Mode Exceptions
#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions
#NM EM or TSin CRO is set.

3-164



Intel® INSTRUCTION SET REFERENCE

FADD/FADDP/FIADD—Add

Opcode Instruction Description

D8 /0 FADD m32 real Add m32realto ST(0) and store result in ST(0)

DC /0 FADD mé6d4real Add mé64realto ST(0) and store result in ST(0)

D8 CO+i FADD ST(0), ST(i) Add ST(0) to ST(i) and store result in ST(0)

DC CO+i FADD ST(i), ST(0) Add ST(i) to ST(0) and store result in ST(i)

DE CO+i FADDP ST(i), ST(0) Add ST(0) to ST(i), store result in ST(i), and pop the
register stack

DE C1 FADDP Add ST(0) to ST(1), store result in ST(1), and pop the
register stack

DA /O FIADD m32int Add m32intto ST(0) and store result in ST(0)

DE /0 FIADD m1i6int Add m16intto ST(0) and store result in ST(0)

Description

This instruction adds the destination and source operands and stores the sum in the destination
location. The destination operand isaways an FPU register; the source operand can be aregister
or a memory location. Source operands in memory can be in single-real, double-real, word-
integer, or short-integer formats.

The no-operand version of the instruction adds the contents of the ST(0O) register to the ST(1)
register. The one-operand version adds the contents of a memory location (either areal or an
integer value) to the contents of the ST(0) register. The two-operand version, adds the contents
of the ST(0) register to the ST(i) register or vice versa. The value in ST(0) can be doubled by
coding:

FADD ST(0), ST(0);

The FADDP ingtructions perform the additional operation of popping the FPU register stack
after storing the result. To pop the register stack, the processor marksthe ST(0) register as empty
and increments the stack pointer (TOP) by 1. (The no-operand version of the floating-point add
instructions always results in the register stack being popped. In some assemblers, the
mnemonic for thisinstruction is FADD rather than FADDP)

The FIADD instructions convert an integer source operand to extended-real format before
performing the addition.

The table on the following page shows the results obtained when adding various classes of
numbers, assuming that neither overflow nor underflow occurs.

When the sum of two operands with opposite signsis 0, the result is +0, except for the round
toward —co mode, in which case the result is —0. When the source operand is an integer 0, it is
treated as a +0.

When both operand are infinities of the same sign, the result is o of the expected sign. If both
operands are infinities of opposite signs, an invalid-operation exception is generated.

I 3-165



INSTRUCTION SET REFERENCE

FADD/FADDP/FIADD—Add (Continued)

DEST
-0 -F -0 +0 +F +00 NaN
-0 -00 -00 -00 -00 -00 * NaN
-For-l -00 -F SRC SRC +F or £0 +o0 NaN
SRC -0 -00 DEST -0 +0 DEST +00 NaN
+0 -00 DEST +0 +0 DEST +00 NaN
+F or +I -00 +F or +0 SRC SRC +F +00 NaN
+o0 * +o0 +00 +00 +00 +00 NaN
NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite-real number.

| Means integer.

* Indicates floating-point invalid-arithmetic-operand (#lA) exception.

Operation

IF instruction is FIADD
THEN
DEST ~ DEST + ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)
DEST ~ DEST + SRC;
Fl;
IF instruction = FADDP
THEN
PopRegisterStack;
Fl;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-

ated: 0 = not roundup; 1 = roundup.
Co, C2, C3 Undefined.

3-166



Intel® INSTRUCTION SET REFERENCE

FADD/FADDP/FIADD—Add (Continued)

Floating-Point Exceptions

#IS Stack underflow occurred.

#A Operand is an sNaN value or unsupported format.
Operands are infinities of unlike sign.

#D Source operand is a denormal value.

#U Result istoo small for destination format.

#0O Result istoo large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

#SS(0) If amemory operand effective address is outside the SS segment limit.
#NM EM or TSin CROis set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If amemory operand effective address is outside the SS segment limit.
#NM EM or TSin CRO is set.

I 3-167



INSTRUCTION SET REFERENCE Intel ®

FADD/FADDP/FIADD—Add (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#NM EM or TSin CRO is set.

#PF(fault-code) If apage fault occurs.

#AC(0) If ;jlignmmt checking is enabled and an unaligned memory reference is
made.

3-168 I



Intel® INSTRUCTION SET REFERENCE

FBLD—Load Binary Coded Decimal

Opcode Instruction Description
DF /4 FBLD m&80 dec Convert BCD value to real and push onto the FPU stack.
Description

This instruction converts the BCD source operand into extended-real format and pushes the
value onto the FPU stack. The source operand is|loaded without rounding errors. The sign of the
source operand is preserved, including that of —0.

The packed BCD digits are assumed to be in the range 0 through 9; the instruction does not
check for invalid digits (AH through FH). Attempting to load an invalid encoding produces an
undefined result.

Operation

TOP ~ TOP -1,
ST(0) — ExtendedReal(SRC);

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, cleared to O.
C0, C2,C3 Undefined.

Floating-Point Exceptions

#1S Stack overflow occurred.

Protected Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If amemory operand effective address is outside the SS segment limit.
#NM EM or TSin CROis set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

I 3-169



INSTRUCTION SET REFERENCE Intel ®

FBLD—Load Binary Coded Decimal (Continued)

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If amemory operand effective address is outside the SS segment limit.

#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#NM EM or TSin CRO is set.

#PF(fault-code) If apage fault occurs.

#AC(0) If ;\jlignment checking is enabled and an unaligned memory reference is
made.

3-170 I



Intel® INSTRUCTION SET REFERENCE

FBSTP—Store BCD Integer and Pop

Opcode Instruction Description
DF /6 FBSTP m80bcd Store ST(0) in m80bcd and pop ST(0).
Description

This instruction converts the value in the ST(0) register to an 18-digit packed BCD integer,
stores the result in the destination operand, and pops the register stack. If the source valueis a
non-integral value, it is rounded to an integer value, according to rounding mode specified by
the RC field of the FPU control word. To pop the register stack, the processor marks the ST(0)
register as empty and increments the stack pointer (TOP) by 1.

The destination operand specifies the address where the first byte destination value is to be
stored. The BCD value (including its sign hit) requires 10 bytes of space in memory.

The following table shows the results obtained when storing various classes of numbers in
packed BCD format.

ST(0) DEST
. *
-F<-1 -D
-1<-F<-0 *
-0 -0
+0 +0
+0<+F < +1 **
+F > +1 +D
+oo *
NaN *

NOTES:

F Means finite-real number.

D Means packed-BCD number.

* Indicates floating-point invalid-operation (#1A) exception.
** +0 or +1, depending on the rounding mode.

If the source value is too large for the destination format and the invalid-operation exception is
not masked, an invalid-operation exception is generated and no valueis stored in the destination
operand. If theinvalid-operation exception is masked, the packed BCD indefinite valueis stored
in memory.

If the source value is aquiet NaN, an invalid-operation exception is generated. Quiet NaNs do
not normally cause this exception to be generated.

I 3-171



INSTRUCTION SET REFERENCE Intel ®

FBSTP—Store BCD Integer and Pop (Continued)

Operation

DEST ~ BCD(ST(0));

PopRegisterStack;

FPU Flags Affected

c1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact exception (#P) is generated:
0 = not roundup; 1 = roundup.

Co, C2,C3 Undefined.

Floating-Point Exceptions
#IS Stack underflow occurred.

#A Source operand is empty; contains a NaN, +o, or unsupported format; or
contains value that exceeds 18 BCD digitsin length.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If asegment register is being loaded with a segment selector that pointsto
anonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If amemory operand effective address is outside the SS segment limit.
#NM EM or TSin CRO is set.
#PF(fault-code) If apage fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If amemory operand effective address is outside the SS segment limit.

#NM EM or TSin CRO is set.

3-172 I



Intel® INSTRUCTION SET REFERENCE

FBSTP—Store BCD Integer and Pop (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#NM EM or TSin CROis set.

#PF(fault-code) If a page fault occurs.

#AC(0) If :{; ignment checking is enabled and an unaligned memory reference is
made.

3-173



INSTRUCTION SET REFERENCE Intel®

FCHS—Change Sign

Opcode Instruction Description
D9 EO FCHS Complements sign of ST(0)
Description

Thisinstruction complementsthe sign bit of ST(0). This operation changes a positive valueinto
a negative value of equal magnitude or vice versa. The following table shows the results
obtained when changing the sign of various classes of numbers.

ST(0) SRC ST(0) DEST
—o0 +00
-F +F
-0 +0
+0 -0
+F -F
+00 —00
NaN NaN

NOTE:
F Means finite-real number.

Operation
SignBit(ST(0)) — NOT (SignBit(ST(0)))

FPU Flags Affected
C1l Set to 0 if stack underflow occurred; otherwise, cleared to O.
C0, C2,C3 Undefined.

Floating-Point Exceptions

#1S Stack underflow occurred.

Protected Mode Exceptions
#NM EM or TSin CRO is set.

3-174 I



intal.

FCHS—Change Sign (Continued)

Real-Address Mode Exceptions

#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions

#NM EM or TSin CROis set.

INSTRUCTION SET REFERENCE

3-175



INSTRUCTION SET REFERENCE Intel ®

FCLEX/FNCLEX—Clear Exceptions

Opcode Instruction Description

9B DB E2 FCLEX Clear floating-point exception flags after checking for
pending unmasked floating-point exceptions.

DB E2 FNCLEX* Clear floating-point exception flags without checking for
pending unmasked floating-point exceptions.

NOTE:
* Refer to “Intel Architecture Compatibility” below.

Description

This instruction clears the floating-point exception flags (PE, UE, OE, ZE, DE, and |E), the
exception summary status flag (ES), the stack fault flag (SF), and the busy flag (B) in the FPU
status word. The FCLEX instruction checks for and handles any pending unmasked floating-
point exceptions before clearing the exception flags, the FNCLEX instruction does not.

Intel Architecture Compatibility

When operating a Pentium® or Intel486™ processor in MS-DOS compatibility mode, it is
possible (under unusual circumstances) for an FNCLEX instruction to be interrupted prior to
being executed to handle a pending FPU exception. Refer to Section DIR0o1V&it FPU
Instructions Can Get FPU Interrupt in Window in Appendix D Guidelines for Writing FPU and
Sreaming SMD Extension Exception Handlers of thelntel Architecture Software Developer’s
Manual, Volume Jfor a description of these circumstances. An FNCLEX instruction cannot be
interrupted in this way on a Pentium® Pro processor.

On a Pentium® 1I1 processor, the FCLEX/FNCLEX instructions operate the same as on a
Pentium® Il processor. They have no effect on the Pentium® 111 processor SIMD floating-point
functional unit or control/status register.

Operation
FPUStatusWord[0..7] — O;
FPUStatusWord[15] ~ 0;
FPU Flags Affected

The PE, UE, OE, ZE, DE, IE, ES, SF, and B flags in the FPU status word are cleared. The CO,
C1, C2, and C3 flags are undefined.

Floating-Point Exceptions
None.

3-176 I



Intel® INSTRUCTION SET REFERENCE

FCLEX/FNCLEX—Clear Exceptions (Continued)

Protected Mode Exceptions
#NM EM or TSin CROis set.

Real-Address Mode Exceptions
#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions
#NM EM or TSin CRO is set.

3-177



INSTRUCTION SET REFERENCE Intel ®

FCMOV cc—Floating-Point Conditional Move

Opcode Instruction Description

DA CO+i FCMOVB ST(0), ST(i) Move if below (CF=1)

DA C8+i FCMOVE ST(0), ST(i) Move if equal (ZF=1)

DA DO+i FCMOVBE ST(0), ST(i) Move if below or equal (CF=1 or ZF=1)

DA D8+i FCMOVU ST(0), ST(i) Move if unordered (PF=1)

DB CO+i FCMOVNB ST(0), ST(i) Move if not below (CF=0)

DB C8+i FCMOVNE ST(0), ST(i) Move if not equal (ZF=0)

DB DO+i FCMOVNBE ST(0), ST(i) Move if not below or equal (CF=0 and ZF=0)

DB D8+i FCMOVNU ST(0), ST(i) Move if not unordered (PF=0)
Description

This instruction tests the status flags in the EFLAGS register and moves the source operand
(second operand) to the destination operand (first operand) if the given test conditionistrue. The
conditions for each mnemonic are given in the Description column above and in Table 6-4 in
Chapter 6, Instruction Set Summary of the Intel Architecture Software Developer's Manual,
Volume 1 The source operand is always in the ST(i) register and the destination operand is
always ST(0).

The FCMOVcc instructions are useful for optimizing small IF constructions. They also help
eliminate branching overhead for | F operations and the possibility of branch mispredictions by
the processor.

A processor may not support the FCM OV ccinstructions. Software can check if the FCMOVcc
instructions are supported by checking the processor’s feature information with the CPUID
instruction (refer to “COMISS—Scalar Ordered Single-FP Compare and Set EFLAGS” in this
chapter). If both the CMOV and FPU feature bits are set, the FQid@\structions are
supported.

Intel Architecture Compatibility

The FCMOVcc instructions were introduced to the Intel Architecture in the Pénkuon
processor family and is not availablein earlier Intel Architecture processors.

Operation

IF condition TRUE
ST(0) — ST(i)

Fl,

FPU Flags Affected

C1l Set to 0 if stack underflow occurred.

Co, C2,C3 Undefined.

3-178 I



intal.

FCMOV cc—Floating-Point Conditional Move (Continued)

Floating-Point Exceptions

#1S Stack underflow occurred.

Integer Flags Affected

None.

Protected Mode Exceptions

#NM EM or TSin CRO is set.

Real-Address Mode Exceptions

#NM EM or TSin CROis set.

Virtual-8086 Mode Exceptions

#NM EM or TSin CRO is set.

INSTRUCTION SET REFERENCE

3-179



INSTRUCTION SET REFERENCE Intel ®

FCOM/FCOMP/FCOMPP—Compare Real

Opcode Instruction Description

D8 /2 FCOM m32Zreal Compare ST(0) with m32real.

DC /2 FCOM mé64real Compare ST(0) with m64real.

D8 DO+i FCOM ST(i) Compare ST(0) with ST(i).

D8 D1 FCOM Compare ST(0) with ST(1).

D8 /3 FCOMP m32Zreal Compare ST(0) with m32real and pop register stack.

DC/3 FCOMP mé64real Compare ST(0) with m64real and pop register stack.

D8 D8+i FCOMP ST(i) Compare ST(0) with ST(i) and pop register stack.

D8 D9 FCOMP Compare ST(0) with ST(1) and pop register stack.

DE D9 FCOMPP Compare ST(0) with ST(1) and pop register stack twice.
Description

These instructions compare the contents of register ST(0) and source value and sets condition
code flags CO, C2, and C3 in the FPU status word according to the results (refer to the table
below). The source operand can be a data register or amemory location. If no source operand is
given, the value in ST(0) is compared with the value in ST(1). The sign of zero is ignored, so
that —0.0 = +0.0.

Condition C3 Cc2 co
ST(0) > SRC 0 0 0
ST(0) < SRC 0 0 1
ST(0) = SRC 1 0 0

Unordered* 1 1 1

NOTE:
* Flags not set if unmasked invalid-arithmetic-operand (#1A) exception is generated.

This instruction checks the class of the numbers being compared (refer to “FXAM—Examine”
in this chapter). If either operand is a NaN or is in an unsupported format, an invalid-arithmetic-
operand exception (#lA) is raised and, if the exception is masked, the condition flags are set to
“unordered.” If the invalid-arithmetic-operand exception is unmasked, the condition code flags
are not set.

The FCOMP instruction pops the register stack following the comparison operation and the
FCOMPRP instruction pops the register stack twice following the comparison operation. To pop
the register stack, the processor marks the ST(0) register as empty and increments the stack
pointer (TOP) by 1.

3-180 I



Intel® INSTRUCTION SET REFERENCE

FCOM/FCOMP/FCOMPP—Compare Real (Continued)

The FCOM instructions perform the same operation as the FUCOM instructions. The only
difference is how they handle gNaN operands. The FCOM instructions raise an invalid-arith-
metic-operand exception (#1A) when either or both of the operandsis a NaN value or isin an
unsupported format. The FUCOM instructions perform the same operation as the FCOM
instructions, except that they do not generate an invalid-arithmetic-operand exception for
gNaNs.

Operation

CASE (relation of operands) OF
ST > SRC: C3,C2, C0 ~ 000;
ST <SRC: C3,C2,C0 ~ 001;
ST = SRC: C3,C2,C0 ~ 100;
ESAC;
IF ST(0) or SRC = NaN or unsupported format
THEN
#IA
IF FPUControlWord.IM = 1
THEN
C3,C2,C0 ~ 111;
Fl;
Fl;
IF instruction = FCOMP
THEN
PopRegisterStack;
Fl;
IF instruction = FCOMPP
THEN
PopRegisterStack;
PopReqgisterStack;
Fl;

FPU Flags Affected

C1 Set to 0 if stack underflow occurred; otherwise, cleared to O.
C0o,C2,C3 Refer to table on previous page.

Floating-Point Exceptions

#1S Stack underflow occurred.

#A One or both operands are NaN values or have unsupported formats.
Register is marked empty.

#D One or both operands are denormal values.

I 3-181



INSTRUCTION SET REFERENCE Intel ®

FCOM/FCOMP/FCOMPP—Compare Real (Continued)

Protected Mode Exceptions

#GP(0)

#355(0)

#NM
#PF(fault-code)
#AC(0)

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CRO is set.

If apage fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS
#NM

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CRO is set.

Virtual-8086 Mode Exceptions

#GP(0)

#55(0)

#NM
#PF(fault-code)
#AC(0)

3-182

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CRO is set.
If apage fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made.



Intel® INSTRUCTION SET REFERENCE

FCOMI/FCOMIP/FUCOMI/FUCOMIP—Compare Real and Set
EFLAGS

Opcode Instruction Description

DB FO+i FCOMI ST, ST(i) Compare ST(0) with ST(i) and set status flags accordingly

DF FO+i FCOMIP ST, ST(i) Compare ST(0) with ST(i), set status flags accordingly, and
pop register stack

DB E8+i FUCOMI ST, ST(i) Compare ST(0) with ST(i), check for ordered values, and
set status flags accordingly

DF E8+i FUCOMIP ST, ST(i) Compare ST(0) with ST(i), check for ordered values, set
status flags accordingly, and pop register stack

Description

These instructions compare the contents of register ST(0) and ST(i) and setsthe status flags ZF,
PF, and CF inthe EFLAGS register according to the results (refer to the table below). The sign
of zero is ignored for comparisons, so that —0.0 = +0.0.

Comparison Results ZF PF CF
STO > ST(i) 0 0 0
STO < ST() 0 0 1
STO = ST(i) 1 0 0
Unordered* 1 1 1

NOTE:

* Flags are set regardless, whether there is an unmasked invalid-arithmetic-operand (#1A) exception gen-
erated or not.

The FCOMI/FCOMIP instructions perform the same operation as the FUCOMI/FUCOMIP
instructions. The only difference is how they handle gNaN operands. The FCOMI/FCOMIP
instructions set the status flags to “unordered” and generate an invalid-arithmetic-operand
exception (#lA) when either or both of the operands is a NaN value (sNaN or gNaN) or is in an
unsupported format.

The FUCOMI/FUCOMIP instructions perform the same operation as the FCOMI/FCOMIP
instructions, except that they do not generate an invalid-arithmetic-operand exception for
gNaNs. Refer to “FXAM—Examine” in this chapter for additional information on unordered
comparisons.

If invalid-operation exception is unmasked, the status flags are not set if the invalid-arithmetic-
operand exception is generated.

The FCOMIP and FUCOMIP instructions also pop the register stack following the comparison
operation. To pop the register stack, the processor marks the ST(0) register as empty and incre-
ments the stack pointer (TOP) by 1.

I 3-183



INSTRUCTION SET REFERENCE Intel ®

FCOMI/FCOMIP/FUCOMI/FUCOMIP—Compare Real and Set
EFLAGS (Continued)

Intel Architecture Compatibility

The FCOMI/FCOMIP/FUCOMI/FUCOMIP instructions were introduced to the Intel Architec-
ture in the Pentium® Pro processor family and are not available in earlier Intel Architecture
processors.

Operation

CASE (relation of operands) OF
ST(0) > ST(i): ZF, PF, CF ~ 000;
ST(0)<ST(): ZF, PF, CF — 001;
ST(0)=ST(): ZF, PF, CF  100;

ESAC;
IF instruction is FCOMI or FCOMIP
THEN
IF ST(0) or ST(i) = NaN or unsupported format
THEN
#IA
IF FPUControlWord.IM = 1
THEN
ZF, PF, CF ~ 111;
FI;
Fl;
FI;
IF instruction is FUCOMI or FUCOMIP
THEN
IF ST(0) or ST(i) = QNaN, but not SNaN or unsupported format
THEN
ZF, PF, CF ~ 111;
ELSE (* ST(0) or ST(i) is SNaN or unsupported format *)
#A,;
IF FPUControlWord.IM = 1
THEN
ZF, PF, CF ~ 111;
Fl;
FI;
Fl;
IF instruction is FCOMIP or FUCOMIP
THEN
PopRegisterStack;
FI;

3-184 I



Intel® INSTRUCTION SET REFERENCE

FCOMI/FCOMIP/FUCOMI/FUCOMIP—Compare Real and Set
EFLAGS (Continued)

FPU Flags Affected
C1l Set to 0 if stack underflow occurred; otherwise, cleared to O.

C0o,C2,C3 Not affected.

Floating-Point Exceptions

#S Stack underflow occurred.
#A (FCOMI or FCOMI P instruction) One or both operands are NaN values or
have unsupported formats.

(FUCOMI or FUCOMIP instruction) One or both operands are sNaN
values (but not gNaNs) or have undefined formats. Detection of a gNaN
value does not raise an invalid-operand exception.

Protected Mode Exceptions
#NM EM or TSin CROis set.

Real-Address Mode Exceptions
#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions
#NM EM or TSin CRO is set.

I 3-185



INSTRUCTION SET REFERENCE Intel ®

FCOS—Cosine

Opcode Instruction Description

D9 FF FCOS Replace ST(0) with its cosine
Description

Thisinstruction cal culates the cosine of the source operand in register ST(0) and stores the result
in ST(0). The source operand must be given in radians and must be within the range —2% to +2%,
The following table shows the results obtained when taking the cosine of various classes of
numbers, assuming that neither overflow nor underflow occurs.

ST(0) SRC ST(0) DEST

0 *

-F -1to+1
-0 +1

+0 +1

+F -1to+1
+oo *
NaN NaN

NOTES:
F Means finite-real number.
* |Indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the range —2% to +2% can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2t or by using the FPREM instruc-
tionwith adivisor of 21t Refer to Section 7.5.8., Pi in Chapter 7, Floating-Point Unit of the Intel
Architecture Software Developer’'s Manual, Volum#oia discussion of the proper value to use
for tin performing such reductions.

Operation

IF |ST(0)| < 2%

THEN
C2 - 0
ST(0) — cosine(ST(0));

ELSE (*source operand is out-of-range *)
C2 - 1;

Fl;

3-186 I



intal.

INSTRUCTION SET REFERENCE

FCOS—Cosine (Continued)

FPU Flags Affected

C1

c2

Co,C3

Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

Undefined if C2is 1.

Set to 1 if source operand is outside the range —2% to +2%; otherwise,
cleared to O.

Undefined.

Floating-Point Exceptions

#1S
#A
#D
#U
#P

Stack underflow occurred.

Source operand is an sNaN value, o, or unsupported format.
Result is adenormal value.

Result istoo small for destination format.

Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM

EM or TSin CRO is set.

Real-Address Mode Exceptions

#NM

EM or TSin CROis set.

Virtual-8086 Mode Exceptions

#NM

EM or TSin CROis set.

3-187



INSTRUCTION SET REFERENCE Intel ®

FDECSTP—Decrement Stack-Top Pointer

Opcode Instruction Description

D9 F6 FDECSTP Decrement TOP field in FPU status word.
Description
Description

This instruction subtracts one from the TOP field of the FPU status word (decrements the top-
of-stack pointer). If the TOP field contains a 0, it is set to 7. The effect of thisinstruction isto
rotate the stack by one position. The contents of the FPU data registers and tag register are not
affected.

Operation

IFTOP =0

THEN TOP - 7,

ELSE TOP ~ TOP -1,
Fl;
FPU Flags Affected

The C1flag is set to O; otherwise, cleared to 0. The CO, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM EM or TSin CRO is set.

Real-Address Mode Exceptions
#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions
#NM EM or TSin CRO is set.

3-188 I



Intel® INSTRUCTION SET REFERENCE

FDIV/FDIVP/FIDIV—Divide

Opcode Instruction Description

D8 /6 FDIV m32real Divide ST(0) by m32real and store result in ST(0)

DC /6 FDIV mé64real Divide ST(0) by mé64real and store result in ST(0)

D8 FO+i FDIV ST(0), ST(i) Divide ST(0) by ST(i) and store result in ST(0)

DC F8+i FDIV ST(i), ST(0) Divide ST(i) by ST(0) and store result in ST(i)

DE F8+i FDIVP ST(i), ST(0) Divide ST(i) by ST(0), store result in ST(i), and pop the
register stack

DE F9 FDIVP Divide ST(1) by ST(0), store result in ST(1), and pop the
register stack

DA /6 FIDIV m32int Divide ST(0) by m32int and store result in ST(0)

DE /6 FIDIV m16int Divide ST(0) by m16int and store result in ST(0)

Description

These instructions divide the destination operand by the source operand and stores the result in
the destination location. The destination operand (dividend) is always in an FPU register; the
source operand (divisor) can be a register or a memory location. Source operands in memory
can bein single-real, double-real, word-integer, or short-integer formats.

The no-operand version of the instruction divides the contents of the ST(1) register by the
contents of the ST(0) register. The one-operand version divides the contents of the ST(0) register
by the contents of a memory location (either a real or an integer value). The two-operand
version, divides the contents of the ST(0) register by the contents of the ST(i) register or vice
versa

The FDIV P instructions perform the additional operation of popping the FPU register stack after
storing the result. To pop the register stack, the processor marksthe ST(0) register as empty and
increments the stack pointer (TOP) by 1. The no-operand version of the floating-point divide
instructions always results in the register stack being popped. In some assemblers, the
mnemonic for thisinstruction is FDIV rather than FDIVP,

The FIDIV instructions convert an integer source operand to extended-real format before
performing the division. When the source operand is an integer O, it istreated as a +0.

If an unmasked divide by zero exception (#Z) is generated, no result is stored; if the exception
is masked, an oo of the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of numbers,
assuming that neither overflow nor underflow occurs.

I 3-189




INSTRUCTION SET REFERENCE Intel ®

FDIV/FDIVP/FIDIV—Divide (Continued)

DEST
—00 -F -0 +0 +F +00 NaN
-00 * +0 +0 -0 -0 * NaN
-F +00 +F +0 -0 -F —00 NaN
- +00 +F +0 -0 -F —00 NaN
SRC -0 +00 ** * * * — NaN
+0 o ok * * ** oo NaN
+l -0 -F -0 +0 +F +00 NaN
+F —00 -F -0 +0 +F +00 NaN
+0o * -0 -0 +0 +0 * NaN
NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite-real number.

| Means integer.

* Indicates floating-point invalid-arithmetic-operand (#lA) exception.
** Indicates floating-point zero-divide (#Z) exception.

Operation
IFSRC=0
THEN
#Z
ELSE
IF instruction is FIDIV
THEN
DEST ~ DEST / ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)
DEST ~ DEST/ SRC;
Fl;
Fl;
IF instruction = FDIVP
THEN
PopRegisterStack
Fl;

3-190 I



intal.

INSTRUCTION SET REFERENCE

FDIV/FDIVP/FIDIV—Divide (Continued)

FPU Flags Affected

C1

C0, C2,C3

Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

Undefined.

Floating-Point Exceptions

#IS
#A

#D
#Z
#U
#0O
#P

Stack underflow occurred.

Operand is an sNaN value or unsupported format.

+oo [ +o0; +0/ +0

Result is a denormal value.

DEST / +0, where DEST is not equal to 0.

Result istoo small for destination format.

Result istoo large for destination format.

Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0)

#55(0)

#NM
#PF(fault-code)
#AC(0)

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CROis set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS
#NM

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CROis set.

3-191



INSTRUCTION SET REFERENCE Intel ®

FDIV/FDIVP/FIDIV—Divide (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#NM EM or TSin CRO is set.

#PF(fault-code) If apage fault occurs.

#AC(0) If ;jlignmmt checking is enabled and an unaligned memory reference is
made.

3-192 I



Intel® INSTRUCTION SET REFERENCE

FDIVR/FDIVRP/FIDIVR—Reverse Divide

Opcode Instruction Description

D8 /7 FDIVR m32real Divide m32real by ST(0) and store result in ST(0)

DC /7 FDIVR m64real Divide mé64real by ST(0) and store result in ST(0)

D8 F8+i FDIVR ST(0), ST(i) Divide ST(i) by ST(0) and store result in ST(0)

DC FO+i FDIVR ST(i), ST(0) Divide ST(0) by ST(i) and store result in ST(i)

DE FO+i FDIVRP ST(i), ST(0) Divide ST(0) by ST(i), store result in ST(i), and pop the
register stack

DE F1 FDIVRP Divide ST(0) by ST(1), store result in ST(1), and pop the
register stack

DA /7 FIDIVR m32int Divide m32int by ST(0) and store result in ST(0)

DE /7 FIDIVR m16int Divide m16int by ST(0) and store result in ST(0)

Description

These instructions divide the source operand by the destination operand and stores the result in
the destination location. The destination operand (divisor) is always in an FPU register; the
source operand (dividend) can be aregister or amemory location. Source operands in memory
can bein single-real, double-real, word-integer, or short-integer formats.

These instructions perform the reverse operations of the FDIV, FDIVP, and FIDIV instructions.
They are provided to support more efficient coding.

The no-operand version of the instruction divides the contents of the ST(0) register by the
contents of the ST(1) register. The one-operand version divides the contents of amemory loca
tion (either areal or an integer value) by the contents of the ST(0) register. The two-operand
version, divides the contents of the ST(i) register by the contents of the ST(0) register or vice
versa,

The FDIVRP instructions perform the additional operation of popping the FPU register stack
after storing the result. To pop the register stack, the processor marks the ST(0) register as empty
and increments the stack pointer (TOP) by 1. The no-operand version of the floating-point
divide instructions always results in the register stack being popped. In some assemblers, the
mnemonic for thisinstruction is FDIVR rather than FDIVRP.

The FIDIVR instructions convert an integer source operand to extended-real format before
performing the division.

If an unmasked divide by zero exception (#2) is generated, no result is stored; if the exception
is masked, an o of the appropriate sign is stored in the destination operand.

The following table shows the results obtained when dividing various classes of numbers,
assuming that neither overflow nor underflow occurs.

I 3-193




INSTRUCTION SET REFERENCE Intel ®

FDIVR/FDIVRP/FIDIVR—Reverse Divide (Continued)

DEST
-0 -F -0 +0 +F +00 NaN
—00 * +00 +00 —00 —00 * NaN
SRC -F +0 +F * * -F -0 NaN
-l +0 +F b b -F -0 NaN
-0 +0 +0 * * -0 -0 NaN
+0 -0 -0 * * +0 +0 NaN
+ -0 -F *x *x +F +0 NaN
+F -0 -F ** #* +F +0 NaN
+00 * —00 —00 +00 +o0 * NaN
NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite-real number.

| Means integer.

* Indicates floating-point invalid-arithmetic-operand (#lA) exception.
** |ndicates floating-point zero-divide (#Z) exception.

When the source operand is an integer O, it istreated as a +0.

Operation

IF DEST =0
THEN
#Z
ELSE
IF instruction is FIDIVR
THEN
DEST ~ ConvertExtendedReal(SRC) / DEST;
ELSE (* source operand is real number *)
DEST ~ SRC/DEST;

Fl;
Fl;
IF instruction = FDIVRP
THEN
PopRegisterStack
FI;

3-194 I



intal.

INSTRUCTION SET REFERENCE

FDIVR/FDIVRP/FIDIVR—Reverse Divide (Continued)

FPU Flags Affected

C1

C0, C2,C3

Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

Undefined.

Floating-Point Exceptions

#IS
#A

#D
#Z
#U
#0O
#P

Stack underflow occurred.

Operand is an sNaN value or unsupported format.

+oo [ +o0; +0/ +0

Result is a denormal value.

SRC/ +0, where SRC is not equal to +0.

Result istoo small for destination format.

Result istoo large for destination format.

Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0)

#55(0)

#NM
#PF(fault-code)
#AC(0)

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CROis set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS
#NM

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CROis set.

3-195



INSTRUCTION SET REFERENCE Intel ®

FDIVR/FDIVRP/FIDIVR—Reverse Divide (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#NM EM or TSin CRO is set.

#PF(fault-code) If apage fault occurs.

#AC(0) If ;jlignmmt checking is enabled and an unaligned memory reference is
made.

3-196 I



Intel® INSTRUCTION SET REFERENCE

FFREE—Free Floating-Point Register

Opcode Instruction Description
DD CO+i FFREE ST(i) Sets tag for ST(i) to empty
Description

Thisinstruction setsthetag in the FPU tag register associated with register ST(i) to empty (11B).
The contents of ST(i) and the FPU stack-top pointer (TOP) are not affected.

Operation
TAG(i) ~ 11B;

FPU Flags Affected
C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM EM or TSin CRO is set.

Real-Address Mode Exceptions
#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions
#NM EM or TSinCROis set.

I 3-197



INSTRUCTION SET REFERENCE Intel ®

FICOM/FICOMP—Compare Integer

Opcode Instruction Description

DE /2 FICOM m16int Compare ST(0) with m16int

DA /2 FICOM m32int Compare ST(0) with m32int

DE /3 FICOMP m16int Compare ST(0) with m16int and pop stack register

DA /3 FICOMP m32int Compare ST(0) with m32int and pop stack register
Description

Theseinstruction compare the valuein ST(0) with an integer source operand and sets the condi-
tion code flags CO, C2, and C3 in the FPU status word according to the results (refer to table
below). The integer value is converted to extended-real format before the comparison is made.

Condition C3 c2 co
ST(0) > SRC 0 0 0
ST(0) < SRC 0 0 1
ST(0) = SRC 1 0 0

Unordered 1 1 1

These instructions perform an “unordered comparison.” An unordered comparison also checks
the class of the numbers being compared (refer to “FXAM—Examine” in this chapter). If either
operand is a NaN or is in an undefined format, the condition flags are set to “unordered.”

The sign of zero is ignored, so that —0.0 = +0.0.

The FICOMP instructions pop the register stack following the comparison. To pop the register
stack, the processor marks the ST(0) register empty and increments the stack pointer (TOP) by 1.

Operation

CASE (relation of operands) OF
ST(0) > SRC: C3, C2, CO ~ 000;
ST(0) < SRC: C3,C2,C0 ~ 001;
ST(0) = SRC: C3,C2,C0 ~ 100;
Unordered: C3,C2,C0 ~ 111;
ESAC,;
IF instruction = FICOMP
THEN
PopRegisterStack;
FI;

3-198 I



intal.

INSTRUCTION SET REFERENCE

FICOM/FICOMP—Compare Integer (Continued)

FPU Flags Affected

C1
C0o,C2,C3

Set to 0 if stack underflow occurred; otherwise, set to O.

Refer to table on previous page.

Floating-Point Exceptions

#IS
#A
#D

Stack underflow occurred.
One or both operands are NaN values or have unsupported formats.

One or both operands are denormal values.

Protected Mode Exceptions

#GP(0)

#SS(0)

#NM
#PF(fault-code)
#AC(0)

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register contains a null segment selector.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CRO is set.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS
#NM

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CROis set.

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)

#NM
#PF(fault-code)
#AC(0)

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CROis set.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made.

3-199



INSTRUCTION SET REFERENCE Intel ®

FILD—Load Integer

Opcode Instruction Description

DF /0 FILD m16int Push m16int onto the FPU register stack.

DB /0 FILD m32int Push m32int onto the FPU register stack.

DF /5 FILD mé64int Push mé64int onto the FPU register stack.
Description

This instruction converts the signed-integer source operand into extended-real format and
pushes the value onto the FPU register stack. The source operand can be aword, short, or long
integer value. It isloaded without rounding errors. The sign of the source operand is preserved.

Operation

TOP — TOP - 1;

ST(0) —~ ExtendedReal(SRC);

FPU Flags Affected

C1 Set to 1 if stack overflow occurred; cleared to O otherwise.
C0o,C2,C3 Undefined.

Floating-Point Exceptions

#1S Stack overflow occurred.

Protected Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
If the DS, ES, FS, or GS register contains a null segment selector.
#SS(0) If amemory operand effective address is outside the SS segment limit.
#NM EM or TSin CRO is set.
#PF(fault-code) If apage fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

3-200 I



Intel® INSTRUCTION SET REFERENCE

FILD—Load Integer (Continued)

Real-Address Mode Exceptions

#GP If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If amemory operand effective address is outside the SS segment limit.

#NM EM or TSin CROis set.

Virtual-8086 Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#NM EM or TSin CROis set.

#PF(fault-code) If a page fault occurs.

#AC(0) If :{; ignment checking is enabled and an unaligned memory reference is
made.

I 3-201



INSTRUCTION SET REFERENCE Intel ®

FINCSTP—Increment Stack-Top Pointer

Opcode Instruction Description
D9 F7 FINCSTP Increment the TOP field in the FPU status register
Description

This instruction adds one to the TOP field of the FPU status word (increments the top-of-stack
pointer). If the TOP field containsa 7, it is set to 0. The effect of thisinstruction isto rotate the
stack by one position. The contents of the FPU data registers and tag register are not affected.
This operation is not equivalent to popping the stack, because the tag for the previous top-of-
stack register is not marked empty.

Operation

IFTOP =7
THEN TOP ~ 0;
ELSE TOP ~ TOP +1;
Fl;
FPU Flags Affected
The Clflag is set to 0; otherwise, cleared to 0. The CO, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM EM or TSin CRO is set.

Real-Address Mode Exceptions
#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions
#NM EM or TSin CRO is set.

3-202 I



Intel® INSTRUCTION SET REFERENCE

FINIT/ENINIT—Initialize Floating-Point Unit

Opcode Instruction Description

9B DB E3 FINIT Initialize FPU after checking for pending unmasked
floating-point exceptions.

DB E3 FNINIT* Initialize FPU without checking for pending unmasked
floating-point exceptions.

NOTE:
* Refer to “Intel Architecture Compatibility” below.

Description

Theseinstructions set the FPU control, status, tag, instruction pointer, and data pointer registers
to their default states. The FPU control word is set to 037FH (round to nearest, all exceptions
masked, 64-hit precision). The status word is cleared (no exception flags set, TOP is set to 0).
Thedataregistersin theregister stack areleft unchanged, but they are all tagged as empty (11B).
Both the instruction and data pointers are cleared.

The FINIT instruction checks for and handles any pending unmasked floating-point exceptions
before performing the initialization; the FNINIT instruction does not.

Intel Architecture Compatibility

When operating a Pentium® or Intel486™ processor in MS-DOS compatibility mode, it is
possible (under unusual circumstances) for an FNINIT instruction to be interrupted prior to
being executed to handle a pending FPU exception. Refer to Section DI2ctVEajt FPU
Instructions Can Get FPU Interrupt in Window in Appendix D Guidelinesfor Writing FPU and
Sreaming SMD Extension Exception Handlers of thelntel Architecture Software Developer’s
Manual, Volume JIfor a description of these circumstances. An FNINIT instruction cannot be
interrupted in this way on a Pentium® Pro processor.

In the Intel387 math coprocessor, the FINIT/FNINIT instruction does not clear the instruction
and data pointers.

On aPentium® 111 processor, the FINIT/FNINT instructions operate the same as on a Pentium®
Il processor. They have no effect on the Pentium® 111 processor SIMD floating-point functional
unit or control/status register.

Operation

FPUControlWord — 037FH;
FPUStatusWord «~ 0;
FPUTagWord ~ FFFFH;
FPUDataPointer — O;
FPUlnstructionPointer — 0;
FPULastInstructionOpcode — O;

I 3-203



INSTRUCTION SET REFERENCE Intel ®

FINIT/ENINIT—Initialize Floating-Point Unit (Continued)

FPU Flags Affected
C0, C1, C2, C3cleared to 0.

Floating-Point Exceptions
None.

Protected Mode Exceptions
#NM EM or TSin CRO is set.

Real-Address Mode Exceptions
#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions
#NM EM or TSin CRO is set.

Comments

Thisinstruction has no effect on the state of SIMD floating-point registers.

3-204 I



Intel® INSTRUCTION SET REFERENCE

FIST/FISTP—Store Integer

Opcode Instruction Description

DF /2 FIST m16int Store ST(0) in m16int

DB /2 FIST m32int Store ST(0) in m32int

DF /3 FISTP m16int Store ST(0) in m16int and pop register stack

DB /3 FISTP m32int Store ST(0) in m32int and pop register stack

DF /7 FISTP mé64int Store ST(0) in m64int and pop register stack
Description

The FIST instruction converts the value in the ST(0) register to a signed integer and stores the
result in the destination operand. Values can be stored in word- or short-integer format. The
destination operand specifies the address where the first byte of the destination value is to be
stored.

The FISTP instruction performs the same operation as the FIST instruction and then pops the
register stack. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The FISTP instruction can also stores values in long-
integer format.

The following table shows the results obtained when storing various classes of numbers in
integer format.

ST(0) DEST
e .
-F<-1 -l
-1<-F<-0 o
-0 0
+0 0
+0<+F<+1 *k
+F > +1 +
oo .
NaN *

NOTES:

F Means finite-real number.

| Means integer.

* Indicates floating-point invalid-operation (#1A) exception.
** (0 or 1, depending on the rounding mode.

I 3-205



INSTRUCTION SET REFERENCE Intel ®

FIST/FISTP—Store Integer (Continued)

If the source value is a non-integral value, it is rounded to an integer value, according to the
rounding mode specified by the RC field of the FPU control word.

If the value being stored is too large for the destination format, is an o, isaNaN, or isin an
unsupported format and if the invalid-arithmetic-operand exception (#1A) is unmasked, an
invalid-operation exception is generated and no valueis stored in the destination operand. If the
invalid-operation exception is masked, the integer indefinite value is stored in the destination
operand.

Operation

DEST ~ Integer(ST(0));
IF instruction = FISTP
THEN
PopRegisterStack;
Fl;
FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction of if the inexact exception (#P) is generated:
0 = not roundup; 1 = roundup.

Cleared to 0 otherwise.
Co, C2, C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#A Source operand istoo large for the destination format
Source operand is aNaN value or unsupported format.

#P Value cannot be represented exactly in destination format.

3-206 I



intal.

INSTRUCTION SET REFERENCE

FIST/FISTP—Store Integer (Continued)

Protected Mode Exceptions

#GP(0)

#SS(0)

#NM
#PF(fault-code)
#AC(0)

If the destination is located in a nonwritable segment.

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
anull segment selector.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CROis set.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS
#NM

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CROis set.

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)

#NM
#PF(fault-code)
#AC(0)

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CRO is set.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made.

3-207



INSTRUCTION SET REFERENCE Intel ®

FLD—Load Real

Opcode Instruction Description

D9 /0 FLD m32real Push m32real onto the FPU register stack.

DD /0 FLD mé64real Push mé64real onto the FPU register stack.

DB /5 FLD m80real Push m80real onto the FPU register stack.

D9 CO+i FLD ST(i) Push ST(i) onto the FPU register stack.
Description

This instruction pushes the source operand onto the FPU register stack. If the source operand is
in single- or double-real format, it isautomatically converted to the extended-real format before
being pushed on the stack.

The FLD instruction can also push the value in a selected FPU register [ST(i)] onto the stack.
Here, pushing register ST(0) duplicates the stack top.

Operation

IF SRC is ST(i)
THEN
temp ~ ST(i)
TOP ~ TOP -1;
IF SRC is memory-operand
THEN
ST(0) —~ ExtendedReal(SRC);
ELSE (* SRC is ST(i) *)
ST(0) ~ temp;

FPU Flags Affected
C1 Set to 1 if stack overflow occurred; otherwise, cleared to 0.
C0, C2,C3 Undefined.

Floating-Point Exceptions

#IS Stack overflow occurred.
#A Source operand is an sNaN value or unsupported format.
#D Source operand is a denormal value. Does not occur if the source operand

isin extended-real format.

3-208 I




intal.

INSTRUCTION SET REFERENCE

FLD—Load Real (Continued)

Protected Mode Exceptions

#GP(0)

#SS(0)

#NM
#PF(fault-code)
#AC(0)

If destination islocated in a nonwritable segment.

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
anull segment selector.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CROis set.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS
#NM

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CROis set.

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)

#NM
#PF(fault-code)
#AC(0)

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CRO is set.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made.

3-209



INSTRUCTION SET REFERENCE Intel ®

FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load
Constant

Opcode Instruction Description

D9 E8 FLD1 Push +1.0 onto the FPU register stack.

D9 E9 FLDL2T Push log,10 onto the FPU register stack.

D9 EA FLDL2E Push log,e onto the FPU register stack.

D9 EB FLDPI Push monto the FPU register stack.

D9 EC FLDLG2 Push log,,2 onto the FPU register stack.

D9 ED FLDLN2 Push log.2 onto the FPU register stack.

D9 EE FLDZ Push +0.0 onto the FPU register stack.
Description

These instructions push one of seven commonly used constants (in extended-real format) onto
the FPU register stack. The constants that can be loaded with these instructions include +1.0,
+0.0, 109,10, log,e, Tt 109,42, and log.2. For each constant, an internal 66-bit constant isrounded
(as specified by the RC field in the FPU control word) to external-real format. The inexact-result
exception (#P) is not generated as aresult of the rounding. Refer to Section 7.5.8., Pi in Chapter
7, Floating-Point Unit of the Intel Architecture Software Developer’s Manual, Voluméofa
description of the 1t constant.

Operation

TOP — TOP - 1;
ST(0) — CONSTANT;

FPU Flags Affected
C1l Set to 1if stack overflow occurred; otherwise, cleared to O.
C0, C2,C3 Undefined.

Floating-Point Exceptions

#1S Stack overflow occurred.

Protected Mode Exceptions
#NM EM or TSin CRO is set.

Real-Address Mode Exceptions
#NM EM or TSin CRO is set.

3-210 I



|nte|® INSTRUCTION SET REFERENCE
FLD1/FLDL2T/FLDL2E/FLDPI/FLDLG2/FLDLN2/FLDZ—Load
Constant (Continued)

Virtual-8086 Mode Exceptions
#NM EM or TSin CROis set.

Intel Architecture Compatibility

When the RC field is set to round-to-nearest, the FPU produces the same constants that is
produced by the Intel 8087 and Intel287 math coprocessors.

I 3-211



INSTRUCTION SET REFERENCE Intel ®

FLDCW—Load Control Word

Opcode Instruction Description
D9 /5 FLDCW m2byte Load FPU control word from m2byte.
Description

Thisinstruction loads the 16-hit source operand into the FPU control word. The source operand
is a memory location. This instruction is typically used to establish or change the FPU’s mode
of operation.

If one or more exception flags are set in the FPU status word prior to loading a new FPU control
word and the new control word unmasks one or more of those exceptions, a floating-point
exception will be generated upon execution of the next floating-point instruction (except for the
no-wait floating-point instructions. For more information, refer to Section 7.908ware
Exception Handling in Chapter 7Floating-Point Unit of thelntel Architecture Software Devel-

oper’s Manual, Volume)1To avoid raising exceptions when changing FPU operating modes,

clear any pending exceptions (using the FCLEX or FNCLEX instruction) before loading the

new control word.

Intel Architecture Compatibility

On a Pentium® 111 processor, the FLDCW instruction operates the same as on a Pentium® |1
processor. It has no effect on the Pentium® I11 processor SIMD floating-point functional unit or
control/status register.

Operation
FPUControlWord —~ SRC;

FPU Flags Affected
CO, C1, C2, C3 undefined.

Floating-Point Exceptions

None; however, this operation might unmask a pending exception in the FPU status word. That
exception is then generated upon execution of the next “waiting” floating-point instruction.

3-212 I



intal.

INSTRUCTION SET REFERENCE

FLDCW—Load Control Word (Continued)

Protected Mode Exceptions

#GP(0)

#55(0)

#NM
#PF(fault-code)
#AC(0)

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
anull segment selector.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CRO is set.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS
#NM

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CRO is set.

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)

#NM
#PF(fault-code)
#AC(0)

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CROis set.
If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made.

3-213



INSTRUCTION SET REFERENCE Intel ®

FLDENV—Load FPU Environment

Opcode Instruction Description
D9 /4 FLDENV m14/28byte Load FPU environment from m14byte or m28byte.
Description

This instruction loads the complete FPU operating environment from memory into the FPU
registers. The source operand specifies the first byte of the operating-environment data in
memory. This data is typically written to the specified memory location by a FSTENV or
FNSTENYV instruction.

The FPU operating environment consists of the FPU control word, status word, tag word,
instruction pointer, data pointer, and last opcode. Figures 7-13 through Figure 7-16 in Chapter
7, Floating-Point Unit of the Intel Architecture Software Developer's Manual, Volumshibw
the layout in memory of the loaded environment, depending on the operating mode of the
processor (protected or real) and the current operand-size attribute (16-bit or 32-bit). In virtual-
8086 mode, the real mode layouts are used.

The FLDENYV instruction should be executed in the same operating mode as the corresponding
FSTENV/FNSTENV instruction.

If one or more unmasked exception flags are set in the new FPU status word, a floating-point
exception will be generated upon execution of the next floating-point instruction (except for the
no-wait floating-point instructions. or moreinformation, refer to Section 7.7.3., Software Excep-
tion Handlingin Chapter 7, Floating-Point Unitof the Intel Architecture Software Developer’s
Manual, Volume )1 To avoid generating exceptions when loading a new environment, clear all
the exception flagsin the FPU status word that is being loaded.

Intel Architecture Compatibility

On a Pentium® 111 processor, the FLDENV instruction operates the same as on a Pentium® 11
processor. It has no effect on the Pentium® I11 processor SIMD floating-point functional unit or
control/status register.

Operation

FPUControlWord — SRC(FPUControlWord);

FPUStatusWord — SRC(FPUStatusWord);

FPUTagWord — SRC(FPUTagWord);

FPUDataPointer — SRC(FPUDataPointer);
FPUlnstructionPointer — SRC(FPUlInstructionPointer);
FPULastInstructionOpcode —~ SRC(FPULastInstructionOpcode);

FPU Flags Affected
The CO, C1, C2, C3 flags are loaded.

3-214 I



Intel® INSTRUCTION SET REFERENCE

FLDENV—Load FPU Environment (Continued)

Floating-Point Exceptions

None; however, if an unmasked exception is loaded in the status word, it is generated upon
execution of the next “waiting” floating-point instruction.

Protected Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
a null segment selector.

#SS(0) If a memory operand effective address is outside the SS segment limit.
#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If a memory operand effective address is outside the SS segment limit.

#NM EM or TS in CRO is set.

#PF(fault-code) If a page fault occurs.

#AC(0) If a(ljignment checking is enabled and an unaligned memory reference is
made.

I 3-215



INSTRUCTION SET REFERENCE Intel ®

FMUL/FMULP/FIMUL—Multiply

Opcode Instruction Description

D8 /1 FMUL m32real Multiply ST(0) by m32real and store result in ST(0)

DC/1 FMUL m64real Multiply ST(0) by mé64real and store result in ST(0)

D8 C8+i FMUL ST(0), ST(i) Multiply ST(0) by ST(i) and store result in ST(0)

DC C8+i FMUL ST(i), ST(0) Multiply ST(i) by ST(0) and store result in ST(i)

DE C8+i FMULP ST(i), ST(0) Multiply ST(i) by ST(0), store result in ST(i), and pop the
register stack

DE C9 FMULP Multiply ST(1) by ST(0), store resultin ST(1), and pop the
register stack

DA /1 FIMUL m32int Multiply ST(0) by m32int and store result in ST(0)

DE/1 FIMUL m16int Multiply ST(0) by m16int and store result in ST(0)

Description

These instructions multiply the destination and source operands and stores the product in the
destination |ocation. The destination operand isaways an FPU data register; the source operand
can be an FPU dataregister or amemory location. Source operandsin memory can bein single-
real, double-real, word-integer, or short-integer formats.

The no-operand version of the instruction multiplies the contents of the ST(1) register by the
contents of the ST(0) register and stores the product in the ST(1) register. The one-operand
version multiplies the contents of the ST(0) register by the contents of amemory location (either
areal or aninteger value) and stores the product in the ST(0) register. The two-operand version,
multiplies the contents of the ST(0) register by the contents of the ST(i) register, or vice versa,
with the result being stored in the register specified with the first operand (the destination
operand).

The FMULP ingtructions perform the additional operation of popping the FPU register stack
after storing the product. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-
point multiply instructions always results in the register stack being popped. In some assem-
blers, the mnemonic for thisinstruction is FMUL rather than FMULP.

The FIMUL instructions convert an integer source operand to extended-real format before
performing the multiplication.

The sign of the result is always the exclusive-OR of the source signs, even if one or more of the
values being multiplied is 0 or . When the source operand is an integer 0, it istreated as a +0.

The following table shows the results obtained when multiplying various classes of numbers,
assuming that neither overflow nor underflow occurs.

3-216 I



intal.

INSTRUCTION SET REFERENCE

FMUL/FMULP/FIMUL—Multiply (Continued)

DEST
—00 -F -0 +0 +F +00 NaN
—00 +00 +00 * * —00 —00 NaN
-F +00 +F +0 -0 -F —00 NaN
- +00 +F +0 -0 -F —o0 NaN
SRC -0 * +0 +0 -0 -0 * NaN
+0 * -0 -0 +0 +0 * NaN
+ —00 -F -0 +0 +F +00 NaN
+F —o0 -F -0 +0 +F +00 NaN
+00 —00 —00 * * +00 +00 NaN
NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite-real number.

I Means Integer.

* Indicates invalid-arithmetic-operand (#IA) exception.

Operation

IF instruction is FIMUL

THEN

DEST ~ DEST OConvertExtendedReal(SRC);
ELSE (* source operand is real number *)
DEST — DEST OSRC;

Fl,

IF instruction = FMULP

THEN

PopRegisterStack

Fl;

FPU Flags Affected

C1

C0o,C2,C3

Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault is
generated: 0 = not roundup; 1 = roundup.

Undefined.

3-217



INSTRUCTION SET REFERENCE Intel ®

FMUL/FMULP/FIMUL—Multiply (Continued)

Floating-Point Exceptions

#IS
#A

#D
#U
#0O
#P

Stack underflow occurred.

Operand is an sNaN value or unsupported format.

One operand is+0 and the other is +co.

Source operand is a denormal value.

Result istoo small for destination format.

Result istoo large for destination format.

Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0)

#SS(0)

#NM
#PF(fault-code)
#AC(0)

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GSregister is used to access memory and it contains
anull segment selector.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CRO is set.
If apage fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS
#NM

3-218

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CRO is set.



Intel® INSTRUCTION SET REFERENCE

FMUL/FMULP/FIMUL—Multiply (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#NM EM or TSin CROis set.

#PF(fault-code) If a page fault occurs.

#AC(0) If :{; ignment checking is enabled and an unaligned memory reference is
made.

3-219



INSTRUCTION SET REFERENCE Intel ®

FNOP—No Operation

Opcode Instruction Description
D9 DO FNOP No operation is performed.
Description

This instruction performs no FPU operation. This instruction takes up space in the instruction
stream but does not affect the FPU or machine context, except the EIP register.

FPU Flags Affected
C0, C1, C2, C3 undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#NM EM or TSin CRO is set.

Real-Address Mode Exceptions
#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions
#NM EM or TSin CRO is set.

3-220 I



Intel® INSTRUCTION SET REFERENCE

FPATAN—Partial Arctangent

Opcode Instruction Description
D9 F3 FPATAN Replace ST(1) with arctan(ST(1)/ST(0)) and pop the register stack
Description

This instruction computes the arctangent of the source operand in register ST(1) divided by the
source operand in register ST(0), storestheresult in ST(1), and popsthe FPU register stack. The
result in register ST(0) has the same sign as the source operand ST(1) and a magnitude less than
+TL

The FPATAN instruction returns the angle between the X axis and the line from the origin to the
point (X,Y), where Y (the ordinate) is ST(1) and X (the abscissa) is ST(0). The angle depends
on the sign of X and Y independently, not just on the sign of the ratio Y/X. Thisis because a
point (=X,Y) isin the second quadrant, resulting in an angle between 172 and 11, while a point
(X,=Y) isin the fourth quadrant, resulting in an angle between 0 and —172. A point (=X,=-Y) is
in the third quadrant, giving an angle between -172 and -1t

The following table shows the results obtained when computing the arctangent of various
classes of numbers, assuming that underflow does not occur.

ST(0)
—00 -F -0 +0 +F +00 NaN
—o -3m4* -T2 -T2 -T2 -T02 -Tu4* NaN
ST(1) -F -Tt —Ttto —102 -T02 -Ty2 -T2 t0 -0 -0 NaN
-0 - -Tt - -0* -0 -0 NaN
+0 +TT +TT +T0% +0* +0 +0 NaN
+F +T +TUt0 +102 +102 +102 +102 to +0 +0 NaN
+00 +314* +102 +172 +102 +T02 +14* NaN
NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite-real number.

* Table 7-20 in Chapter 7, Floating-Point Unit of the Intel Architecture Software Developer's Manual, Vol-
ume 1, specifies that the ratios 0/0 and o/ generate the floating-point invalid arithmetic-operation excep-
tion and, if this exception is masked, the real indefinite value is returned. With the FPATAN instruction, the
0/0 or «/w value is actually not calculated using division. Instead, the arctangent of the two variables is
derived from a common mathematical formulation that is generalized to allow complex numbers as argu-
ments. In this complex variable formulation, arctangent(0,0) etc. has well defined values. These values
are needed to develop a library to compute transcendental functions with complex arguments, based on
the FPU functions that only allow real numbers as arguments.

Thereis no restriction on the range of source operands that FPATAN can accept.

I 3-221



INSTRUCTION SET REFERENCE Intel ®

FPATAN—Partial Arctangent (Continued)

Intel Architecture Compatibility

The source operands for this instruction are restricted for the 80287 math coprocessor to the
following range:

0<|ST(D)| < |ST(0)| < +o0

Operation

ST(1) ~ arctan(ST(1) / ST(0));

PopReqgisterStack;

FPU Flags Affected

C1 Set to O if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

C0o,C2,C3 Undefined.

Floating-Point Exceptions

#1S Stack underflow occurred.

#A Source operand is an sNaN value or unsupported format.
#D Source operand is a denormal value.

#U Result istoo small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TSin CRO is set.

Real-Address Mode Exceptions
#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions
#NM EM or TSin CRO is set.

3-222 I



Intel® INSTRUCTION SET REFERENCE

FPREM—Partial Remainder

Opcode Instruction Description

D9 F8 FPREM Replace ST(0) with the remainder obtained from
dividing ST(0) by ST(1)

Description

This instruction computes the remainder obtained from dividing the value in the ST(0) register
(the dividend) by the value in the ST(1) register (the divisor or modulus), and stores the result
in ST(0). The remainder represents the following value:

Remainder = ST(0) - (Q OST(1))

Here, Q is an integer value that is obtained by truncating the real-number quotient of [ST(0) /
ST(1)] toward zero. The sign of the remainder is the same as the sign of the dividend. The
magnitude of the remainder is less than that of the modulus, unless a partial remainder was
computed (as described below).

This instruction produces an exact result; the precision (inexact) exception does not occur and
the rounding control has no effect. The following table shows the results obtained when
computing the remainder of various classes of numbers, assuming that underflow does not
occur.

ST(1)
—00 -F -0 +0 +F +00 NaN
—o * * * * * * NaN
ST(0) -F ST(0) -For-0 ** ** -For-0 ST(0) NaN
-0 -0 -0 * * -0 -0 NaN
+0 +0 +0 * * +0 +0 NaN
+F ST(0) +F or +0 o o +For+0 | ST(0) NaN
+o0 * * * * * * NaN
NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite-real number.

* Indicates floating-point invalid-arithmetic-operand (#lA) exception.
** |ndicates floating-point zero-divide (#Z) exception.

When the result is 0, its sign is the same as that of the dividend. When the modulus is o, the
result is equal to the value in ST(0).

I 3-223



INSTRUCTION SET REFERENCE Intel ®

FPREM—Partial Remainder (Continued)

The FPREM instruction gets its name “partial remainder” because of the way it computes the
remainder. This instructions arrives at a remainder through iterative subtraction. It can, however,
reduce the exponent of ST(0) by no more than 63 in one execution of the instruction. If the
instruction succeeds in producing a remainder that is less than the modulus, the operation is
complete and the C2 flag in the FPU status word is cleared. Otherwise, C2 is set, and the result
in ST(0) is called thpartial remainder. The exponent of the partial remainder will be less than

the exponent of the original dividend by at least 32. Software can re-execute the instruction
(using the partial remainder in ST(0) as the dividend) until C2 is cleared. (Note that while
executing such a remainder-computation loop, a higher-priority interrupting routine that needs
the FPU can force a context switch in-between the instructions in the loop.)

An important use of the FPREM instruction is to reduce the arguments of periodic functions.

When reduction is complete, the instruction stores the three least-significant bits of the quotient
in the C3, C1, and CO flags of the FPU status word. This information is important in argument

reduction for the tangent function (using a modulug/4j, because it locates the original angle

in the correct one of eight sectors of the unit circle.

Operation

D — exponent(ST(0)) — exponent(ST(1));
IFD<64
THEN
Q < Integer(TruncateTowardZero(ST(0) / ST(1)));
ST(0) — ST(0) - (ST(1) LQ);
C2 - 0
CO0, C3, C1 — LeastSignificantBits(Q); (* Q2, Q1, QO *)
ELSE
C2 - 1;
N < an implementation-dependent number between 32 and 63;
QQ < Integer(TruncateTowardZero((ST(0) / ST(1)) / 2®~Ny);
ST(0) — ST(0) — (ST(1) IQQ 12 ~Ny;
Fl;

FPU Flags Affected

Cco Set to hit 2 (Q2) of the quotient.

Cc1 Set to 0 if stack underflow occurred; otherwise, set to least significant bit
of quotient (QO).

Cc2 Set to 0 if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

3-224 I



Intel® INSTRUCTION SET REFERENCE

FPREM—Partial Remainder (Continued)

Floating-Point Exceptions

#IS Stack underflow occurred.

#A Source operand is an sNaN value, modulusis O, dividend is co, or unsup-
ported format.

#D Source operand is a denormal value.

#U Result istoo small for destination format.

Protected Mode Exceptions
#NM EM or TSin CROis set.

Real-Address Mode Exceptions
#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions
#NM EM or TSin CRO is set.

I 3-225



INSTRUCTION SET REFERENCE Intel ®

FPREM1—Partial Remainder

Opcode Instruction Description

D9 F5 FPREM1 Replace ST(0) with the IEEE remainder obtained from
dividing ST(0) by ST(1)

Description

This instruction computes the |EEE remainder obtained from dividing the value in the ST(0)
register (the dividend) by the valuein the ST(1) register (the divisor or modulus), and storesthe
result in ST(0). The remainder represents the following value:

Remainder = ST(0) — (Q OST(2))

Here, Q is an integer value that is obtained by rounding the real-number quotient of [ST(0) /
ST(1)] toward the nearest integer value. The magnitude of the remainder is less than half the
magnitude of the modulus, unless a partial remainder was computed (as described below).

This instruction produces an exact result; the precision (inexact) exception does not occur and
the rounding control has no effect. The following table shows the results obtained when
computing the remainder of various classes of numbers, assuming that underflow does not
occur.

ST(1)
—00 -F -0 +0 +F +00 NaN
—0 * * * * * * NaN
ST(0) -F ST(0) +F or -0 o o +F or -0 ST(0) NaN
-0 -0 -0 * * -0 -0 NaN
+0 +0 +0 * * +0 +0 NaN
+F ST(0) +F or +0 *x *x +F or +0 ST(0) NaN
+oo * * * * * * NaN
NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite-real number.

* Indicates floating-point invalid-arithmetic-operand (#IA) exception.
** |ndicates floating-point zero-divide (#Z) exception.

When the result is O, its sign is the same as that of the dividend. When the modulus is o, the
result is equal to the value in ST(0).

The FPREM 1 instruction computes the remainder specified in IEEE Std 754. This instruction
operates differently from the FPREM instruction in the way that it rounds the quotient of ST(0)
divided by ST(1) to an integer (refer to the “Operation” section below).

3-226 I



Intel® INSTRUCTION SET REFERENCE

FPREM1—Partial Remainder (Continued)

Like the FPREM instruction, the FPREM1 computes the remainder through iterative subtrac-
tion, but can reduce the exponent of ST(0) by no more than 63 in one execution of the instruc-
tion. If the instruction succeeds in producing a remainder that is less than one half the modulus,
the operation is complete and the C2 flag in the FPU status word is cleared. Otherwise, C2 is
set, and the result in ST(0) is caled the partial remainder. The exponent of the partia
remainder will beless than the exponent of the original dividend by at |east 32. Software can re-
execute the instruction (using the partial remainder in ST(0) as the dividend) until C2is cleared.
(Note that while executing such a remainder-computation loop, a higher-priority interrupting
routine that needs the FPU can force a context switch in-between the instructionsin the loop.)

An important use of the FPREM1 instruction is to reduce the arguments of periodic functions.
When reduction is complete, the instruction stores the three least-significant bits of the quotient
in the C3, C1, and CO flags of the FPU status word. This information isimportant in argument
reduction for the tangent function (using a modulus of T74), becauseit locatesthe original angle
in the correct one of eight sectors of the unit circle.

Operation

D — exponent(ST(0)) — exponent(ST(1));
IFD <64
THEN
Q < Integer(RoundTowardNearestinteger(ST(0) / ST(1)));
ST(0) — ST(0) - (ST(1) 0Q);
C2 - 0
CO0, C3, C1 — LeastSignificantBits(Q); (* Q2, Q1, Q0 *)
ELSE
C2 - 1;
N < an implementation-dependent number between 32 and 63;
QQ « Integer(TruncateTowardZero((ST(0) / ST(1)) / 2C~Ny);
ST(0) « ST(0) — (ST(1) OQQ T2 ~Ny;
Fl;

FPU Flags Affected

(60] Set to hit 2 (Q2) of the quotient.

Cc1 Set to 0 if stack underflow occurred; otherwise, set to least significant bit
of quotient (QO).

Cc2 Set to O if reduction complete; set to 1 if incomplete.

C3 Set to bit 1 (Q1) of the quotient.

I 3-227



INSTRUCTION SET REFERENCE Intel ®

FPREM1—Partial Remainder (Continued)

Floating-Point Exceptions

#IS Stack underflow occurred.

#A Source operand isan sNaN value, modulus (divisor) is0, dividend is o, or
unsupported format.

#D Source operand is a denormal value.

#U Result istoo small for destination format.

Protected Mode Exceptions
#NM EM or TSin CRO is set.

Real-Address Mode Exceptions
#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions
#NM EM or TSin CRO is set.

3-228 I



Intel® INSTRUCTION SET REFERENCE

FPTAN—Partial Tangent

Opcode Instruction Clocks Description

D9 F2 FPTAN 17-173 Replace ST(0) with its tangent and push 1
onto the FPU stack.

Description

This instruction computes the tangent of the source operand in register ST(0), stores the result

in ST(0), and pushes a 1.0 onto the FPU register stack. The source operand must be given in

radians and must be less tharf®tZhe following table shows the unmasked results obtained
when computing the partial tangent of various classes of numbers, assuming that underflow does
not occur.

ST(0) SRC ST(0) DEST

—o *

-F -F to +F
-0 -0

+0 +0

+F -Fto +F
+oo *
NaN NaN

NOTES:
F Means finite-real number.
* |ndicates floating-point invalid-arithmetic-operand (#lA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the ra@éfao +2° can be reduced to the range of the
instruction by subtracting an appropriate integer multipleirdy using the FPREM instruc-

tion with a divisor of 2. Refer to Section 7.5.8j in Chapter 7Floating-Point Unit of thelntel
Architecture Software Developer’'s Manual, Volum#ofLa discussion of the proper valueto use

for tin performing such reductions.

Thevalue 1.0 is pushed onto the register stack after the tangent has been computed to maintain
compatibility with the Intel 8087 and Intel 287 math coprocessors. This operation also simplifies
the calculation of other trigonometric functions. For instance, the cotangent (which is the recip-
rocal of the tangent) can be computed by executing a FDIVR instruction after the FPTAN
instruction.

I 3-229



INSTRUCTION SET REFERENCE Intel ®

FPTAN—Partial Tangent (Continued)

Operation
IF ST(0) < 2%

THEN

C2 - 0;

ST(0) — tan(ST(0));

TOP  TOP - 1;
ST(0) « 1.0;

ELSE (*source operand is out-of-range *)

C2 - 1;

FI,

FPU Flags Affected

C1

Cc2

Co, C3

Set to 0 if stack underflow occurred; set to 1 if stack overflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

Set to 1 if source operand is outside the range —2% to +2%; otherwise,
cleared to O.

Undefined.

Floating-Point Exceptions

#IS
#A
#D
#U
#P

Stack underflow occurred.

Source operand is an sNaN value, o, or unsupported format.
Source operand is a denormal value.

Result istoo small for destination format.

Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM

EM or TSin CROis set.

Real-Address Mode Exceptions

#NM

EM or TSin CROis set.

Virtual-8086 Mode Exceptions

#NM

3-230

EM or TSin CRO is set.



Intel® INSTRUCTION SET REFERENCE

FRNDINT—Round to Integer

Opcode Instruction Description
D9 FC FRNDINT Round ST(0) to an integer.
Description

This instruction rounds the source value in the ST(0) register to the nearest integral value,
depending on the current rounding mode (setting of the RC field of the FPU control word), and
stores the result in ST(0).

If the source value is o, the value is not changed. If the source value is not an integral value, the
floating-point inexact-result exception (#P) is generated.

Operation
ST(0) « RoundTolntegralValue(ST(0));

FPU Flags Affected
C1l Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

Co0, C2,C3 Undefined.

Floating-Point Exceptions

#1S Stack underflow occurred.

#A Source operand is an sNaN value or unsupported format.
#D Source operand is a denormal value.

#P Source operand is not an integral value.

Protected Mode Exceptions
#NM EM or TSin CRO is set.

Real-Address Mode Exceptions
#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions
#NM EM or TSin CRO is set.

I 3-231



INSTRUCTION SET REFERENCE Intel ®

FRSTOR—Restore FPU State

Opcode Instruction Description
DD /4 FRSTOR m94/108byte Load FPU state from m94byte or m108byte.
Description

This instruction loads the FPU state (operating environment and register stack) from the
memory area specified with the source operand. This state datais typically written to the spec-
ified memory location by a previous FSAVE/FNSAVE instruction.

The FPU operating environment consists of the FPU control word, status word, tag word,
instruction pointer, data pointer, and last opcode. Figures 7-13 through Figure 7-16 in Chapter
7, Floating-Point Unit of the Intel Architecture Software Developer’s Manual, Volumshibw
the layout in memory of the stored environment, depending on the operating mode of the
processor (protected or real) and the current operand-size attribute (16-bit or 32-bit). In virtual-
8086 mode, the real mode layouts are used. The contents of the FPU register stack are stored in
the 80 bytesimmediately follow the operating environment image.

The FRSTOR instruction should be executed in the same operating mode as the corresponding
FSAVE/FNSAVE instruction.

Intel Architecture Compatibility

On a Pentium® I11 processor, the FRSTOR instruction operates the same as on a Pentium® |1
processor. It has no effect on the SIMD floating-point functional unit or control/status register,
i.e., it does not restore the SIMD floating-point processor state.

Operation

FPUControlWord — SRC(FPUControlWord);
FPUStatusWord —~ SRC(FPUStatusWord);
FPUTagWord — SRC(FPUTagWord);
FPUDataPointer — SRC(FPUDataPointer);
FPUlnstructionPointer — SRC(FPUlnstructionPointer);
FPULastInstructionOpcode —~ SRC(FPULastInstructionOpcode);
ST(0) — SRC(ST(0));

ST(1) « SRC(ST(1));

ST(2) — SRC(ST(2));

ST(3) —« SRC(ST(3));

ST(4) — SRC(ST(4));

ST(5) — SRC(ST(5));

ST(6) — SRC(ST(6));

ST(7) « SRC(ST(7));

3-232 I



Intel® INSTRUCTION SET REFERENCE

FRSTOR—Restore FPU State (Continued)

FPU Flags Affected
The CO, C1, C2, C3 flags are loaded.

Floating-Point Exceptions

None; however, this operation might unmask an existing exception that has been detected but
not generated, because it was masked. Here, the exception is generated at the completion of the
instruction.

Protected Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
anull segment selector.

#SS(0) If amemory operand effective address is outside the SS segment limit.
#NM EM or TSin CROis set.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If amemory operand effective address is outside the SS segment limit.
#NM EM or TSin CROis set.

I 3-233



INSTRUCTION SET REFERENCE Intel ®

FRSTOR—Restore FPU State (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#NM EM or TSin CRO is set.

#PF(fault-code) If apage fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Comments

Thisinstruction has no effect on the state of SIMD floating-point registers.

3-234 I



Intel® INSTRUCTION SET REFERENCE

FSAVE/FNSAVE—Store FPU State

Opcode Instruction Description

9B DD /6 FSAVE m94/108byte Store FPU state to m94byte or m108byte after checking for
pending unmasked floating-point exceptions. Then re-
initialize the FPU.

DD /6 FNSAVE* m94/108byte  Store FPU environment to m94byte or m108byte without
checking for pending unmasked floating-point exceptions.
Then re-initialize the FPU.

NOTE:
* Refer to “Intel Architecture Compatibility” below.

Description

These instructions store the current FPU state (operating environment and register stack) at the
specified destination in memory, and then re-initializes the FPU. The FSAV E instruction checks
for and handles pending unmasked floating-point exceptions before storing the FPU state; the
FNSAVE instruction does not.

The FPU operating environment consists of the FPU control word, status word, tag word,
instruction pointer, data pointer, and last opcode. Figures 7-13 through Figures 7-16 in Chapter
7, Floating-Point Unit of the Intel Architecture Software Developer's Manual, Volunsidw
the layout in memory of the stored environment, depending on the operating mode of the
processor (protected or real) and the current operand-si ze attribute (16-bit or 32-bit). In virtual-
8086 mode, the real mode layouts are used. The contents of the FPU register stack are storedin
the 80 bytes immediately follow the operating environment image.

The saved image reflects the state of the FPU after all floating-point instructions preceding the
FSAVE/FNSAVE instruction in the instruction stream have been executed.

After the FPU state has been saved, the FPU is reset to the same default values it is set to with
the FINIT/FNINIT instructions (refer to “FINIT/FNINIT—Initialize Floating-Point Unit” in
this chapter).

The FSAVE/FNSAVE instructions are typically used when the operating system needs to
perform a context switch, an exception handler needs to use the FPU, or an application program
needs to pass a “clean” FPU to a procedure.

Intel Architecture Compatibility

For Intel math coprocessors and FPUs prior to the Intel Peéhfitoressor, an FWAIT instruc-
tion should be executed before attempting to read from the memory image stored with a prior
FSAVE/FNSAVE instruction. This FWAIT instruction helps insure that the storage operation
has been completed.

On a Pentium® Il processor, the FSAVE/FNSAVE instructions operate the same as on a
Pentium® Il processor. They have no effect on the Pentium® 111 processor SIMD floating-point
functional unit or control/statusregister, i.e., they do not save the SIMD floating-point processor
state.

I 3-235



INSTRUCTION SET REFERENCE Intel ®

FSAVE/FNSAVE—Store FPU State (Continued)

When operating a Pentium® or Intel486™ processor in MS-DOS compatibility mode, it is
possible (under unusual circumstances) for an FNSAVE instruction to be interrupted prior to
being executed to handle a pending FPU exception.

Refer to Section D.2.1.3No-Wait FPU Instructions Can Get FPU Interrupt in Window in
Appendix D,Guidelines for Writing FPU and Sreaming SSMD Extension Exception Handlers
of the Intel Architecture Software Developer's Manual, Voluméorla description of these
circumstances. An FNSAVE instruction cannot be interrupted in this way on a Pentium® Pro
processor.

Operation

(* Save FPU State and Registers *)
DEST(FPUControlWord) — FPUControlWord;
DEST(FPUStatusWord) — FPUStatusWord;
DEST(FPUTagWord) — FPUTagWord;
DEST(FPUDataPointer) — FPUDataPointer;
DEST(FPUlnstructionPointer) — FPUInstructionPointer;
DEST(FPULastInstructionOpcode) — FPULastInstructionOpcode;
DEST(ST(0)) — ST(0);

DEST(ST(1)) — ST(1);

DEST(ST(2)) —~ ST(2);

DEST(ST(3)) « ST(3);

DEST(ST(4)) — ST(4);

DEST(ST(5)) « ST(5);

DEST(ST(6)) — ST(6);

DEST(ST(7)) « ST(7);

(* Initialize FPU *)

FPUControlWord ~ 037FH;

FPUStatusWord ~ O;

FPUTagWord — FFFFH;

FPUDataPointer — O;

FPUlnstructionPointer — O;
FPULastInstructionOpcode — O;

FPU Flags Affected
The CO, C1, C2, and C3 flags are saved and then cleared.

Floating-Point Exceptions
None.

3-236 I



Intel® INSTRUCTION SET REFERENCE

FSAVE/FNSAVE—Store FPU State (Continued)

Protected Mode Exceptions
#GP(0) If destination islocated in a nonwritable segment.

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
anull segment selector.

#SS(0) If amemory operand effective address is outside the SS segment limit.
#NM EM or TSin CROis set.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If amemory operand effective address is outside the SS segment limit.

#NM EM or TSin CROis set.

Virtual-8086 Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#NM EM or TSin CROis set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made.

Comments

Thisinstruction has no effect on the state of SIMD floating-point registers.

I 3-237



INSTRUCTION SET REFERENCE Intel ®

FSCALE—Scale

Opcode Instruction Description
D9 FD FSCALE Scale ST(0) by ST(2).
Description

Thisinstruction multiplies the destination operand by 2 to the power of the source operand and
stores the result in the destination operand. The destination operand isareal valuethat islocated
in register ST(0). The source operand is the nearest integer value that is smaller than the value
in the ST(1) register (that is, the value in register ST(1) is truncated toward O to its nearest
integer value to form the source operand). Thisinstruction provides rapid multiplication or divi-
sion by integral powers of 2 because it isimplemented by simply adding an integer value (the
source operand) to the exponent of the value in register ST(0). The following table shows the
results obtained when scaling various classes of numbers, assuming that neither overflow nor
underflow occurs.

ST(1)

-N 0 +N

-0 -0 ) -0

ST(0) -F -F -F -F
-0 -0 -0 -0

+0 +0 +0 +0

+F +F +F +F

+o0 +o0 +00 +00

NaN NaN NaN NaN

NOTES:
F Means finite-real number.
N Means integer.

In most cases, only the exponent is changed and the mantissa (significand) remains unchanged.
However, when the value being scaled in ST(0) isadenormal value, the mantissaisalso changed
and the result may turn out to be a normalized number. Similarly, if overflow or underflow
results from a scale operation, the resulting mantissa will differ from the source’s mantissa.

The FSCALE instruction can also be used to reverse the action of the FXTRACT instruction, as
shown in the following example:

FXTRACT;
FSCALE;
FSTP ST(1);

3-238 I



Intel® INSTRUCTION SET REFERENCE

FSCALE—Scale (Continued)

Inthisexample, the FXTRACT instruction extracts the significand and exponent from the value
in ST(0) and stores them in ST(0) and ST(1) respectively. The FSCALE then scales the signifi-
cand in ST(0) by the exponent in ST(1), recreating the original value before the FXTRACT
operation was performed. The FSTP ST (1) instruction overwrites the exponent (extracted by the
FXTRACT instruction) with the recreated value, which returnsthe stack to its original statewith
only one register [ST(0)] occupied.

Operation
ST(0) — ST(0) O25T®);

FPU Flags Affected
C1l Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

Co, C2,C3 Undefined.

Floating-Point Exceptions

#1S Stack underflow occurred.

#A Source operand is an sNaN value or unsupported format.
#D Source operand is a denormal value.

#U Result istoo small for destination format.

#0O Result istoo large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TSin CRO is set.

Real-Address Mode Exceptions
#NM EM or TSinCROis set.

Virtual-8086 Mode Exceptions
#NM EM or TSin CRO is set.

I 3-239



INSTRUCTION SET REFERENCE Intel ®

FSIN—Sine

Opcode Instruction Description

D9 FE FSIN Replace ST(0) with its sine.
Description

This instruction calculates the sine of the source operand in register ST(0) and stores the result
in ST(0). The source operand must be given in radians and must be within the range —25 to +2%,
The following table shows the results obtained when taking the sine of various classes of
numbers, assuming that underflow does not occur.

SRC (ST(0)) DEST (ST(0))

0 *

-F -1to+1
-0 -0

+0 +0

+F -1to+1
+oo *
NaN NaN

NOTES:
F Means finite-real number.
* Indicates floating-point invalid-arithmetic-operand (#IA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the range —2%% to +2%2 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2t or by using the FPREM instruc-
tionwith adivisor of 21t Refer to Section 7.5.8., Pi in Chapter 7, Floating-Point Unit of the Intel
Architecture Software Developer’'s Manual, Volum#oia discussion of the proper value to use
for tin performing such reductions.

Operation

IF ST(0) < 2%

THEN
C2 - 0;
ST(0) ~ sin(ST(0));

ELSE (* source operand out of range *)
C2 - 1;

Fl:

3-240 I



Intel® INSTRUCTION SET REFERENCE

FSIN—Sine (Continued)

FPU Flags Affected
C1l Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

Cc2 Set to 1 if source operand is outside the range —2% to +2%; otherwise,
cleared to O.
Co, C3 Undefined.

Floating-Point Exceptions

#1S Stack underflow occurred.

#A Source operand is an sNaN value, o, or unsupported format.
#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TSin CRO is set.

Real-Address Mode Exceptions
#NM EM or TSin CROis set.

Virtual-8086 Mode Exceptions
#NM EM or TSin CROis set.

I 3-241



INSTRUCTION SET REFERENCE Intel ®

FSINCOS—Sine and Cosine

Opcode Instruction Description
D9 FB FSINCOS Compute the sine and cosine of ST(0); replace ST(0) with
the sine, and push the cosine onto the register stack.
Description

This instruction computes both the sine and the cosine of the source operand in register ST(0),
stores the sine in ST(0), and pushes the cosine onto the top of the FPU register stack. (This
instruction is faster than executing the FSIN and FCOS instructions in succession.)

The source operand must be given in radians and must be within the range —2% to +2%. The
following table shows the results obtained when taking the sine and cosine of various classes of
numbers, assuming that underflow does not occur.

SRC DEST
ST(0) ST(1) Cosine ST(0) Sine
—00 * *
-F -1to +1 -1to+1
-0 +1 -0
+0 +1 +0
+F -1to +1 -1to+1
+00 * *
NaN NaN NaN

NOTES:
F Means finite-real number.
* Indicates floating-point invalid-arithmetic-operand (#lA) exception.

If the source operand is outside the acceptable range, the C2 flag in the FPU status word is set,
and the value in register ST(0) remains unchanged. The instruction does not raise an exception
when the source operand is out of range. It is up to the program to check the C2 flag for out-of-
range conditions. Source values outside the range —25 to +252 can be reduced to the range of the
instruction by subtracting an appropriate integer multiple of 2mtor by using the FPREM instruc-
tion with adivisor of 21t Refer to Section 7.5.8., Pi in Chapter 7.5.8., Pi of the Intel Architecture
Software Developer’s Manual, Volumefar a discussion of the proper value to use for 1tin
performing such reductions.

3-242 I



Intel® INSTRUCTION SET REFERENCE

FSINCOS—Sine and Cosine (Continued)

Operation

IF ST(0) < 2%

THEN
C2 - 0;
TEMP — cosine(ST(0));
ST(0) — sine(ST(0));

TOP ~ TOP -1,
ST(0) — TEMP;

ELSE (* source operand out of range *)
Cc2 - 1,

Fl:

FPU Flags Affected

C1l Set to 0 if stack underflow occurred; set to 1 of stack overflow occurs.

Indicates rounding direction if the exception (#P) is generated: O = not
roundup; 1 = roundup.

Cc2 Set to 1 if source operand is outside the range —2% to +2%; otherwise,
cleared to O.
Co, C3 Undefined.

Floating-Point Exceptions

#1S Stack underflow occurred.

#A Source operand is an sNaN value, o, or unsupported format.
#D Source operand is a denormal value.

#U Result istoo small for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TSin CRO is set.

Real-Address Mode Exceptions
#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions
#NM EM or TSin CROis set.

I 3-243



INSTRUCTION SET REFERENCE

FSQRT—Square Root

intgl.

Opcode Instruction Description
D9 FA FSQRT Calculates square root of ST(0) and stores the result in
ST(0)
Description

Thisinstruction cal culates the square root of the source value in the ST(0) register and storesthe

result in ST(0).

Thefollowing table shows the results obtained when taking the square root of various classes of
numbers, assuming that neither overflow nor underflow occurs.

SRC (ST(0))

DEST (ST(0))

*

-F *
-0 -0
+0 +0
+F +F
+00 +00

NaN NaN

NOTES:
F Means finite-real number.

* Indicates floating-point invalid-arithmetic-operand (#lA) exception.

Operation
ST(0) « SquareRoot(ST(0));

FPU Flags Affected

C1l Set to 0 if stack underflow occurred.

Indicates rounding direction if inexact-result exception (#P) is generated:
0 = not roundup; 1 = roundup.

Co, C2,C3 Undefined.

3-244



Intel® INSTRUCTION SET REFERENCE

FSQRT—Square Root (Continued)

Floating-Point Exceptions

#IS Stack underflow occurred.

#A Source operand is an sNaN value or unsupported format.
Source operand is a negative value (except for —0).

#D Source operand is a denormal value.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TSin CRO is set.

Real-Address Mode Exceptions
#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions
#NM EM or TSin CRO is set.

I 3-245



INSTRUCTION SET REFERENCE Intel ®

FST/FSTP—Store Real

Opcode Instruction Description

D9 /2 FST m32real Copy ST(0) to m32real

DD /2 FST mé64real Copy ST(0) to m64real

DD DO+i FST ST(i) Copy ST(0) to ST(i)

D9 /3 FSTP m32Zreal Copy ST(0) to m32real and pop register stack

DD /3 FSTP mé64real Copy ST(0) to mé64real and pop register stack

DB /7 FSTP m80real Copy ST(0) to m80real and pop register stack

DD D8+i FSTP ST(i) Copy ST(0) to ST(i) and pop register stack
Description

The FST instruction copiesthe valuein the ST(0) register to the destination operand, which can
be a memory location or another register in the FPU register stack. When storing the value in
memory, the value is converted to single- or double-real format.

The FSTP instruction performs the same operation as the FST instruction and then pops the
register stack. To pop the register stack, the processor marks the ST(0) register as empty and
increments the stack pointer (TOP) by 1. The FSTP instruction can also store values in memory
in extended-real format.

If the destination operand isamemory location, the operand specifiesthe addresswhere the first
byte of the destination value isto be stored. If the destination operand is a register, the operand
specifies aregister in the register stack relative to the top of the stack.

If the destination size is single- or double-real, the significand of the value being stored is
rounded to the width of the destination (according to rounding mode specified by the RC field
of the FPU control word), and the exponent is converted to the width and bias of the destination
format. If the value being stored is too large for the destination format, a numeric overflow
exception (#0) is generated and, if the exception is unmasked, no value is stored in the destina-
tion operand. If the value being stored is a denormal value, the denormal exception (#D) is not
generated. This condition is simply signalled as anumeric underflow exception (#U) condition.

If the value being stored is +0got Oor a NaN, the least-significant bits of the significand and the
exponent are truncated to fit the destination format. This operation preserves the value’s identity
as a Ogo, or NaN.

If the destination operand is a non-empty register, the invalid-operation exception is not
generated.

Operation

DEST -~ ST(0);
IF instruction = FSTP
THEN
PopRegisterStack;
Fl;

3-246 I



Intel® INSTRUCTION SET REFERENCE

FST/FSTP—Store Real (Continued)

FPU Flags Affected
C1l Set to 0 if stack underflow occurred.

Indicates rounding direction of if the floating-point inexact exception (#P)
is generated: O = not roundup; 1 = roundup.

C0, C2,C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#A Source operand is an sNaN value or unsupported format.
#U Result istoo small for the destination format.

#0O Result istoo large for the destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
anull segment selector.

#SS(0) If amemory operand effective address is outside the SS segment limit.
#NM EM or TSin CROis set.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If amemory operand effective address is outside the SS segment limit.
#NM EM or TSin CRO is set.

I 3-247



INSTRUCTION SET REFERENCE Intel ®

FST/FSTP—Store Real (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#NM EM or TSin CRO is set.

#PF(fault-code) If apage fault occurs.

#AC(0) If ;jlignmmt checking is enabled and an unaligned memory reference is
made.

3-248 I



Intel® INSTRUCTION SET REFERENCE

FSTCW/FENSTCW—Store Control Word

Opcode Instruction Description

9B D9 /7 FSTCW m2byte Store FPU control word to m2byte after checking for
pending unmasked floating-point exceptions.

D9 /7 FNSTCW* m2byte Store FPU control word to m2byte without checking for
pending unmasked floating-point exceptions.

NOTE:
* Refer to “Intel Architecture Compatibility” below.

Description

These instructions store the current value of the FPU control word at the specified destination
in memory. The FSTCW instruction checks for and handles pending unmasked floating-point
exceptions before storing the control word; the FNSTCW instruction does not.

Intel Architecture Compatibility

When operating a Pentium® or Intel486™ processor in MS-DOS compatibility mode, it is
possible (under unusual circumstances) for an FNSTCW instruction to be interrupted prior to
being executed to handle a pending FPU exception. Refer to Section DNbiV&it FPU
Instructions Can Get FPU Interrupt in Window in Appendix D Guidelinesfor Writing FPU and
Sreaming SMD Extension Exception Handlers of thelntel Architecture Software Developer’s
Manual, Volume Jfor a description of these circumstances. An FNSTCW instruction cannot be
interrupted in this way on a Pentium® Pro processor.

On a Pentium® 11l processor, the FSTCW/FNSTCW instructions operate the same as on a
Pentium® Il processor. They have no effect on the Pentium® 111 processor SIMD floating-point
functional unit or control/status register.

Operation
DEST ~ FPUControlWord;

FPU Flags Affected
The CO, C1, C2, and C3 flags are undefined.

Floating-Point Exceptions

None.

I 3-249



INSTRUCTION SET REFERENCE Intel ®

FSTCW/ENSTCW—Store Control Word (Continued)

Protected Mode Exceptions

#GP(0)

#SS(0)

#NM
#PF(fault-code)
#AC(0)

If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
anull segment selector.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CRO is set.
If apage fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS
#NM

If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CRO is set.

Virtual-8086 Mode Exceptions

#GP(0)

#SS(0)

#NM
#PF(fault-code)
#AC(0)

3-250

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.
EM or TSin CRO is set.
If apage fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made.



Intel® INSTRUCTION SET REFERENCE

FSTENV/FNSTENV—Store FPU Environment

Opcode Instruction Description

9B D9 /6 FSTENV m14/28byte Store FPU environment to m14byte or m28byte after
checking for pending unmasked floating-point
exceptions. Then mask all floating-point exceptions.

D9 /6 FNSTENV* mi4/28byte  Store FPU environment to m14byte or m28byte without
checking for pending unmasked floating-point
exceptions. Then mask all floating-point exceptions.

NOTE:
* Refer to “Intel Architecture Compatibility” below.

Description

Theseinstructions save the current FPU operating environment at the memory location specified
with the destination operand, and then masks al floating-point exceptions. The FPU operating
environment consists of the FPU control word, status word, tag word, instruction pointer, data
pointer, and last opcode. Figures 7-13 through Figure 7-16 in Chapter 7, Floating-Point Unit of
the Intel Architecture Software Developer’s Manual, Volunsadwv the layout in memory of the
stored environment, depending on the operating mode of the processor (protected or real) and
the current operand-size attribute (16-bit or 32-bit). In virtual-8086 mode, the real mode layouts
are used.

The FSTENV instruction checks for and handles any pending unmasked floating-point excep-
tions before storing the FPU environment; the FNSTENV instruction does not.The saved
image reflects the state of the FPU after al floating-point instructions preceding the
FSTENV/FNSTENYV instruction in the instruction stream have been executed.

These instructions are often used by exception handl ers because they provide access to the FPU
instruction and data pointers. The environment is typically saved in the stack. Masking all
exceptions after saving the environment prevents floating-point exceptions frominterrupting the
exception handler.

Intel Architecture Compatibility

When operating a Pentium® or Intel486™ processor in MS-DOS compatibility mode, it is
possible (under unusual circumstances) for an FNSTENYV instruction to be interrupted prior to
being executed to handle a pending FPU exception. Refer to Section DNbiV&it FPU
Instructions Can Get FPU Interrupt in Window in Appendix D Guidelinesfor Writing FPU and
Sreaming SMD Extension Exception Handlers of thelntel Architecture Software Developer’s
Manual, Volume JIfor a description of these circumstances. An FNSTENYV instruction cannot

be interrupted in this way on a Pentium® Pro processor.

On a Pentium® 111 processor, the FSTENV/FNSTENV instructions operate the same as on a
Pentium® Il processor. They have no effect on the Pentium® 111 processor SIMD floating-point
functional unit or control/status register.

I 3-251



INSTRUCTION SET REFERENCE

FSTENV/FNSTENV—Store FPU Environment (Continued)

Operation

DEST(FPUControlWord) — FPUControlWord;
DEST(FPUStatusWord) — FPUStatusWord;
DEST(FPUTagWord) — FPUTagWord,

DEST(FPUDataPointer) — FPUDataPointer;
DEST(FPUlnstructionPointer) — FPUInstructionPointer;
DEST(FPULastInstructionOpcode) — FPULastlInstructionOpcode;

FPU Flags Affected
The CO, C1, C2, and C3 are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If a memory operand effective address is outside the CS, DS, ES, FS, or

GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains

anull segment selector.

#SS(0) If amemory operand effective address is outside the SS segment limit.
#NM EM or TSin CRO is set.

#PF(fault-code) If apage fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If amemory operand effective address is outside the SS segment limit.

#NM EM or TSin CRO is set.

3-252



Intel® INSTRUCTION SET REFERENCE

FSTENV/FNSTENV—Store FPU Environment (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#NM EM or TSin CROis set.

#PF(fault-code) If a page fault occurs.

#AC(0) If :{; ignment checking is enabled and an unaligned memory reference is
made.

3-253



INSTRUCTION SET REFERENCE Intel ®

FSTSW/FNSTSW—Store Status Word

Opcode Instruction Description

9B DD /7 FSTSW m2byte Store FPU status word at m2byte after checking for
pending unmasked floating-point exceptions.

9B DF EO FSTSW AX Store FPU status word in AX register after checking for
pending unmasked floating-point exceptions.

DD /7 FNSTSW* m2byte Store FPU status word at m2byte without checking for
pending unmasked floating-point exceptions.

DF EO FNSTSW* AX Store FPU status word in AX register without checking for
pending unmasked floating-point exceptions.

NOTE:
* Refer to “Intel Architecture Compatibility” below.

Description

Theseinstructions store the current val ue of the FPU status word in the destination location. The
destination operand can be either a two-byte memory location or the AX register. The FSTSW
instruction checks for and handles pending unmasked floating-point exceptions before storing
the status word; the FNSTSW instruction does not.

The FNSTSW AX form of the instruction is used primarily in conditional branching (for
instance, after an FPU comparison instruction or an FPREM, FPREM1, or FXAM instruction),
where the direction of the branch depends on the state of the FPU condition code flags. Refer to
Section 7.3.3., Branching and Conditional Moves on FPU Condition Codes in Chapter 7,
Floating-Point Unit of the Intel Architecture Software Developer’s Manual, Volum&His
instruction can also be used to invoke exception handlers (by examining the exception flags) in
environmentsthat do not use interrupts. When the FNSTSW AX instruction is executed, the AX
register is updated before the processor executes any further instructions. The status stored in
the AX register is thus guaranteed to be from the completion of the prior FPU instruction.

Intel Architecture Compatibility

When operating a Pentium® or Intel486™ processor in MS-DOS compatibility mode, it is
possible (under unusual circumstances) for an FNSTSW instruction to be interrupted prior to
being executed to handle a pending FPU exception. Refer to Section DIR0oiV&it FPU
Instructions Can Get FPU Interrupt in Window in Appendix D Guidelines for Writing FPU and
Sreaming SMD Extension Exception Handlers of thelntel Architecture Software Developer’s
Manual, Volume [for adescription of these circumstances. An FNSTSW instruction cannot be
interrupted in this way on a Pentium® Pro processor.

On a Pentium® 111 processor, the FSTSW/FNSTSW instructions operate the same as on a
Pentium® Il processor. They have no effect on the Pentium® 111 processor SIMD floating-point
functional unit or control/status register.

3-254 I



Intel® INSTRUCTION SET REFERENCE

FSTSW/FNSTSW—Store Status Word (Continued)

Operation
DEST ~ FPUStatusWord;

FPU Flags Affected
The CO, C1, C2, and C3 are undefined.

Floating-Point Exceptions

None.

Protected Mode Exceptions
#GP(0) If the destination is located in a nonwritable segment.

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
anull segment selector.

#SS(0) If amemory operand effective address is outside the SS segment limit.
#NM EM or TSin CRO s set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If amemory operand effective address is outside the SS segment limit.
#NM EM or TSin CRO is set.

I 3-255



INSTRUCTION SET REFERENCE Intel ®

FSTSW/FNSTSW—Store Status Word (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#NM EM or TSin CRO is set.

#PF(fault-code) If apage fault occurs.

#AC(0) If ;jlignmmt checking is enabled and an unaligned memory reference is
made.

3-256 I



Intel® INSTRUCTION SET REFERENCE

FSUB/FSUBP/FISUB—Subtract

Opcode Instruction Description

D8 /4 FSUB m32real Subtract m32real from ST(0) and store result in ST(0)

DC /4 FSUB mé64real Subtract mé64real from ST(0) and store result in ST(0)

D8 EO+i FSUB ST(0), ST(i) Subtract ST(i) from ST(0) and store result in ST(0)

DC E8+i FSUB ST(i), ST(0) Subtract ST(0) from ST(i) and store result in ST(i)

DE E8+i FSUBP ST(i), ST(0) Subtract ST(0) from ST(i), store result in ST(i), and pop
register stack

DE E9 FSUBP Subtract ST(0) from ST(1), store result in ST(1), and pop
register stack

DA /4 FISUB m32int Subtract m32int from ST(0) and store result in ST(0)

DE /4 FISUB m16int Subtract m16int from ST(0) and store result in ST(0)

Description

These instructions subtract the source operand from the destination operand and stores the
difference in the destination location. The destination operand is always an FPU data register;
the source operand can be a register or amemory location. Source operands in memory can be
in single-real, double-real, word-integer, or short-integer formats.

The no-operand version of the instruction subtracts the contents of the ST(0) register from the
ST(1) register and stores the result in ST(1). The one-operand version subtracts the contents of
amemory location (either areal or an integer value) from the contents of the ST(0) register and
stores the result in ST(0). The two-operand version, subtracts the contents of the ST(0) register
from the ST(i) register or vice versa.

The FSUBP instructions perform the additional operation of popping the FPU register stack
following the subtraction. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-
point subtract instructions always resultsin the register stack being popped. In some assemblers,
the mnemonic for thisinstruction is FSUB rather than FSUBP.

The FISUB instructions convert an integer source operand to extended-real format before
performing the subtraction.

The following table shows the results obtained when subtracting various classes of numbers
from one another, assuming that neither overflow nor underflow occurs. Here, the SRC valueis
subtracted from the DEST value (DEST - SRC = resullt).

When the difference between two operands of likesignis0, the result is+0, except for the round
toward —co mode, in which case the result is —0. This instruction also guarantees that +0 — (-0)
= +0, and that -0 — (+0) = —-0. When the source operand is an integer O, it istreated as a +0.

When one operand is o, the result is « of the expected sign. If both operands are « of the same
sign, an invalid-operation exception is generated.

I 3-257



INSTRUCTION SET REFERENCE

FSUB/FSUBP/FISUB—Subtract (Continued)

SRC
—00 -For-l -0 +0 +F or +| +00 NaN
—o * —o0 —c0 —00 —00 —c0 NaN
-F +00 *=F or £0 DEST DEST -F —00 NaN
DEST -0 +00 -SRC +0 -0 -SRC —00 NaN
+0 +00 -SRC +0 +0 -SRC —0o NaN
+F +00 +F DEST DEST +F or 0 —00 NaN
+o0 +00 +00 +00 +00 +00 * NaN
NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite-real number.
| Means integer.

* Indicates floating-point invalid-arithmetic-operand (#lA) exception.

Operation

IF instruction is FISUB
THEN
DEST ~ DEST - ConvertExtendedReal(SRC);
ELSE (* source operand is real number *)
DEST ~ DEST - SRC;
Fl;
IF instruction is FSUBP
THEN
PopRegisterStack
Fl;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault is

generated: 0 = not roundup; 1 = roundup.

C0o,C2,C3 Undefined.

3-258



Intel® INSTRUCTION SET REFERENCE

FSUB/FSUBP/FISUB—Subtract (Continued)

Floating-Point Exceptions

#IS Stack underflow occurred.

#A Operand is an sNaN value or unsupported format.
Operands are infinities of like sign.

#D Source operand is a denormal value.

#U Result istoo small for destination format.

#0O Result istoo large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
anull segment selector.

#SS(0) If amemory operand effective address is outside the SS segment limit.
#NM EM or TSin CROis set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If amemory operand effective address is outside the SS segment limit.
#NM EM or TSin CROis set.

I 3-259



INSTRUCTION SET REFERENCE Intel ®

FSUB/FSUBP/FISUB—Subtract (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#NM EM or TSin CRO is set.

#PF(fault-code) If apage fault occurs.

#AC(0) If ;jlignmmt checking is enabled and an unaligned memory reference is
made.

3-260 I



Intel® INSTRUCTION SET REFERENCE

FSUBR/FSUBRP/FISUBR—Reverse Subtract

Opcode Instruction Description

D8 /5 FSUBR m32real Subtract ST(0) from m32real and store result in ST(0)

DC /5 FSUBR mé64real Subtract ST(0) from mé64real and store result in ST(0)

D8 E8+i FSUBR ST(0), ST(i) Subtract ST(0) from ST(i) and store result in ST(0)

DC EO+i FSUBR ST(i), ST(0) Subtract ST(i) from ST(0) and store result in ST(i)

DE EO+i FSUBRP ST(i), ST(0) Subtract ST(i) from ST(0), store result in ST(i), and pop
register stack

DE E1 FSUBRP Subtract ST(1) from ST(0), store result in ST(1), and pop
register stack

DA /5 FISUBR m32int Subtract ST(0) from m32int and store result in ST(0)

DE /5 FISUBR m16int Subtract ST(0) from m16int and store result in ST(0)

Description

These instructions subtract the destination operand from the source operand and stores the
difference in the destination location. The destination operand is always an FPU register; the
source operand can be a register or a memory location. Source operands in memory can be in
single-real, double-real, word-integer, or short-integer formats.

These instructions perform the reverse operations of the FSUB, FSUBP, and FISUB instruc-
tions. They are provided to support more efficient coding.

The no-operand version of the instruction subtracts the contents of the ST(1) register from the
ST(0) register and stores the result in ST(1). The one-operand version subtracts the contents of
the ST(0) register from the contents of amemory location (either areal or an integer value) and
stores the result in ST(0). The two-operand version, subtracts the contents of the ST (i) register
from the ST(0) register or vice versa.

The FSUBRP instructions perform the additional operation of popping the FPU register stack
following the subtraction. To pop the register stack, the processor marks the ST(0) register as
empty and increments the stack pointer (TOP) by 1. The no-operand version of the floating-
point reverse subtract instructions always results in the register stack being popped. In some
assembl ers, the mnemonic for thisinstruction is FSUBR rather than FSUBRP.

The FISUBR instructions convert an integer source operand to extended-real format before
performing the subtraction.

The following table shows the results obtained when subtracting various classes of numbers
from one another, assuming that neither overflow nor underflow occurs. Here, the DEST value
is subtracted from the SRC value (SRC — DEST = result).

When the difference between two operands of like signis0, the result is+0, except for the round
toward - mode, in which case the result is —0. This instruction also guarantees that +0 — (-0)
= +0, and that -0 — (+0) = —-0. When the source operand is an integer O, it is treated as a +0.

When one operand is o, the result is o of the expected sign. If both operands are « of the same
sign, an invalid-operation exception is generated.

I 3-261



INSTRUCTION SET REFERENCE

FSUBR/FSUBRP/FISUBR—Reverse Subtract (Continued)

SRC
—00 -For-l -0 +0 +F or +| +00 NaN
—00 * +00 +00 +00 +00 +00 NaN
-F —00 +F or +0 -DEST -DEST +F +00 NaN
DEST -0 —00 SRC +0 +0 SRC +00 NaN
+0 -0 SRC -0 +0 SRC +00 NaN
+F —00 -F -DEST -DEST +F or 0 +00 NaN
+o00 -0 —00 —c0 —o0 —00 * NaN
NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite-real number.

| Means integer.

* Indicates floating-point invalid-arithmetic-operand (#lA) exception.

Operation

IF instruction is FISUBR
THEN
DEST ~ ConvertExtendedReal(SRC) - DEST;
ELSE (* source operand is real number *)
DEST ~ SRC - DEST;
Fl;
IF instruction = FSUBRP
THEN
PopRegisterStack
Fl;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) fault is

generated: 0 = not roundup; 1 = roundup.

C0o,C2,C3 Undefined.

3-262



Intel® INSTRUCTION SET REFERENCE

FSUBR/FSUBRP/FISUBR—Reverse Subtract (Continued)

Floating-Point Exceptions

#IS Stack underflow occurred.

#A Operand is an sNaN value or unsupported format.
Operands are infinities of like sign.

#D Source operand is a denormal value.

#U Result istoo small for destination format.

#0O Result istoo large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
anull segment selector.

#SS(0) If amemory operand effective address is outside the SS segment limit.
#NM EM or TSin CROis set.

#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS If amemory operand effective address is outside the SS segment limit.
#NM EM or TSin CROis set.

I 3-263



INSTRUCTION SET REFERENCE Intel ®

FSUBR/FSUBRP/FISUBR—Reverse Subtract (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#NM EM or TSin CRO is set.

#PF(fault-code) If apage fault occurs.

#AC(0) If ;jlignmmt checking is enabled and an unaligned memory reference is
made.

3-264 I



Intel® INSTRUCTION SET REFERENCE

FTST—TEST

Opcode Instruction Description

D9 E4 FTST Compare ST(0) with 0.0.
Description

This instruction compares the value in the ST(0) register with 0.0 and sets the condition code
flags CO, C2, and C3 in the FPU status word according to the results (refer to the table below).

Condition C3 Cc2 Cco
ST(0) > 0.0 0 0 0
ST(0) < 0.0 0 0 1
ST(0) = 0.0 1 0 0
Unordered 1 1 1

This instruction performs an “unordered comparison.” An unordered comparison also checks
the class of the numbers being compared (refer to “FXAM—Examine” in this chapter). If the
value in register ST(0) is a NaN or is in an undefined format, the condition flags are set to “unor-
dered” and the invalid operation exception is generated.

The sign of zero is ignored, so that —-0.0 = +0.0.

Operation

CASE (relation of operands) OF
Not comparable: C3, C2, CO ~ 111;

ST(0) > 0.0: C3, C2, CO ~ 000;

ST(0) <0.0: C3,C2,C0O ~ 001;

ST(0) =0.0: C3,C2, CO ~ 100;
ESAC;

FPU Flags Affected
C1 Set to O if stack underflow occurred; otherwise, cleared to O.
C0,C2,C3 Refer to above table.

Floating-Point Exceptions

#IS Stack underflow occurred.
#IA The source operand is a NaN value or is in an unsupported format.
#D The source operand is a denormal value.

I 3-265



INSTRUCTION SET REFERENCE

FTST—TEST (Continued)

Protected Mode Exceptions

#NM EM or TSin CRO is set.

Real-Address Mode Exceptions

#NM EM or TSin CROis set.

Virtual-8086 Mode Exceptions

#NM EM or TSin CRO is set.

3-266



Intel® INSTRUCTION SET REFERENCE

FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real

Opcode Instruction Description

DD EO+i FUCOM ST(i) Compare ST(0) with ST(i)

DD E1 FUCOM Compare ST(0) with ST(1)

DD E8+i FUCOMP ST(i) Compare ST(0) with ST(i) and pop register stack

DD E9 FUCOMP Compare ST(0) with ST(1) and pop register stack

DA E9 FUCOMPP Compare ST(0) with ST(1) and pop register stack twice
Description

These instructions perform an unordered comparison of the contents of register ST(0) and ST (i)
and sets condition code flags CO, C2, and C3 in the FPU status word according to the results
(refer to the table below). If no operand is specified, the contents of registers ST(0) and ST(1)
are compared. The sign of zero is ignored, so that —0.0 = +0.0.

Comparison Results C3 Cc2 Co
STO > ST(i) 0 0 0
STO < ST() 0 0 1
STO = ST(i) 1 0 0
Unordered 1 1 1

NOTE:
* Flags not set if unmasked invalid-arithmetic-operand (#IA) exception is generated.

An unordered comparison checks the class of the numbers being compared (refer to
“FXAM—Examine” in this chapter). The FUCOM instructions perform the same operations as
the FCOM instructions. The only difference is that the FUCOM instructions raise the invalid-
arithmetic-operand exception (#IA) only when either or both operands are an sNaN or are in an
unsupported format; gNaNs cause the condition code flags to be set to unordered, but do not
cause an exception to be generated. The FCOM instructions raise an invalid-operation exception
when either or both of the operands are a NaN value of any kind or are in an unsupported format.

As with the FCOM instructions, if the operation results in an invalid-arithmetic-operand excep-
tion being raised, the condition code flags are set only if the exception is masked.

The FUCOMP instruction pops the register stack following the comparison operation and the
FUCOMPP instruction pops the register stack twice following the comparison operation. To pop
the register stack, the processor marks the ST(0) register as empty and increments the stack
pointer (TOP) by 1.

I 3-267



INSTRUCTION SET REFERENCE

FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real

(Continued)

Operation

CASE (relation of operands) OF
ST > SRC: C3, C2, CO ~ 000;
ST < SRC: C3,C2,C0 ~ 001;
ST = SRC: C3,C2,C0 ~ 100;

ESAC;

IF ST(0) or SRC = QNaN, but not SNaN or unsupported format
THEN
C3,C2,C0 ~ 111;
ELSE (* ST(0) or SRC is SNaN or unsupported format *)

#IA;
IF FPUControlWord.IM = 1
THEN
C3,C2,C0 ~ 111;
FI;
Fl;
IF instruction = FUCOMP
THEN
PopRegisterStack;
Fl;
IF instruction = FUCOMPP
THEN
PopRegisterStack;
PopRegisterStack;
Fl;

FPU Flags Affected
C1 Set to O if stack underflow occurred.
Co,C2,C3 Refer to table on previous page.

Floating-Point Exceptions
#IS Stack underflow occurred.

#A One or both operands are sNaN values or have unsupported formats.
Detection of a gNaN value in and of itself does not raise an invalid-

operand exception.

#D One or both operands are denormal values.

3-268



|nte|® INSTRUCTION SET REFERENCE
FUCOM/FUCOMP/FUCOMPP—Unordered Compare Real
(Continued)

Protected Mode Exceptions
#NM EM or TSin CROis set.

Real-Address Mode Exceptions
#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions
#NM EM or TSin CRO is set.

3-269



INSTRUCTION SET REFERENCE

FWAIT—Wait
Refer to entry for WAIT/FWAIT—Wait.

3-270



Intel® INSTRUCTION SET REFERENCE

FXAM—Examine

Opcode Instruction Description
D9 E5 FXAM Classify value or number in ST(0)
Description

Thisinstruction examinesthe contents of the ST(0) register and sets the condition code flags CO,
C2, and C3in the FPU status word to indicate the class of value or number in the register (refer
to the table below).

Class C3 c2 Cco
Unsupported 0 0 0
NaN 0 0 1
Normal finite number 0 1 0
Infinity 0 1 1
Zero 1 0 0
Empty 1 0 1
Denormal number 1 1 0

The C1 flag is set to the sign of the value in ST(0), regardless of whether the register is empty
or full.

Operation

C1 — sign bit of ST; (* O for positive, 1 for negative *)
CASE (class of value or number in ST(0)) OF
Unsupported:C3, C2, CO — 000;

NaN: C3,C2,C0 ~ 001;

Normal: C3,C2, C0 ~ 010;

Infinity: C3,C2,C0 ~ 011;

Zero: C3,C2,C0 ~ 100;

Empty: C3,C2,C0O « 101;

Denormal: C3,C2,C0 ~ 110;
ESAC;

FPU Flags Affected
Cc1 Sign of valuein ST(0).
Co, C2, C3 Refer to table above.

I 3-271




INSTRUCTION SET REFERENCE

FXAM—Examine (Continued)

Floating-Point Exceptions

None.

Protected Mode Exceptions

#NM EM or TSin CROis set.

Real-Address Mode Exceptions

#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions

#NM EM or TSin CROis set.

3-272



Intel® INSTRUCTION SET REFERENCE

FXCH—Exchange Register Contents

Opcode Instruction Description

D9 C8+i FXCH ST(i) Exchange the contents of ST(0) and ST(i)

D9 C9 FXCH Exchange the contents of ST(0) and ST(1)
Description

This instruction exchanges the contents of registers ST(0) and ST(i). If no source operand is
specified, the contents of ST(0) and ST(1) are exchanged.

This instruction provides a simple means of moving values in the FPU register stack to the top
of the stack [ST(0)], so that they can be operated on by those floating-point instructions that can
only operate on values in ST(0). For example, the following instruction sequence takes the
square root of the third register from the top of the register stack:

FXCH ST(3);
FSQRT;
FXCH ST(3);

Operation

IF number-of-operands is 1
THEN
temp —~ ST(0);
ST(0) — SRC;
SRC - temp;
ELSE
temp —~ ST(0);
ST(0) — ST(1);
ST(1) ~ temp;

FPU Flags Affected
C1 Set to 0 if stack underflow occurred; otherwise, cleared to O.

C0o,C2,C3 Undefined.

Floating-Point Exceptions
#1S Stack underflow occurred.

Protected Mode Exceptions
#NM EM or TSin CRO is set.

I 3-273



INSTRUCTION SET REFERENCE

FXCH—Exchange Register Contents (Continued)

Real-Address Mode Exceptions
#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions
#NM EM or TSin CRO is set.

3-274



Intel® INSTRUCTION SET REFERENCE

FXRSTOR—Restore FP and MMX ™ State and
Streaming SIMD Extension State

Opcode Instruction Description
OF,AE,/1 FXRSTOR Load FP and MMX™ technology and Streaming SIMD Extension state
m512byte from m512byte.
Description

The FXRSTOR instruction reloads the FP and MMX™ technology state, and the Streaming
SIMD Extension state (environment and registers), from the memory area defined by m512byte.
This data should have been written by a previous FXSAVE.

The floating-point, MMX™ technology, and Streaming SIMD Extension environment and
registers consist of the following data structure (little-endian byte order as arranged in memory,
with byte offset into row described by right column):

3-275



INSTRUCTION SET REFERENCE

FXRSTOR—Restore FP And MMX ™ State and
Streaming SIMD Extension State (Continued)

FSW

FCW

DS

DP

16

STO/MMO

32

ST1/MM1

48

ST2/MM2

64

ST3/MM3

80

ST4/MM4

96

ST5/MM5

112

ST6/MM6

128

ST7/MM7

144

XMMO

160

XMM1

176

XMM2

192

XMM3

208

XMM4

224

XMM5

240

XMM6

256

XMM7

3-276

272
288
304
320
336
352
368
384
400
416

432
448
464
480
496




Intel® INSTRUCTION SET REFERENCE

FXRSTOR—Restore FP And MMX ™ State And Streaming SIMD
Extension State (Continued)

Three fields in the floating-point save area contain reserved bits that are not indicated in the
table:

FOP The lower 11-bits contain the opcode, upper 5-bits are reserved.
IP& DP 32-bit mode: 32-bit | P-offset.
16-hit mode: lower 16 hits are |P-offset and upper 16 bits are reserved.

If the MXCSR state contains an unmasked exception with a corresponding status flag also set,
loading it will not result in a floating-point error condition being asserted. Only the next occur-
rence of this unmasked exception will result in the error condition being asserted.

Some bits of MXCSR (bits 31-16 and bit 6) are defined as reserved and cleared; attempting to
write a non-zero value to these bits will result in ageneral protection exception.

FXRSTOR does not flush pending x87-FP exceptions, unlike FRSTOR. To check and raise
exceptions when loading a new operating environment, use FWAIT after FXRSTOR.

The Streaming SIMD Extension fieldsin the saveimage (XMMO-XMM7 and MXCSR) will not
be loaded into the processor if the CR4.OSFX SR bit is not set. This CR4 bit must be set in order
to enable execution of Streaming SIMD Extension.

Operation
FP and MMX™ technology state and Streaming SIMD Extension state = m512byte;

Exceptions

#AC If exception detection is disabled, a general protection exception is
signalled if the address is not aligned on 16-byte boundary. Note that if
#AC is enabled (and CPL is 3), signalling of #AC is not guaranteed and
may vary with implementation. In all implementations where #AC is not
signalled, a general protection fault will instead be signalled. In addition,
thewidth of the alignment check when #A C is enabled may also vary with
implementation; for instance, for a given implementation, #AC might be
signalled for a 2-byte misalignment, whereas #GP might be signalled for
all other misalignments (4-/8-/16-byte). Invalid opcode exception if
instruction is preceded by a LOCK override prefix. General protection
fault if reserved bits of MXCSR are |oaded with non-zero values.

Numeric Exceptions

None.

I 3-277



INSTRUCTION SET REFERENCE Intel ®

FXRSTOR—Restore FP And MMX ™ State And Streaming SIMD
Extension State (Continued)

Protected Mode Exceptions

#GP(0) For anillegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments, or if an attempt is made to load non-zero values to reserved
bitsin the MXCSR field.

#SS(0) For anillegal addressin the SS segment.

#PF (fault-code) For a page fault.

#NM If CRO.EM = 1.

#NM If TSbitin CROis set.

#AC For unaligned memory reference. To enable #AC exceptions, three condi-

tions must be true(CR0O.AM is set; EFLAGS.AC is set; current CPL is 3).

Real Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

#NM If CRO.EM = 1.

#NM If TShitin CROisset.

Virtual 8086 Mode Exceptions

Same exceptions as in Real Address Mode.

#AC For unaligned memory referenceif the current privilege level is 3.
#PF (fault-code) For a page fault.

Comments

State saved with FX SAVE and restored with FRSTOR, and state saved with FSAVE and restored
with FXRSTOR, will result in incorrect restoration of state in the processor. The address size
prefix will have the usual effect on address calculation, but will have no effect on the format of
the FXRSTOR image.

The use of Repeat (F2H, F3H) and Operand-size (66H) prefixes with FXRSTOR is reserved.
Different processor implementations may handle these prefixes differently. Usage of these
prefixes with FXRSTOR risks incompatibility with future processors.

3-278 I



Intel® INSTRUCTION SET REFERENCE

FXSAVE—Store FP and MMX ™ State and Streaming SIMD
Extension State

Opcode Instruction Description
OF,AE,/O FXSAVE Store FP and MMX™ technology state and Streaming SIMD
mb512byte Extension state to m512byte.
Description

The FXSAVE instruction writes the current FP and MMX™ technology state,Streaming

SIMD Extension state (environment and registers), to the specified destination defined by
m512byte. It does this without checking for pending unmasked floating-point exceptions
(similar to the operation of FNSAVE). Unlike the FSAVE/FNSAVE instructions, the processor
retains the contents of the FP and MMX™ technology state and Streaming SIMD Extension
state in the processor after the state has been saved. This instruction has been optimized to maxi-
mize floating-point save performance. The save data structure is as follows (little-endian byte
order as arranged in memory, with byte offset into row described by right column):

I 3-279



INSTRUCTION SET REFERENCE Intel ®

FXSAVE—Store FP and MMX ™ State And Streaming SIMD
Extension State (Continued)

FTW FSW | FCW 0

DS DP 16
STO/MMO 32
ST1/MM1 48
ST2/MM2 64
ST3/MM3 80
ST4/IMM4 96
ST5/MM5 112
ST6/MM6 128
ST7/MM7 144
XMMO 160
XMM1 176
XMM2 192
XMM3 208
XMM4 224
XMM5 240
XMM6 256
XMM7 272
288
304
320
336
352
368
384
400
416
432
448
464
480
496

3-280 I



Intel® INSTRUCTION SET REFERENCE

FXSAVE—Store FP and MMX ™ State And Streaming SIMD
Extension State (Continued)

Three fields in the floating-point save area contain reserved bits that are not indicated in the
table:

FOP: The lower 11-bits contain the opcode, upper 5-bits are reserved.
IP& DP: 32-bit mode: 32-bit | P-offset.
16-hit mode: lower 16 hits are |P-offset and upper 16 bits are reserved.

The FXSAVE instruction is used when an operating system needs to perform a context switch

or when an exception handler needs to use the floating-point, MMX™ technology, and
Streaming SIMD Extension units. It cannot be used by an application program to pass a "clean”
FP state to a procedure, since it retains the current state. An application must explicitly execute
an FINIT instruction after FXSAVE to provide for this functionality.

All of the x87-FP fields retain the same internal format as in FSAVE except for FTW.

Unlike FSAVE, FXSAVE saves only the FTW valid bits rather than the entire x87-FP FTW field.
The FTW bits are saved in a non-TOS relative order, which means that FRO is always saved first,
followed by FR1, FR2 and so forth. As an example, if TOS=4 and only STO, ST1 and ST2 are
valid, FSAVE saves the FTW field in the following format:

ST3 ST2 ST1 STO ST7 ST6 ST5 ST4 (TOS=4)
FR7 FR6 FR5 FR4 FR3 FR2 FR1 FRO
11 XX XX XX 11 11 11 11

where xx is one of (00, 01, 10). (11) indicates an empty stack elements, and the 00, 01, and 10
indicate Valid, Zero, and Special, respectively. In this example, FXSAVE would save the
following vector:

FR7 FRits6 FR5 FR4 FR3 FR2 FR1 FRO
0 1 1 1 0 0 0 0

I 3-281



INSTRUCTION SET REFERENCE Intel ®

FXSAVE—Store FP and MMX ™ State And Streaming SIMD
Extension State (Continued)
The FSAVE format for FTW can be recreated from the FTW valid bits and the stored 80-bit FP

data (assuming the stored data was not the contents of MMX™ technology registers) using the
following table:

Exponent Exponent Fraction Jand M FTW valid x87 FTW
all1's all 0's all0's bits bit
0 0 0 0x 1 Special 10
0 0 0 1x 1 Valid 00
0 0 1 00 1 Special 10
0 0 1 10 1 Valid 00
0 1 0 0x 1 Special 10
0 1 0 1x 1 Special 10
0 1 1 00 1 Zero 01
0 1 1 10 1 Special 10
1 0 0 1x 1 Special 10
1 0 0 1x 1 Special 10
1 0 1 00 1 Special 10
1 0 1 10 1 Special 10
For all legal combinations above 0 Empty 11

The J-bit is defined to be the 1-bit binary integer to the left of the decimal place in the signifi-
cand. The M-bit is defined to be the most significant bit of the fractional portion of the signifi-
cand (i.e., the bit immediately to the right of the decimal place).

When the M- bit is the most significant bit of the fractional portion of the significand, it must be
0 if the fraction is all 0's.

If the FXSAVE instruction is immediately preceded by an FP instruction which does not use a
memory operand, then the FXSAVE instruction does not write/update the DP field, in the
FXSAVE image.

MXCSR holds the contents of the SIMD floating-point Control/Status Register. Refer to the
LDMXCSR instruction for a full description of this field.

The fields XMMO-XMM7 contain the content of registers XMMO-XMM?7 in exactly the same
format as they exist in the registers.

3-282 I



Intel® INSTRUCTION SET REFERENCE

FXSAVE—Store FP and MMX ™ State And Streaming SIMD
Extension State (Continued)

The Streaming SIMD Extension fields in the save image (XMMO-XMM7 and MXCSR) may
not be loaded into the processor if the CR4.OSFXSR bit is not set. This CR4 bit must be set in
order to enable execution of Streaming SIMD Extensions.

The destination m512byte is assumed to be aligned on a 16-byte boundary. If m512byte is not
aligned on a 16-byte boundary, FX SAV E generates a general protection exception.

Operation
m512byte = FP and MMX™ technology state and Streaming SIMD Extension state;

Exceptions

#AC If exception detection is disabled, a general protection exception is
signalled if the address is not aligned on 16-byte boundary. Note that if
#AC is enabled (and CPL is 3), signalling of #AC is not guaranteed and
may vary with implementation. In all implementations where #AC is not
signalled, a general protection fault will instead be signalled. In addition,
thewidth of the alignment check when #A C is enabled may also vary with
implementation; for instance, for a given implementation, #AC might be
signalled for a 2-byte misalignment, whereas #GP might be signalled for
all other misalignments (4-/8-/16-byte). Invalid opcode exception if
instruction is preceded by a LOCK override prefix.

Numeric Exceptions

Invalid, Precision.

Protected Mode Exceptions

#GP(0) For anillegal memory operand effective addressin the CS, DS, ES, FS, or
GS segments.

#SS(0) For anillegal addressin the SS segment.

#PF (fault-code) For a page fault.

#NM If CRO.EM = 1.

#NM If TShitin CRO s set.

#AC For unaligned memory reference. To enable #A C exceptions, three condi-

tions must be true(CRO.AM is set; EFLAGS.AC is set; current CPL is 3).

I 3-283



INSTRUCTION SET REFERENCE Intel ®

FXSAVE—Store FP and MMX ™ State And Streaming SIMD
Extension State (Continued)

Real Address Mode Exceptions

Interrupt 13 If any part of the operand would lie outside of the effective address space
from 0 to OFFFFH.

#NM If CRO.EM = 1.

#NM If TShitin CROis set.

Virtual 8086 Mode Exceptions
Same exceptions asin Real Address Mode.
#AC For unaligned memory referenceif the current privilege level is 3.

#PF (fault-code) For a page fault.

Comments

State saved with FX SAV E and restored with FRSTOR, and state saved with FSAVE and restored
with FXRSTOR, will result in incorrect restoration of state in the processor. The address size
prefix will have the usual effect on address calculation, but will have no effect on the format of
the FXSAVE image.

The use of Repeat (F2H, F3H) and Operand-size (66H) prefixes with FXSAVE is reserved.
Different processor implementations may handle these prefixes differently. Usage of these
prefixes with FXSAVE risks incompatibility with future processors.

3-284 I



Intel® INSTRUCTION SET REFERENCE

FXTRACT—Extract Exponent and Significand

Opcode Instruction Description

D9 F4 FXTRACT Separate value in ST(0) into exponent and significand,
store exponent in ST(0), and push the significand onto the
register stack.

Description

This instruction separates the source value in the ST(0) register into its exponent and signifi-

cand, storesthe exponent in ST(0), and pushes the significand onto the register stack. Following

this operation, the new top-of-stack register ST(0) contains the value of the original significand
expressed as areal number. The sign and significand of this value are the same as those found

in the source operand, and the exponent is 3FFFH (biased value for atrue exponent of zero). The

ST(1) register contains the value of the original operand’s true (unbiased) exponent expressed
as a real number. (The operation performed by this instruction is a superset of the IEEE-recom-
mended logh() function.)

This instruction and the F2XM1 instruction are useful for performing power and range scaling
operations. The FXTRACT instruction is also useful for converting numbers in extended-real
format to decimal representations (e.g., for printing or displaying).

If the floating-point zero-divide exception (#Z) is masked and the source operand is zero, an
exponent value ofee is stored in register ST(1) and 0 with the sign of the source operand is
stored in register ST(0).

Operation

TEMP ~ Significand(ST(0));

ST(0) « Exponent(ST(0));

TOP -~ TOP -1;

ST(0) — TEMP;

FPU Flags Affected

C1 Set to O if stack underflow occurred; set to 1 if stack overflow occurred.

C0,C2,C3 Undefined.

Floating-Point Exceptions
#1S Stack underflow occurred.

Stack overflow occurred.

#1A Source operand is an sNaN value or unsupported format.
#Z ST(0) operand is0.
#D Source operand is a denormal value.

I 3-285



INSTRUCTION SET REFERENCE Intel ®

FXTRACT—Extract Exponent and Significand (Continued)

Protected Mode Exceptions
#NM EM or TSin CRO is set.

Real-Address Mode Exceptions
#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions
#NM EM or TSin CRO is set.

3-286 I



Intel® INSTRUCTION SET REFERENCE

FYL2X—Compute y [log ,x

Opcode Instruction Description

D9 F1 FYL2X Replace ST(1) with (ST(1) Ulog,ST(0)) and pop the
register stack

Description

Thisinstruction calculates (ST(1) Olog, (ST(0))), storestheresult in resister ST(1), and popsthe
FPU register stack. The source operand in ST(0) must be a non-zero positive number.

The following table shows the results obtained when taking the log of various classes of
numbers, assuming that neither overflow nor underflow occurs.

ST(0)
—w -F +0 +0<+F < +1 +1 | +F>+1| 4w NaN
. * * +oo0 +00 * —00 —00 NaN
ST(1) -F * * o +F -0 -F —o0 NaN
-0 * * * +0 -0 -0 * NaN
+0 * * * -0 +0 +0 * NaN
+F * * = -F +0 +F +o0 NaN
+00 * * —00 —00 O +00 +00 NaN
NaN NaN NaN NaN NaN NaN NaN NaN NaN

NOTES:

F Means finite-real number.

* Indicates floating-point invalid-operation (#1A) exception.
** |ndicates floating-point zero-divide (#Z) exception.

If the divide-by-zero exception is masked and register ST(0) contains+0, theinstruction returns
oo With asign that is the opposite of the sign of the source operand in register ST(1).

The FYL2X instruction is designed with a built-in multiplication to optimize the calculation of
logarithms with an arbitrary positive base (b):

logyx = (log,b)= Olog,x
Operation

ST(1) — ST(1) Olog,ST(0);
PopRegisterStack;

I 3-287



INSTRUCTION SET REFERENCE Intel ®

FYL2X—Compute y [log,x (Continued)

FPU Flags Affected

C1

Co, C2,C3

Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is gener-
ated: 0 = not roundup; 1 = roundup.

Undefined.

Floating-Point Exceptions

#IS
#A

#Z
#D
#U
#0O
#P

Stack underflow occurred.

Either operand is an sNaN or unsupported format.

Source operand in register ST(0) is anegative finite value (not —0).
Source operand in register ST(0) is 0.

Source operand is a denormal value.

Result istoo small for destination format.

Result istoo large for destination format.

Value cannot be represented exactly in destination format.

Protected Mode Exceptions

#NM

EM or TSin CRO is set.

Real-Address Mode Exceptions

#NM

EM or TSin CRO is set.

Virtual-8086 Mode Exceptions

#NM

3-288

EM or TSin CRO is set.



Intel® INSTRUCTION SET REFERENCE

FYL2XP1—Compute y [log,(x +1)

Opcode Instruction Description

D9 F9 FYL2XP1 Replace ST(1) with ST(1) Olog,(ST(0) + 1.0) and pop the
register stack

Description

Thisinstruction calculatesthelog epsilon (ST(1) Olog,(ST(0) + 1.0)), storestheresult in register
ST(1), and pops the FPU register stack. The source operand in ST(0) must be in the range:

—(1=42/2))to(1-J2/ 2

The source operand in ST(1) can range from —oo to +co. If the ST(0) operand is outside of its
acceptable range, the result is undefined and software should not rely on an exception being
generated. Under some circumstances exceptions may be generated when ST(0) is out of range,
but this behavior isimplementation specific and not guaranteed.

The following table shows the results obtained when taking the log epsilon of various classes of
numbers, assuming that underflow does not occur.

ST(0)
-(1-(J2/2))t0 -0 -0 +0 +0 10 +(1 - (4/2/2)) NaN
- +oo * * —o NaN
ST(1) -F +F +0 -0 -F NaN
-0 +0 +0 -0 -0 NaN
+0 -0 -0 +0 +0 NaN
+F -F -0 +0 +F NaN
+oo —® * * +00 NaN
NaN NaN NaN NaN NaN NaN

NOTES:
F Means finite-real number.
* Indicates floating-point invalid-operation (#1A) exception.

Thisinstruction provides optimal accuracy for valuesof epsilon [thevaluein register ST(0)] that
are close to 0. When the epsilon value (€) is small, more significant digits can be retained by
using the FYL2XPL1 instruction than by using (¢+1) as an argument to the FYL2X instruction.
The (e+1) expression is commonly found in compound interest and annuity calculations. The
result can be simply converted into avalue in another logarithm base by including a scale factor
in the ST(1) source operand. The following equation is used to calculate the scale factor for a
particular logarithm base, where n is the logarithm base desired for the result of the FYL2XP1
instruction: scale factor = log,, 2

I 3-289



INSTRUCTION SET REFERENCE Intel ®

FYL2XP1—Compute y [log,(x +1) (Continued)

Operation

ST(1) « ST(1) Olog,(ST(0) + 1.0);

PopRegisterStack;

FPU Flags Affected

c1 Set to 0 if stack underflow occurred.

Indicates rounding direction if the inexact-result exception (#P) is
generated: 0 = not roundup; 1 = roundup.

Co, C2,C3 Undefined.

Floating-Point Exceptions

#IS Stack underflow occurred.

#A Either operand is an sNaN value or unsupported format.
#D Source operand is a denormal value.

#U Result istoo small for destination format.

#0O Result istoo large for destination format.

#P Value cannot be represented exactly in destination format.

Protected Mode Exceptions
#NM EM or TSin CRO is set.

Real-Address Mode Exceptions
#NM EM or TSin CRO is set.

Virtual-8086 Mode Exceptions
#NM EM or TSin CRO is set.

3-290 I



intal.

INSTRUCTION SET REFERENCE

HLT—Halt
Opcode Instruction Description
F4 HLT Halt
Description

This instruction stops instruction execution and places the processor in a HALT state. An
enabled interrupt, NMI, or areset will resume execution. If aninterrupt (including NMI) is used
to resume execution after aHLT instruction, the saved instruction pointer (CS:EIP) pointsto the

instruction following the HLT instruction.

The HLT instruction is a privileged instruction. When the processor is running in protected or
virtual-8086 mode, the privilege level of a program or procedure must be 0 to execute the HLT

instruction.

Operation

Enter Halt state;

Flags Affected
None.

Protected Mode Exceptions

#GP(0) If the current privilege level isnot 0.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

#GP(0) If the current privilege level isnot 0.

3-291



INSTRUCTION SET REFERENCE

IDIV—Signed Divide

intgl.

Opcode Instruction Description

F6 /7 IDIV r/m8 Signed divide AX (where AH must contain sign-
extension of AL) by r/m byte. (Results: AL=Quotient,
AH=Remainder)

F7 17 IDIV r/m16 Signed divide DX:AX (where DX must contain sign-
extension of AX) by r/m word. (Results: AX=Quotient,
DX=Remainder)

F7 17 IDIV r/m32 Signed divide EDX:EAX (where EDX must contain
sign-extension of EAX) by r/m doubleword. (Results:
EAX=Quotient, EDX=Remainder)

Description

Thisinstruction divides (signed) thevalueinthe AL, AX, or EAX register by the source operand
and stores the result in the AX, DX:AX, or EDX:EAX registers. The source operand can be a
general-purpose register or a memory location. The action of this instruction depends on the
operand size, as shown in the following table:

Operand Size Dividend Divisor Quotient Remainder Quotient Range
Word/byte AX r/m8 AL AH -128 to +127
Doubleword/word DX:AX r/m16 AX DX -32,768 to +32,767
Quadword/doubleword EDX:EAX | r/m32 EAX EDX 28110 2%2-1

Non-integral results are truncated (chopped) towards 0. The sign of the remainder is alwaysthe
same as the sign of the dividend. The absolute value of the remainder is always less than the
absolute value of the divisor. Overflow isindicated with the #DE (divide error) exception rather

than with the OF (overflow) flag.

Operation

IFSRC=0
THEN #DE; (* divide error *)
Fl;

IF OpernadSize = 8 (* word/byte operation *)

THEN

temp — AX/ SRC; (* signed division *)

IF (temp > 7FH) OR (temp < 80H)

(* if a positive result is greater than 7FH or a negative result is less than 80H *)

THEN #DE; (* divide error *) ;
ELSE
AL — temp;

AH ~ AX SignedModulus SRC;

Fl;

3-292



Intel® INSTRUCTION SET REFERENCE

IDIV—Signed Divide (Continued)

ELSE
IF OpernadSize = 16 (* doubleword/word operation *)
THEN
temp — DX:AX/SRC; (* signed division *)
IF (temp > 7FFFH) OR (temp < 8000H)
(* if a positive result is greater than 7FFFH *)
(* or a negative result is less than 8000H *)
THEN #DE; (* divide error *) ;
ELSE
AX ~ temp;
DX — DX:AX SignedModulus SRC;
FI;
ELSE (* quadword/doubleword operation *)
temp — EDX:EAX/ SRC; (* signed division *)
IF (temp > 7FFFFFFFH) OR (temp < 80000000H)
(* if a positive result is greater than 7FFFFFFFH *)
(* or a negative result is less than 80000000H *)
THEN #DE; (* divide error *) ;
ELSE
EAX —~ temp;
EDX — EDXE:AX SignedModulus SRC;
Fl;
Fl;
FI;

Flags Affected
The CF, OF, SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions
#DE If the source operand (divisor) isO.
The signed result (quotient) istoo large for the destination.

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
anull segment selector.

#SS(0) If amemory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

I 3-293



INSTRUCTION SET REFERENCE Intel ®

IDIV—Signed Divide (Continued)

Real-Address Mode Exceptions

#DE If the source operand (divisor) isO.

The signed result (quotient) istoo large for the destination.

#GP If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
#SS If amemory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions
#DE If the source operand (divisor) isO.
The signed result (quotient) istoo large for the destination.

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If apage fault occurs.

#AC(0) If :dlignment checking is enabled and an unaligned memory reference is
made.

3-294 I



intal.

IMUL—Signed Multiply

INSTRUCTION SET REFERENCE

Opcode Instruction Description

F6 /5 IMUL r/m8 AX < AL Or/m byte

F7 /5 IMUL r/mi16 DX:AX ~ AX Or/m word

F7 /5 IMUL r/m32 EDX:EAX — EAX Or/m doubleword

OF AF /r IMUL r16,r/m16 word register — word register O r/m word

OF AF /r IMUL r32,r/m32 doubleword register — doubleword register Or/m
doubleword

6B /rib IMUL r16,r/m16,imm8 word register — r/m16 sign-extended immediate byte

6B /rib IMUL r32,r/m32,imm8 doubleword register — r/m32 sign-extended immediate
byte

6B /rib IMUL r16,imm8 word register — word register Osign-extended immediate
byte

6B /rib IMUL r32,imm8 doubleword register — doubleword register sign-
extended immediate byte

69 /r iw IMUL r16,r/ word register — r/m16 Oimmediate word

m16,imm16
69 /rid IMUL r32,r/ doubleword register — r/m32 Oimmediate doubleword
m32,imm32
69 /r iw IMUL r16,imm16 word register — r/m16 Oimmediate word
69 /rid IMUL r32,imm32 doubleword register — /m32 Oimmediate doubleword
Description

This instruction performs a signed multiplication of two operands. This instruction has three
forms, depending on the number of operands.

One-operand form. Thisform isidentical to that used by the MUL instruction. Here, the
source operand (in a general-purpose register or memory location) is multiplied by the
value in the AL, AX, or EAX register (depending on the operand size) and the product is
stored in the AX, DX:AX, or EDX:EAX registers, respectively.

Two-operand form. With this form the destination operand (the first operand) is
multiplied by the source operand (second operand). The destination operand is a general-
purpose register and the source operand is an immediate value, a general-purpose register,
or amemory location. The product is then stored in the destination operand location.

Three-operand form. Thisform requires a destination operand (the first operand) and two
source operands (the second and the third operands). Here, the first source operand (which
can be a general-purpose register or amemory location) is multiplied by the second source
operand (an immediate value). The product is then stored in the destination operand (a
general-purpose register).

When an immediate value is used as an operand, it is sign-extended to the length of the destina-
tion operand format.

3-295



INSTRUCTION SET REFERENCE Intel ®

IMUL—Signed Multiply (Continued)

The CF and OF flags are set when significant bits are carried into the upper half of the result.
The CF and OF flags are cleared when the result fits exactly in the lower half of the result.

Thethreeformsof theIMUL instruction are similar in that thelength of the product is cal cul ated
to twice the length of the operands. With the one-operand form, the product is stored exactly in
the destination. With the two- and three- operand forms, however, result is truncated to the
length of the destination beforeit is stored in the destination register. Because of thistruncation,
the CF or OF flag should be tested to ensure that no significant bits are lost.

The two- and three-operand forms may also be used with unsigned operands because the lower
half of the product isthe sameregardlessif the operands are signed or unsigned. The CF and OF
flags, however, cannot be used to determine if the upper half of the result is non-zero.

3-296 I



Intel® INSTRUCTION SET REFERENCE

IMUL—Signed Multiply (Continued)

Operation

IF (NumberOfOperands = 1)
THEN IF (OperandSize = 8)
THEN
AX —~ AL OSRC (* signed multiplication *)
IF ((AH = 00H) OR (AH = FFH))
THEN CF = 0; OF = 0;
ELSE CF =1; OF =1,
Fl;
ELSE IF OperandSize = 16
THEN
DX:AX « AX OSRC (* signed multiplication *)
IF (DX = 0000H) OR (DX = FFFFH))
THEN CF = 0; OF = 0;
ELSE CF =1; OF = 1;
Fl;
ELSE (* OperandSize = 32 *)
EDX:EAX « EAX OSRC (* signed multiplication *)
IF (EDX = 00000000H) OR (EDX = FFFFFFFFH))
THEN CF = 0; OF = 0;
ELSE CF =1; OF = 1;
Fl;
Fl;
ELSE IF (NumberOfOperands = 2)

THEN
temp — DEST OSRC (* signed multiplication; temp is double DEST size*)

DEST ~ DEST OSRC (* signed multiplication *)
IF temp # DEST
THEN CF =1; OF = 1;
ELSE CF =0; OF =0;
FI;
ELSE (* NumberOfOperands = 3 *)
DEST ~ SRC1 OSRC2 (* signed multiplication *)
temp — SRC1OSRC2 (* signed multiplication; temp is double SRC1 size *)
IF temp # DEST
THEN CF =1; OF = 1;
ELSE CF =0; OF =0;
Fl;
Fl;
Fl;

3-297



INSTRUCTION SET REFERENCE Intel ®

IMUL—Signed Multiply (Continued)

Flags Affected

For the one operand form of the instruction, the CF and OF flags are set when significant bits
are carried into the upper half of the result and cleared when the result fits exactly in the lower
half of the result. For the two- and three-operand forms of the instruction, the CF and OF flags
are set when the result must be truncated to fit in the destination operand size and cleared when
theresult fits exactly in the destination operand size. The SF, ZF, AF, and PF flags are undefined.

Protected Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
anull segment selector.

#SS(0) If amemory operand effective address is outside the SS segment limit.
#PF(fault-code) If apage fault occurs.
#AC(0) If alignment checking is enabled and an unaligned memory reference is

made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
#SS If amemory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0) If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If apage fault occurs.

#AC(0) If Z:Ejlignment checking is enabled and an unaligned memory reference is
made.

3-298 I



Intel® INSTRUCTION SET REFERENCE

IN—Input from Port

Opcode Instruction Description

E4 ib IN AL,imm8 Input byte from imm8 1/O port address into AL

E5ib IN AX,imm8 Input byte from imm8 1/O port address into AX

E5ib IN EAX,imm8 Input byte from imm8 1/O port address into EAX

EC IN AL,DX Input byte from 1/O port in DX into AL

ED IN AX,DX Input word from 1/O port in DX into AX

ED IN EAX,DX Input doubleword from I/O port in DX into EAX
Description

This instruction copies the value from the I/O port specified with the second operand (source
operand) to the destination operand (first operand). The source operand can be abyte-immediate
or the DX register; the destination operand can be register AL, AX, or EAX, depending on the
size of the port being accessed (8, 16, or 32 bits, respectively). Using the DX register asasource
operand allows /O port addresses from 0 to 65,535 to be accessed; using a byte immediate
allows 1/O port addresses 0 to 255 to be accessed.

When accessing an 8-hit I/O port, the opcode determines the port size; when accessing a 16- and
32-hit 1/0O port, the operand-size attribute determines the port size.

At the machine code level, I/O instructions are shorter when accessing 8-hit 1/0 ports. Here, the
upper eight bits of the port address will be 0.

This instruction is only useful for accessing I/O ports located in the processor’s I/O address
space. Refer to Chapter 18put/Output of thelntel Architecture Software Developer’s Manual,
Volume 1for more information on accessing 1/0 ports in the I/O address space.

Operation

IF ((PE = 1) AND ((CPL > IOPL) OR (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)
IF (Any 1/0 Permission Bit for 1/0O port being accessed = 1)
THEN (* I/O operation is not allowed *)
#GP(0);
ELSE ( * I/O operation is allowed *)
DEST ~ SRC; (* Reads from selected 1/O port *)
Fl;
ELSE (Real Mode or Protected Mode with CPL < IOPL *)
DEST ~ SRC; (* Reads from selected 1/O port *)
FI;

Flags Affected

None.

I 3-299



INSTRUCTION SET REFERENCE Intel ®

IN—Input from Port (Continued)

Protected Mode Exceptions

#GP(0) If the CPL isgreater than (haslessprivilege) the l/O privilegelevel (IOPL)
and any of the corresponding I/O permission bitsin TSS for the 1/0O port
being accessed is 1.

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions

#GP(0) If any of the 1/O permission bitsin the TSSfor the I/O port being accessed
isl.

3-300 I



Intel® INSTRUCTION SET REFERENCE

INC—Increment by 1

Opcode Instruction Description

FE /0 INC r/m8 Increment r/m byte by 1

FF /0 INC r/m16 Increment r/m word by 1

FF /0 INC r/m32 Increment r/m doubleword by 1

40+ nw INC ri6 Increment word register by 1

40+ rd INC r32 Increment doubleword register by 1
Description

This instruction adds one to the destination operand, while preserving the state of the CF flag.
The destination operand can be aregister or amemory location. This instruction allows aloop
counter to be updated without disturbing the CF flag. (Use aADD instruction with animmediate
operand of 1 to perform an increment operation that does updates the CF flag.)

Operation
DEST ~ DEST +1;

Flags Affected
The CF flag is not affected. The OF, SF, ZF, AF, and PF flags are set according to the result.

Protected Mode Exceptions
#GP(0) If the destination operand is located in a nonwritable segment.

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the DS, ES, FS, or GS register is used to access memory and it contains
anull segment selector.

#SS(0) If amemory operand effective address is outside the SS segment limit.
#PF(fault-code) If a page fault occurs.

#AC(0) If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.
#SS If amemory operand effective address is outside the SS segment limit.

I 3-301



INSTRUCTION SET REFERENCE Intel ®

INC—Increment by 1 (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

#SS(0) If amemory operand effective address is outside the SS segment limit.

#PF(fault-code) If apage fault occurs.

#AC(0) If :dlignment checking is enabled and an unaligned memory reference is
made.

3-302 I



Intel® INSTRUCTION SET REFERENCE

INS/INSB/INSW/INSD—Input from Port to String

Opcode Instruction Description

6C INS m8, DX Input byte from 1/O port specified in DX into memory
location specified in ES:(E)DI

6D INS m16, DX Input word from 1/O port specified in DX into memory
location specified in ES:(E)DI

6D INS m32, DX Input doubleword from 1/O port specified in DX into
memory location specified in ES:(E)DI

6C INSB Input byte from 1/O port specified in DX into memory
location specified with ES:(E)DI

6D INSW Input word from 1/O port specified in DX into memory
location specified in ES:(E)DI

6D INSD Input doubleword from I/O port specified in DX into
memory location specified in ES:(E)DI

Description

These instructions copy the data from the 1/0 port specified with the source operand (second
operand) to the destination operand (first operand). The source operand is an 1/O port address
(from 0 to 65,535) that isread from the DX register. The destination operand is amemory loca-
tion, the address of which is read from either the ES:EDI or the ES:DI registers (depending on
the address-size attribute of the instruction, 32 or 16, respectively). The ES segment cannot be
overridden with a segment override prefix. The size of the I/O port being accessed (that is, the
size of the source and destination operands) is determined by the opcode for an 8-hit 1/0 port or
by the operand-size attribute of the instruction for a 16- or 32-hit /O port.

At the assembly-code level, two forms of this instruction are allowed: the “explicit-operands”
form and the “no-operands” form. The explicit-operands form (specified with the INS
mnemonic) allows the source and destination operands to be specified explicitly. Here, the
source operand must be “DX,” and the destination operand should be a symbol that indicates the
size of the I/O port and the destination address. This explicit-operands form is provided to allow
documentation; however, note that the documentation provided by this form can be misleading.
That is, the destination operand symbol must specify the ctyp(size) of the operand (byte,

word, or doubleword), but it does not have to specify the cdoeation. The location is always
specified by the ES:(E)DI registers, which must be loaded correctly before the INS instruction
is executed.

The no-operands form provides “short forms” of the byte, word, and doubleword versions of the
INS instructions. Here also DX is assumed by the processor to be the source operand and
ES:(E)DI is assumed to be the destination operand. The size of the I/O port is specified with the
choice of mnemonic: INSB (byte), INSW (word), or INSD (doubleword).

After the byte, word, or doubleword is transfer from the 1/O port to the memory location, the
(E)DI register is incremented or decremented automatically according to the setting of the DF
flag in the EFLAGS register. (If the DF flag is 0, the (E)DI register is incremented; if the DF
flag is 1, the (E)DI register is decremented.) The (E)DI register is incremented or decremented
by one for byte operations, by two for word operations, or by four for doubleword operations.

I 3-303



INSTRUCTION SET REFERENCE Intel ®

INS/INSB/INSW/INSD—Input from Port to String (Continued)

ThelNS, INSB, INSW, and INSD instructions can be preceded by the REP prefix for block input
of ECX bytes, words, or doublewords. Refer to “REP/REPE/REPZ/REPNE /REPNZ—Repeat
String Operation Prefix” in this chapter for a description of the REP prefix.

These instructions are only useful for accessing I/O ports located in the processor’s I/0 address
space. Refer to Chapter 18put/Output of thelntel Architecture Software Developer’s Manual,
Volume 1for more information on accessing 1/0 portsin the 1/O address space.

Operation

IF ((PE = 1) AND ((CPL > IOPL) OR (VM = 1)))
THEN (* Protected mode with CPL > IOPL or virtual-8086 mode *)
IF (Any I/O Permission Bit for I/O port being accessed = 1)
THEN (* I/O operation is not allowed *)
#GP(0);
ELSE ( * I/0O operation is allowed *)
DEST ~ SRC; (* Reads from I/O port *)
Fl;
ELSE (Real Mode or Protected Mode with CPL < IOPL *)
DEST ~ SRC; (* Reads from I/O port *)

FI;
IF (byte transfer)
THEN IF DF =0
THEN (E)DI ~ (E)DI + 1;
ELSE (E)DI ~ (E)DI —1;
Fl;
ELSE IF (word transfer)
THEN IF DF =0
THEN (E)DI ~ (E)DI + 2;
ELSE (E)DI ~ (E)DI - 2;
FI;
ELSE (* doubleword transfer *)
THEN IF DF =0
THEN (E)DI ~ (E)DI + 4;
ELSE (E)DI — (E)DI —4;
FI;
Fl;
Fl;

Flags Affected
None.

3-304 I



intal.

INSTRUCTION SET REFERENCE

INS/INSB/INSW/INSD—Input from Port to String (Continued)

Protected Mode Exceptions

#GP(0)

#PF(fault-code)
#AC(0)

If the CPL isgreater than (hasless privilege) thel/O privilegelevel (IOPL)
and any of the corresponding I/O permission bitsin TSS for the I/O port
being accessed is 1.

If the destination is located in a nonwritable segment.

If an illegal memory operand effective address in the ES segments is
given.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made while the current privilege level is 3.

Real-Address Mode Exceptions

#GP

#SS

If amemory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If amemory operand effective address is outside the SS segment limit.

Virtual-8086 Mode Exceptions

#GP(0)

#PF(fault-code)
#AC(0)

If any of the /O permission bitsin the TSSfor the I/O port being accessed
isl.

If a page fault occurs.

If alignment checking is enabled and an unaligned memory reference is
made.

3-305



INSTRUCTION SET REFERENCE Intel ®

INT n/INTO/INT 3—Call to Interrupt Procedure

Opcode Instruction Description
CcC INT 3 Interrupt 3—trap to debugger
CD ib INT imm8 Interrupt vector number specified by immediate byte
CE INTO Interrupt 4—if overflow flag is 1
Description

The INT n instruction generates a call to the interrupt or exception handler specified with the
destination operand. For more information, refer to Section 4.4., Interrupts and Exceptionsin
Chapter 4, Procedure Calls, Interrupts, and Exceptions of the Intel Architecture Software Devel-
oper’s Manual, Volume. T he destination operand specifies an interrupt vector number from 0
to 255, encoded as an 8-bit unsigned intermediate value. Each interrupt vector number provides
an index to a gate descriptor in the IDT. The first 32 interrupt vector numbers are reserved by
Intel for system use. Some of these interrupts are used for internally generated exceptions.

The INT ninstruction is the general mnemonic for executing a software-generated call to an
interrupt handler. The INTO instruction is a special mnemonic for calling overflow exception
(#OF), interrupt vector number 4. The overflow interrupt checks the OF flag in the EFLAGS
register and calls the overflow interrupt handler if the OF flag is set to 1.

The INT 3 instruction generates a specia one byte opcode (CC) that isintended for calling the
debug exception handler. (This one byte form is valuable because it can be used to replace the
first byte of any instruction with a breakpoint, including other one byte instructions, without
over-writing other code). To further support its function as a debug breakpoint, the interrupt
generated with the CC opcode also differs from the regular software interrupts as follows:

® Interrupt redirection does not happen when in VME mode; the interrupt is handled by a
protected-mode handler.

® Thevirtual-8086 mode |OPL checks do not occur. Theinterrupt is taken without faulting at
any IOPL level.

Note that the “normal” 2-byte opcode for INT 3 (CDO03) does not have these special features.
Intel and Microsoft assemblers will not generate the CD03 opcode from any mnemonic, but this
opcode can be created by direct numeric code definition or by self-modifying code.

The action of the INT instruction (including the INTO and INT 3 instructions) is similar to that

of a far call made with the CALL instruction. The primary difference is that with thenNT
instruction, the EFLAGS register is pushed onto the stack before the return address. (The return
address is a far address consisting of the current values of the CS and EIP registers.) Returns
from interrupt procedures are handled with the IRET instruction, which pops the EFLAGS
information and return address from the stack.

3-306 I



Intel® INSTRUCTION SET REFERENCE

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)

The interrupt vector number specifies an interrupt descriptor in the interrupt descriptor table
(IDT); that is, it providesindex into the IDT. The selected interrupt descriptor in turn contains a
pointer to an interrupt or exception handler procedure. In protected mode, the IDT contains
an array of 8-byte descriptors, each of whichisan interrupt gate, trap gate, or task gate. In real-
address mode, the IDT is an array of 4-byte far pointers (2-byte code segment selector and
a2-byteinstruction pointer), each of which point directly to aprocedurein the selected segment.
(Note that in real-address mode, the IDT is called the interrupt vector table, and it's pointers
are called interrupt vectors.)

The following decision table indicates which action in the lower portion of the table is taken
given the conditions in the upper portion of the table. Each Y in the lower section of the decision
table represents a procedure defined in the “Operation” section for this instruction (except #GP).

PE 0 1 1 1 1 1 1 1

VM - |- - - - 0 1 1

IOPL - |- - - - - <3 =3

DPL/CPL - DPL< | - DPL> DPL= DPL< - -
RELATIONSHIP CPL CPL CPLorC | CPL&
NC

INTERRUPT TYPE - S/IW - - - - - -

GATE TYPE - - Task | Trap or Trap or Trap or Trap or Trap or
Interrupt | Interrupt | Interrupt | Interrupt | Interrupt

REAL-ADDRESS- Y
MODE

PROTECTED-MODE Y Y

TRAP-OR-
INTERRUPT-GATE

INTER-PRIVILEGE- Y
LEVEL-INTERRUPT

INTRA-PRIVILEGE- Y
LEVEL-INTERRUPT

INTERRUPT-FROM- Y
VIRTUAL-8086-
MODE

TASK-GATE Y
#GP Y Y Y

NOTES:

- Don'’t Care.

Y Yes, Action Taken.
Blank Action Not Taken.

I 3-307



INSTRUCTION SET REFERENCE Intel ®

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)

When the processor is executing in virtual-8086 mode, the IOPL determines the action of the
INT ninstruction. If the IOPL islessthan 3, the processor generates ageneral protection excep-
tion (#GP); if the IOPL is 3, the processor executes a protected mode interrupt to privilege level
0. Theinterrupt gate's DPL must be set to three and the target CPL of theinterrupt handler proce-
dure must be 0 to execute the protected mode interrupt to privilege level 0.

The interrupt descriptor table register (IDTR) specifies the base linear address and limit of the
IDT. Theinitial base address value of the IDTR after the processor is powered up or reset isO.

Operation

The following operational description applies not only to the INT nand INTO instructions, but
also to external interrupts and exceptions.

IF PE=0
THEN
GOTO REAL-ADDRESS-MODE;
ELSE (* PE=1 %)
IF (VM=1 AND IOPL < 3 AND INT n)
THEN
#GP(0);
ELSE (* protected mode or virtual-8086 mode interrupt *)
GOTO PROTECTED-MODE;
FI;
Fl;

REAL-ADDRESS-MODE:

IF ((DEST [O4) + 3) is not within IDT limit THEN #GP; FI;

IF stack not large enough for a 6-byte return information THEN #SS; FI;

Push (EFLAGS[15:0));

IF < O; (* Clear interrupt flag *)

TF — O; (* Clear trap flag *)

AC -~ 0; (*Clear AC flag*)

Push(CS);

Push(IP);

(* No error codes are pushed *)

CS — IDT(Descriptor (vector_number [04), selector));

EIP — IDT(Descriptor (vector_number [04), offset)); (* 16-bit offset AND 0000FFFFH *)
END;

PROTECTED-MODE:
IF (DEST O8) + 7) is not within IDT limits
OR selected IDT descriptor is not an interrupt-, trap-, or task-gate type
THEN #GP((DEST 08) + 2 + EXT);
(* EXT is bit 0 in error code *)
Fl;

3-308 I



Intel® INSTRUCTION SET REFERENCE

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)

IF software interrupt (* generated by INT n, INT 3, or INTO *)
THEN
IF gate descriptor DPL < CPL
THEN #GP((vector_number (08) + 2);
(* PE=1, DPL<CPL, software interrupt *)
Fl;
Fl;
IF gate not present THEN #NP((vector_number 08) + 2 + EXT); FI;
IF task gate (* specified in the selected interrupt table descriptor *)
THEN GOTO TASK-GATE;
ELSE GOTO TRAP-OR-INTERRUPT-GATE; (* PE=1, trap/interrupt gate *)
Fl;
END;

TASK-GATE: (* PE=1, task gate *)
Read segment selector in task gate (IDT descriptor);
IF local/global bit is set to local
OR index not within GDT limits
THEN #GP(TSS selector);
Fl;
Access TSS descriptor in GDT;
IF TSS descriptor specifies that the TSS is busy (low-order 5 bits set to 00001)
THEN #GP(TSS selector);
FI;
IF TSS not present
THEN #NP(TSS selector);
Fl;
SWITCH-TASKS (with nesting) to TSS;
IF interrupt caused by fault with error code
THEN
IF stack limit does not allow push of error code
THEN #SS(0);
Fl;
Push(error code);
FI;
IF EIP not within code segment limit
THEN #GP(0);
Fl;
END;
TRAP-OR-INTERRUPT-GATE
Read segment selector for trap or interrupt gate (IDT descriptor);
IF segment selector for code segment is null
THEN #GP(OH + EXT); (* null selector with EXT flag set *)
Fl;

I 3-309



INSTRUCTION SET REFERENCE Intel ®

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)

IF segment selector is not within its descriptor table limits
THEN #GP(selector + EXT);
Fl;
Read trap or interrupt handler descriptor;
IF descriptor does not indicate a code segment
OR code segment descriptor DPL > CPL
THEN #GP(selector + EXT);
Fl;
IF trap or interrupt gate segment is not present,
THEN #NP(selector + EXT);

FI;
IF code segment is non-conforming AND DPL < CPL
THEN IF VM=0
THEN
GOTO INTER-PRIVILEGE-LEVEL-INTERRUPT;
(* PE=1, interrupt or trap gate, nonconforming *)
(* code segment, DPL<CPL, VM=0 *)
ELSE (* VM=1 *)
IF code segment DPL # 0 THEN #GP(new code segment selector); Fl;
GOTO INTERRUPT-FROM-VIRTUAL-8086-MODE;
(* PE=1, interrupt or trap gate, DPL<CPL, VM=1 *)
FI;
ELSE (* PE=1, interrupt or trap gate, DPL = CPL *)
IF VM=1 THEN #GP(new code segment selector); Fl;
IF code segment is conforming OR code segment DPL = CPL
THEN
GOTO INTRA-PRIVILEGE-LEVEL-INTERRUPT;
ELSE
#GP(CodeSegmentSelector + EXT);
(* PE=1, interrupt or trap gate, nonconforming *)
(* code segment, DPL>CPL *)
Fl;
Fl;
END;

INTER-PREVILEGE-LEVEL-INTERRUPT
(* PE=1, interrupt or trap gate, non-conforming code segment, DPL<CPL *)
(* Check segment selector and descriptor for stack of new privilege level in current TSS *)
IF current TSS is 32-bit TSS
THEN
TSSstackAddress — (new code segment DPL (08) + 4
IF (TSSstackAddress + 7) > TSS limit
THEN #TS(current TSS selector); Fl;
NewSS ~ TSSstackAddress + 4;
NewESP -~ stack address;

3-310 I



Intel® INSTRUCTION SET REFERENCE

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)

ELSE (* TSS is 16-bit *)
TSSstackAddress — (new code segment DPL [04) + 2
IF (TSSstackAddress + 4) >TSS limit
THEN #TS(current TSS selector); FI;
NewESP ~ TSSstackAddress;
NewSS ~ TSSstackAddress + 2;
Fl;
IF segment selector is null THEN #TS(EXT); FI;
IF segment selector index is not within its descriptor table limits
OR segment selector’'s RPL # DPL of code segment,
THEN #TS(SS selector + EXT);
Fl;
Read segment descriptor for stack segment in GDT or LDT,;
IF stack segment DPL # DPL of code segment,
OR stack segment does not indicate writable data segment,
THEN #TS(SS selector + EXT);

FI;
IF stack segment not present THEN #SS(SS selector+EXT); Fl;
IF 32-bit gate
THEN
IF new stack does not have room for 24 bytes (error code pushed)
OR 20 bytes (no error code pushed)
THEN #SS(segment selector + EXT);
FI;
ELSE (* 16-bit gate *)
IF new stack does not have room for 12 bytes (error code pushed)
OR 10 bytes (no error code pushed);
THEN #SS(segment selector + EXT);
FI;
FI;

IF instruction pointer is not within code segment limits THEN #GP(0); FI;
SS:ESP ~ TSS(NewSS:NewESP) (* segment descriptor information also loaded *)
IF 32-bit gate
THEN
CS:EIP ~ Gate(CS:EIP); (* segment descriptor information also loaded *)
ELSE (* 16-hit gate *)
CS:IP ~ Gate(CS:IP); (* segment descriptor information also loaded *)

Fl;
IF 32-bit gate
THEN
Push(far pointer to old stack); (* old SS and ESP, 3 words padded to 4 *);
Push(EFLAGS);

Push(far pointer to return instruction); (* old CS and EIP, 3 words padded to 4*);
Push(ErrorCode); (* if needed, 4 bytes *)

I 3-311



INSTRUCTION SET REFERENCE Intel ®

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)

ELSE(* 16-bit gate *)
Push(far pointer to old stack); (* old SS and SP, 2 words *);
Push(EFLAGS(15..0));
Push(far pointer to return instruction); (* old CS and IP, 2 words *);
Push(ErrorCode); (* if needed, 2 bytes *)
FI;
CPL —~ CodeSegmentDescriptor(DPL);
CS(RPL) ~ CPL;
IF interrupt gate
THEN IF — 0 (* interrupt flag to O (disabled) *); FlI;
TF ~ O;
VM < 0;
RF < 0;
NT < O;
END;

INTERRUPT-FROM-VIRTUAL-8086-MODE:
(* Check segment selector and descriptor for privilege level 0 stack in current TSS *)
IF current TSS is 32-bit TSS
THEN
TSSstackAddress — (new code segment DPL (08) + 4
IF (TSSstackAddress + 7) > TSS limit
THEN #TS(current TSS selector); Fl;
NewSS ~ TSSstackAddress + 4;
NewESP -~ stack address;
ELSE (* TSS is 16-bit *)
TSSstackAddress — (new code segment DPL (04) + 2
IF (TSSstackAddress + 4) > TSS limit
THEN #TS(current TSS selector); Fl;
NewESP ~ TSSstackAddress;
NewSS ~ TSSstackAddress + 2;
Fl;
IF segment selector is null THEN #TS(EXT); Fl;
IF segment selector index is not within its descriptor table limits
OR segment selector’'s RPL # DPL of code segment,
THEN #TS(SS selector + EXT);
FI;
Access segment descriptor for stack segment in GDT or LDT;
IF stack segment DPL # DPL of code segment,
OR stack segment does not indicate writable data segment,
THEN #TS(SS selector + EXT);
FI;
IF stack segment not present THEN #SS(SS selector+EXT); FI;

3-312 I



Intel® INSTRUCTION SET REFERENCE

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)

IF 32-bit gate
THEN
IF new stack does not have room for 40 bytes (error code pushed)
OR 36 bytes (no error code pushed);
THEN #SS(segment selector + EXT);
FI;
ELSE (* 16-bit gate *)
IF new stack does not have room for 20 bytes (error code pushed)
OR 18 bytes (no error code pushed);
THEN #SS(segment selector + EXT);
Fl;
Fl;
IF instruction pointer is not within code segment limits THEN #GP(0); FI;
tempEFLAGS ~ EFLAGS;
VM ~ 0;
TF < O;
RF ~ 0O;
IF service through interrupt gate THEN IF — O; FI;
TempSS ~ SS;
TempESP ~ ESP;
SS:ESP ~ TSS(SS0:ESPO0); (* Change to level 0 stack segment *)
(* Following pushes are 16 bits for 16-bit gate and 32 bits for 32-bit gates *)
(* Segment selector pushes in 32-bhit mode are padded to two words *)
Push(GS);
Push(FS);
Push(DS);
Push(ES);
Push(TempSS);
Push(TempESP);
Push(TempEFlags);
Push(CS);
Push(EIP);
GS < 0; (*segment registers nullified, invalid in protected mode *)
FS ~ 0;
DS ~ 0O;
ES ~ 0;
CS — Gate(CS);
IF OperandSize=32
THEN
EIP — Gate(instruction pointer);
ELSE (* OperandSize is 16 *)
EIP — Gate(instruction pointer) AND O000FFFFH;
FI;
(* Starts execution of new routine in Protected Mode *)
END;

I 3-313



INSTRUCTION SET REFERENCE Intel ®

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)

INTRA-PRIVILEGE-LEVEL-INTERRUPT:
(* PE=1, DPL = CPL or conforming segment *)
IF 32-bit gate
THEN
IF current stack does not have room for 16 bytes (error code pushed)
OR 12 bytes (no error code pushed); THEN #SS(0);
Fl;
ELSE (* 16-bit gate *)
IF current stack does not have room for 8 bytes (error code pushed)
OR 6 bytes (no error code pushed); THEN #SS(0);
FI;
IF instruction pointer not within code segment limit THEN #GP(0); FlI;
IF 32-bit gate
THEN
Push (EFLAGS);
Push (far pointer to return instruction); (* 3 words padded to 4 *)
CS.EIP ~ Gate(CS:EIP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)
ELSE (* 16-bit gate *)
Push (FLAGS);
Push (far pointer to return location); (* 2 words *)
CS:IP ~ Gate(CS:IP); (* segment descriptor information also loaded *)
Push (ErrorCode); (* if any *)
FI;
CS(RPL) ~ CPL;
IF interrupt gate
THEN
IF < O; FI;
TF ~ O;
NT ~ O;
VM < 0;
RF < 0;
Fl;
END;

Flags Affected

The EFLAGS register is pushed onto the stack. The IF, TF, NT, AC, RF, and VM flags may be

cleared, depending on the mode of operation of the processor when the INT instruction is
executed (refer to the “Operation” section). If the interrupt uses a task gate, any flags may be set
or cleared, controlled by the EFLAGS image in the new task’s TSS.

3-314 I



intal.

INSTRUCTION SET REFERENCE

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)

Protected Mode Exceptions

#GP(0)

#GP(selector)

#55(0)

#SS(selector)

#NP(selector)
#TS(selector)

#PF(fault-code)

If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate
is beyond the code segment limits.

If the segment selector in the interrupt-, trap-, or task gateis null.

If ainterrupt-, trap-, or task gate, code segment, or TSS segment sel ector
index is outside its descriptor table limits.

If the interrupt vector number is outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If aninterrupt is generated by the INT n, INT 3, or INTO instruction and
the DPL of an interrupt-, trap-, or task-descriptor is less than the CPL.

If the segment selector in an interrupt- or trap-gate does not point to a
segment descriptor for a code segment.

If the segment selector for a TSS hasits local/global bit set for local.
If aTSS segment descriptor specifiesthat the TSSis busy or not avail able.

If pushing the return address, flags, or error code onto the stack exceeds
the bounds of the stack segment and no stack switch occurs.

If the SSregister is being loaded and the segment pointed to is marked not
present.

If pushing the return address, flags, error code, or stack segment pointer
exceeds the bounds of the new stack segment when a stack switch occurs.

If code segment, interrupt-, trap-, or task gate, or TSSis not present.

If the RPL of the stack segment selector inthe TSSis not equal to the DPL
of the code segment being accessed by the interrupt or trap gate.

If DPL of the stack segment descriptor pointed to by the stack segment
selector inthe TSSis not equal to the DPL of the code segment descriptor
for the interrupt or trap gate.

If the stack segment selector in the TSSis null.
If the stack segment for the TSS is not awritable data segment.

If segment-selector index for stack segment is outside descriptor table
limits.

If a page fault occurs.

3-315



INSTRUCTION SET REFERENCE Intel ®

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)

Real-Address Mode Exceptions

#GP If a memory operand effective address is outside the CS, DS, ES, FS, or
GS segment limit.

If the interrupt vector number is outside the IDT limits.
#SS If stack limit violation on push.

If pushing the return address, flags, or error code onto the stack exceeds
the bounds of the stack segment.

3-316 I



intal.

INSTRUCTION SET REFERENCE

INT n/INTO/INT 3—Call to Interrupt Procedure (Continued)

Virtual-8086 Mode Exceptions

#GP(0)

#GP(selector)

#SS(selector)

#NP(selector)
#TS(selector)

#PF(fault-code)
#BP
#OF

(For INT n, INTO, or BOUND instruction) If the |IOPL islessthan 3 or the
DPL of theinterrupt-, trap-, or task-gate descriptor is not equal to 3.

If the instruction pointer in the IDT or in the interrupt-, trap-, or task gate
is beyond the code segment limits.

If the segment selector in the interrupt-, trap-, or task gateis null.

If ainterrupt-, trap-, or task gate, code segment, or TSS segment sel ector
index is outside its descriptor table limits.

If the interrupt vector number is outside the IDT limits.
If an IDT descriptor is not an interrupt-, trap-, or task-descriptor.

If an interrupt is generated by the INT n instruction and the DPL of an
interrupt-, trap-, or task-descriptor isless than the CPL.

If the segment selector in an interrupt- or trap-gate does not point to a
segment descriptor for a code segment.

If the segment selector for a TSS hasits local/global bit set for local.

If the SSregister is being loaded and the segment pointed to is marked not
present.

If pushing the return address, flags, error code, stack segment pointer, or
data segments exceeds the bounds of the stack segment.

If code segment, interrupt-, trap-, or task gate, or TSSis not present.

If the RPL of the stack segment selector inthe TSSis not equal to the DPL
of the code segment being accessed by the interrupt or trap gate.

If DPL of the stack segment descriptor for the TSS’s stack segment is not
equal to the DPL of the code segment descriptor for the interrupt or trap
gate.

If the stack segment selector in the TSS is null.
If the stack segment for the TSS is not a writable data segment.

If segment-selector index for stack segment is outside descriptor table
limits.

If a page fault occurs.
If the INT 3 instruction is executed.

If the INTO instruction is executed and the OF flag is set.

3-317



INSTRUCTION SET REFERENCE Intel ®

INVD—Invalidate Internal Caches

Opcode Instruction Description
OF 08 INVD Flush internal caches; initiate flushing of external caches.
Description

This instruction invalidates (flushes) the processor’s internal caches and issues a special-func-
tion bus cycle that directs external caches to also flush themselves. Data held in internal caches
is not written back to main memory.

After executing this instruction, the processor does not wait for the external caches to complete
their flushing operation before proceeding with instruction execution. It is the responsibility of
hardware to respond to the cache flush signal.

The INVD instruction is a privileged instruction. When the processor is running in protected
mode, the CPL of a program or procedure must be 0 to execute this instruction.

Use this instruction with care. Data cached internally and not written back to main memory will
be lost. Unless there is a specific requirement or benefit to flushing caches without writing back
modified cache lines (for example, testing or fault recovery where cache coherency with main
memory is not a concern), software should use the WBINVD instruction.

Intel Architecture Compatibility

The INVD instruction is implementation dependent, and its function may be implemented
differently on future Intel Architecture processors. This instruction is not supported on Intel
Architecture processors earlier than the Intel486™ processor.

Operation

Flush(InternalCaches);
SignalFlush(ExternalCaches);
Continue (* Continue execution);

Flags Affected
None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.

3-318 I



Intel® INSTRUCTION SET REFERENCE

INVD—Invalidate Internal Caches (Continued)

Real-Address Mode Exceptions

None.

Virtual-8086 Mode Exceptions
#GP(0) The INVD instruction cannot be executed in virtual-8086 mode.

3-319



INSTRUCTION SET REFERENCE Intel ®

INVLPG—Invalidate TLB Entry

Opcode Instruction Description
OF 01/7 INVLPG m Invalidate TLB Entry for page that contains m
Description

Thisinstruction invalidates (flushes) the translation lookaside buffer (TLB) entry specified with
the source operand. The source operand isamemory address. The processor determinesthe page
that contains that address and flushes the TLB entry for that page.

The INVLPG instruction is a privileged instruction. When the processor is running in protected
mode, the CPL of a program or procedure must be 0 to execute this instruction.

The INVLPG instruction normally flushes the TLB entry only for the specified page; however,
in some cases, it flushes the entire TLB. Refer to “MOV—Move to/from Control Registers” in
this chapter for further information on operations that flush the TLB.

Intel Architecture Compatibility

The INVLPG instruction is implementation dependent, and its function may be implemented
differently on future Intel Architecture processors. This instruction is not supported on Intel
Architecture processors earlier than the Intel486™ processor.

Operation

Flush(RelevantTLBEntries);
Continue (* Continue execution);

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the current privilege level is not 0.
#UD Operand is a register.

Real-Address Mode Exceptions
#UD Operand is a register.

Virtual-8086 Mode Exceptions
#GP(0) The INVLPG instruction cannot be executed at the virtual-8086 mode.

3-320 I



Intel® INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return

Opcode Instruction Description

CF IRET Interrupt return (16-bit operand size)

CF IRETD Interrupt return (32-bit operand size)
Description

These instructions return program control from an exception or interrupt handler to a program

or procedure that was interrupted by an exception, an external interrupt, or a software-generated
interrupt. Theseinstructions are also used to perform areturn from anested task. (A nested task

is created when a CALL instruction is used to initiate a task switch or when an interrupt or
exception causes atask switch to an interrupt or exception handler.) Refer to Section 6.4., Task
Linking in Chapter 6, Task Management of the Intel Architecture Software Developer’s Manual,
Volume 3

IRET and IRETD are mnemonics for the same opcode. The IRETD mnemonic (interrupt return
double) isintended for use when returning from an interrupt when using the 32-bit operand size;
however, most assemblers use the IRET mnemonic interchangeably for both operand sizes.

In Real-Address Mode, the IRET instruction preforms afar return to the interrupted program or
procedure. During this operation, the processor pops the return instruction pointer, return code
segment selector, and EFLAGS image from the stack to the EIP, CS, and EFLAGS registers,
respectively, and then resumes execution of the interrupted program or procedure.

In Protected Mode, the action of the IRET instruction depends on the settings of the NT (nested
task) and VM flagsin the EFLAGS register and the VM flag in the EFLAGS image stored on
the current stack. Depending on the setting of these flags, the processor performs the following
types of interrupt returns:

® Return from virtual-8086 mode.

® Return to virtual-8086 mode.

® |ntra-privilege leve return.

® |Inter-privilege level return.

® Return from nested task (task switch).

If the NT flag (EFLAGSregister) iscleared, the IRET instruction performs afar return from the
interrupt procedure, without atask switch. The code segment being returned to must be equally
or less privileged than the interrupt handler routine (as indicated by the RPL field of the code
segment selector popped from the stack). Aswith areal-address modeinterrupt return, the IRET
instruction pops the return instruction pointer, return code segment selector, and EFLAGS
image from the stack to the EIP, CS, and EFLAGS registers, respectively, and then resumes
execution of theinterrupted program or procedure. If the return isto another privilege level, the
IRET instruction also pops the stack pointer and SS from the stack, before resuming program
execution. If thereturn isto virtual-8086 mode, the processor also pops the data segment regis-
ters from the stack.

I 3-321



INSTRUCTION SET REFERENCE Intel ®

IRET/IRETD—Interrupt Return (Continued)

If the NT flag is set, the IRET instruction performs a task switch (return) from a nested task (a
task called with a CALL instruction, an interrupt, or an exception) back to the calling or inter-
rupted task. The updated state of the task executing the IRET instructionis saved inits TSS. If
the task is re-entered later, the code that follows the IRET instruction is executed.

Operation

IFPE=0
THEN
GOTO REAL-ADDRESS-MODE;;
ELSE
GOTO PROTECTED-MODE;
FI,

REAL-ADDRESS-MODE;
IF OperandSize = 32
THEN
IF top 12 bytes of stack not within stack limits THEN #SS; FlI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP — Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded *)
tempEFLAGS -~ Pop();
EFLAGS ~ (tempEFLAGS AND 257FD5H) OR (EFLAGS AND 1A0000H);
ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits THEN #SS; FlI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP — Pop();
EIP — EIP AND 0000FFFFH;
CS —~ Pop(); (* 16-bit pop *)
EFLAGS[15:0] — Pop();
Fl;
END;

PROTECTED-MODE:
IF VM =1 (* Virtual-8086 mode: PE=1, VM=1 *)
THEN
GOTO RETURN-FROM-VIRTUAL-8086-MODE; (* PE=1, VM=1 *)
Fl;
IFNT=1
THEN
GOTO TASK-RETURN;( *PE=1, VM=0, NT=1 *)
Fl;
IF OperandSize=32
THEN
IF top 12 bytes of stack not within stack limits
THEN #SS(0)

3-322 I



Intel® INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (Continued)

Fl;
tempEIP ~ Pop();
tempCS — Pop();
tempEFLAGS ~ Pop();
ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits
THEN #SS(0);
Fl;
tempEIP ~ Pop();
tempCS « Pop();
tempEFLAGS ~ Pop();
tempEIP ~ tempEIP AND FFFFH;
tempEFLAGS ~ tempEFLAGS AND FFFFH;
Fl;
IF tempEFLAGS(VM) = 1 AND CPL=0
THEN
GOTO RETURN-TO-VIRTUAL-8086-MODE;
(* PE=1, VM=1 in EFLAGS image *)
ELSE
GOTO PROTECTED-MODE-RETURN;
(* PE=1, VM=0 in EFLAGS image *)
Fl;

RETURN-FROM-VIRTUAL-8086-MODE:
(* Processor is in virtual-8086 mode when IRET is executed and stays in virtual-8086 mode *)
IF IOPL=3 (* Virtual mode: PE=1, VM=1, IOPL=3 *)
THEN IF OperandSize = 32

THEN
IF top 12 bytes of stack not within stack limits THEN #SS(0); FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP — Pop();
CS « Pop(); (* 32-bit pop, high-order 16 bits discarded *)
EFLAGS ~ Pop();
(*VM,IOPL,VIP,and VIF EFLAGS bits are not modified by pop *)

ELSE (* OperandSize = 16 *)
IF top 6 bytes of stack are not within stack limits THEN #SS(0); FI;
IF instruction pointer not within code segment limits THEN #GP(0); FI;
EIP — Pop();
EIP ~ EIP AND 0000FFFFH;
CS ~ Pop(); (* 16-bit pop *)
EFLAGS[15:0] « Pop(); (* IOPL in EFLAGS is not modified by pop *)

Fl;

ELSE
#GP(0); (* trap to virtual-8086 monitor: PE=1, VM=1, IOPL<3 *)
Fl;

I 3-323



INSTRUCTION SET REFERENCE Intel ®

IRET/IRETD—Interrupt Return (Continued)

END;

RETURN-TO-VIRTUAL-8086-MODE:
(* Interrupted procedure was in virtual-8086 mode: PE=1, VM=1 in flags image *)
IF top 24 bytes of stack are not within stack segment limits
THEN #SS(0);
FI;
IF instruction pointer not within code segment limits
THEN #GP(0);
Fl;
CS ~ tempCS;
EIP — tempEIP;
EFLAGS — tempEFLAGS
TempESP ~ Pop();
TempSS ~ Pop();
ES — Pop(); (* pop 2 words; throw away high-order word *)
DS < Pop(); (* pop 2 words; throw away high-order word *)
FS < Pop(); (* pop 2 words; throw away high-order word *)
GS ~ Pop(); (* pop 2 words; throw away high-order word *)
SS:ESP —~ TempSS:TempESP;
(* Resume execution in Virtual-8086 mode *)
END;

TASK-RETURN: (* PE=1, VM=0, NT=1 *)
Read segment selector in link field of current TSS;
IF local/global bit is set to local
OR index not within GDT limits
THEN #GP(TSS selector);
Fl;
Access TSS for task specified in link field of current TSS;
IF TSS descriptor type is not TSS or if the TSS is marked not busy
THEN #GP(TSS selector);
FI;
IF TSS not present
THEN #NP(TSS selector);
Fl;
SWITCH-TASKS (without nesting) to TSS specified in link field of current TSS;
Mark the task just abandoned as NOT BUSY;
IF EIP is not within code segment limit
THEN #GP(0);
Fl;
END;

PROTECTED-MODE-RETURN: (* PE=1, VM=0 in flags image *)
IF return code segment selector is null THEN GP(0); FI;
IF return code segment selector addrsses descriptor beyond descriptor table limit

3-324 I



Intel® INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (Continued)

THEN GP(selector; FlI;
Read segment descriptor pointed to by the return code segment selector
IF return code segment descriptor is not a code segment THEN #GP(selector); FI;
IF return code segment selector RPL < CPL THEN #GP(selector); FI;
IF return code segment descriptor is conforming
AND return code segment DPL > return code segment selector RPL
THEN #GP(selector); FI;
IF return code segment descriptor is not present THEN #NP(selector); FI:
IF return code segment selector RPL > CPL
THEN GOTO RETURN-OUTER-PRIVILEGE-LEVEL,;
ELSE GOTO RETURN-TO-SAME-PRIVILEGE-LEVEL
Fl;
END;

RETURN-TO-SAME-PRIVILEGE-LEVEL: (* PE=1, VM=0 in flags image, RPL=CPL *)
IF EIP is not within code segment limits THEN #GP(0); Fl;
EIP — tempEIP;
CS — tempCS; (* segment descriptor information also loaded *)
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) — tempEFLAGS;
IF OperandSize=32
THEN
EFLAGS(RF, AC, ID) ~ tempEFLAGS;

Fl;
IF CPL < IOPL
THEN
EFLAGS(IF) — tempEFLAGS;
Fl;
IFCPL=0
THEN
EFLAGS(IOPL) ~ tempEFLAGS;
IF OperandSize=32
THEN EFLAGS(VM, VIF, VIP) — tempEFLAGS;
FI;
FI;
END;

RETURN-TO-OUTER-PRIVILGE-LEVEL:
IF OperandSize=32
THEN
IF top 8 bytes on stack are not within limits THEN #SS(0); Fl;
ELSE (* OperandSize=16 *)
IF top 4 bytes on stack are not within limits THEN #SS(0); Fl;
FI;
Read return segment selector;
IF stack segment selector is null THEN #GP(0); FI;
IF return stack segment selector index is not within its descriptor table limits

I 3-325



INSTRUCTION SET REFERENCE Intel ®

IRET/IRETD—Interrupt Return (Continued)

THEN #GP(SSselector); FI;
Read segment descriptor pointed to by return segment selector;
IF stack segment selector RPL # RPL of the return code segment selector
IF stack segment selector RPL # RPL of the return code segment selector
OR the stack segment descriptor does not indicate a a writable data segment;
OR stack segment DPL # RPL of the return code segment selector
THEN #GP(SS selector);
Fl;
IF stack segment is not present THEN #SS(SS selector); Fl;
IF tempEIP is not within code segment limit THEN #GP(0); FI;
EIP — tempEIP;
CS ~ tempCS;
EFLAGS (CF, PF, AF, ZF, SF, TF, DF, OF, NT) — tempEFLAGS;
IF OperandSize=32
THEN
EFLAGS(RF, AC, ID) — tempEFLAGS;

FI;
IF CPL < I0PL
THEN
EFLAGS(IF) ~ tempEFLAGS;
Fl;
IFCPL=0
THEN
EFLAGS(IOPL) — tempEFLAGS;
IF OperandSize=32
THEN EFLAGS(VM, VIF, VIP) — tempEFLAGS;
Fl;
FI;

CPL —~ RPL of the return code segment selector;
FOR each of segment register (ES, FS, GS, and DS)
DO;
IF segment register points to data or non-conforming code segment
AND CPL > segment descriptor DPL (* stored in hidden part of segment register *)
THEN (* segment register invalid *)
SegmentSelector — 0O; (* null segment selector *)
FI;
OD;
END:

Flags Affected

All theflags and fieldsin the EFL AGS register are potentially modified, depending on the mode

of operation of the processor. If performing a return from a nested task to a previous task, the
EFLAGS register will be modified according to the EFLAGS image stored in the previous task’s
TSS.

3-326 I



intal.

INSTRUCTION SET REFERENCE

IRET/IRETD—Interrupt Return (Continued)

Protected Mode Exceptions

#GP(0)

#GP(selector)

#55(0)
#NP(selector)
#PF(fault-code)
#AC(0)

If the return code or stack segment selector is null.

If the return instruction pointer is not within the return code segment limit.
If a segment selector index is outside its descriptor table limits.

If the return code segment selector RPL is greater than the CPL.

If the DPL of a conforming-code segment is greater than the return code
segment selector RPL.

If the DPL for a nonconforming-code segment is not equal to the RPL of
the code segment selector.

If the stack segment descriptor DPL is not equal to the RPL of the return
code segment selector.

If the stack segment is not awritable data segment.

If the stack segment selector RPL is not equal to the RPL of thereturn code
segment selector.

If the segment descriptor for a code segment does not indicate it is a code
segment.

If the segment selector for a TSS hasits local/global bit set for local.

If aTSS segment descriptor specifiesthat the TSSis busy or not available.
If the top bytes of stack are not within stack limits.

If the return code or stack segment is not present.

If a page fault occurs.

If an unaligned memory reference occurswhen the CPL is3 and alignment
checking is enabled.

Real-Address Mode Exceptions

#GP
#SS

If the return instruction pointer is not within the return code segment limit.

If the top bytes of stack are not within stack limits.

3-327



INSTRUCTION SET REFERENCE Intel ®

IRET/IRETD—Interrupt Return (Continued)

Virtual-8086 Mode Exceptions

#GP(0) If the return instruction pointer is not within the return code segment limit.
IF IOPL not equal to 3

#PF(fault-code) If apage fault occurs.

#SS(0) If the top bytes of stack are not within stack limits.

#AC(0) If :t:; e(ljnal igned memory reference occurs and alignment checking is
en .

3-328 I



intal.

Jcc—Jump if Condition Is Met

INSTRUCTION SET REFERENCE

Opcode

77 cb

73 c¢cb

72 cb

76 cb

72 cb

E3 cb

E3 cb

74 cb

7F cb

7D cb
7Ccb

7E cb

76 cb

72 cb

73 c¢cb

77 cb

73 c¢cb

75 ¢cb

7E cb
7Ccb

7D cb

7F cb

71 cb

7B ch

79 cb

75 ¢cb

70 cb

7A cb

7A cb

7B ch

78 cb

74 cb

OF 87 cw/cd
OF 83 cw/cd
OF 82 cw/cd
OF 86 cw/cd
OF 82 cw/cd

Instruction
JA rel8
JAE rel8
JB rel8
JBE rel8
JC rel8
JCXZ rel8
JECXZ rel8
JE rel8

JG rel8
JGE rel8
JL rel8

JLE rel8
JINA rel8
JNAE rel8
JNB rel8
JNBE rel8
JNC rel8
JNE rel8
JING rel8
JINGE rel8
JNL rel8
JNLE rel8
JNO rel8
JINP rel8
JINS rel8
JINZ rel8
JO rel8

JP rel8
JPE rel8
JPO rel8
JS rel8

JZ rel8

JA rel16/32
JAE rel16/32
JB rel16/32
JBE rel16/32
JC rel16/32

Description

Jump short if above (CF=0 and ZF=0)

Jump short if above or equal (CF=0)

Jump short if below (CF=1)

Jump short if below or equal (CF=1 or ZF=1)
Jump short if carry (CF=1)

Jump short if CX register is 0

Jump short if ECX register is 0

Jump short if equal (ZF=1)

Jump short if greater (ZF=0 and SF=0F)
Jump short if greater or equal (SF=OF)
Jump short if less (SF<>OF)

Jump short if less or equal (ZF=1 or SF<>0F)
Jump short if not above (CF=1 or ZF=1)
Jump short if not above or equal (CF=1)
Jump short if not below (CF=0)

Jump short if not below or equal (CF=0 and ZF=0)
Jump short if not carry (CF=0)

Jump short if not equal (ZF=0)

Jump short if not greater (ZF=1 or SF<>0F)
Jump short if not greater or equal (SF<>OF)
Jump short if not less (SF=0OF)

Jump short if not less or equal (ZF=0 and SF=0F)
Jump short if not overflow (OF=0)

Jump short if not parity (PF=0)

Jump short if not sign (SF=0)

Jump short if not zero (ZF=0)

Jump short if overflow (OF=1)

Jump short if parity (PF=1)

Jump short if parity even (PF=1)

Jump short if parity odd (PF=0)

Jump short if sign (SF=1)

Jump short if zero (ZF = 1)

Jump near if above (CF=0 and ZF=0)

Jump near if above or equal (CF=0)

Jump near if below (CF=1)

Jump near if below or equal (CF=1 or ZF=1)
Jump near if carry (CF=1)

3-329




INSTRUCTION SET REFERENCE Intel ®

Jcc—Jump if Condition Is Met (Continued)

Opcode Instruction Description
OF 84 cw/cd JE rel16/32 Jump near if equal (ZF=1)
OF 8F cw/cd JG rel16/32 Jump near if greater (ZF=0 and SF=0OF)
OF 8D cw/cd JGE rel16/32 Jump near if greater or equal (SF=0OF)
OF 8C cw/cd JL rel16/32 Jump near if less (SF<>0F)
OF 8E cw/cd JLE rel16/32 Jump near if less or equal (ZF=1 or SF<>O0F)
OF 86 cw/cd JINA rel16/32 Jump near if not above (CF=1 or ZF=1)
OF 82 cw/cd JINAE rel16/32 Jump near if not above or equal (CF=1)
OF 83 cw/cd JNB rel16/32 Jump near if not below (CF=0)
OF 87 cw/cd JNBE rel16/32 Jump near if not below or equal (CF=0 and ZF=0)
OF 83 cw/cd JINC rel16/32 Jump near if not carry (CF=0)
OF 85 cw/cd JINE rel16/32 Jump near if not equal (ZF=0)
OF 8E cw/cd JING rel16/32 Jump near if not greater (ZF=1 or SF<>OF)
OF 8C cw/cd JINGE rel16/32 Jump near if not greater or equal (SF<>OF)
OF 8D cw/cd JINL rel16/32 Jump near if not less (SF=0OF)
OF 8F cw/cd JINLE rel16/32 Jump near if not less or equal (ZF=0 and SF=0F)
OF 81 cw/cd JNO rel16/32 Jump near if not overflow (OF=0)
OF 8B cw/cd JINP rel16/32 Jump near if not parity (PF=0)
OF 89 cw/cd JINS rel16/32 Jump near if not sign (SF=0)
OF 85 cw/cd JINZ rel16/32 Jump near if not zero (ZF=0)
OF 80 cw/cd JO rel16/32 Jump near if overflow (OF=1)
OF 8A cw/cd JP rel16/32 Jump near if parity (PF=1)
OF 8A cw/cd JPE rel16/32 Jump near if parity even (PF=1)
OF 8B cw/cd JPO rel16/32 Jump near if parity odd (PF=0)
OF 88 cw/cd JS rel16/32 Jump near if sign (SF=1)
OF 84 cw/cd JZ rel16/32 Jump near if 0 (ZF=1)
Description

This instruction checks the state of one or more of the status flags in the EFLAGS register (CF,
OF, PF, SF, and ZF) and, if the flags are in the specified state (condition), performs ajump to the
target instruction specified by the destination operand. A condition code (cc) is associated with
each instruction to indicate the condition being tested for. If the condition is not satisfied, the
jump is not performed and execution continues with the instruction following the Jcc instruc-
tion.

3-330 I



Intel® INSTRUCTION SET REFERENCE

Jcc—Jump if Condition Is Met (Continued)

The target instruction is specified with a relative offset (a signed offset relative to the current

value of the instruction pointer in the EIP register). A relative offset (rel8, rel16, or rel32) is
generally specified asalabel in assembly code, but at the machine code level, it isencoded asa

signed, 8-hit or 32-bit immediate value, which is added to the instruction pointer. Instruction

coding is most efficient for offsets of —128 to +127. If the operand-size attribute is 16, the upper
two bytes of the EIP register are cleared to 0s, resulting in a maximum instruction pointer size
of 16 bits.

The conditions for eaclttdmnemonic are given in the “Description” column of the table on the
preceding page. The terms “less” and “greater” are used for comparisons of signed integers and
the terms “above” and “below” are used for unsigned integers.

Because a particular state of the status flags can sometimes be interpreted in two ways, two
mnemonics are defined for some opcodes. For example, the JA (jump if above) instruction and
the JNBE (jump if not below or equal) instruction are alternate mnemonics for the opcode 77H.

The &cinstruction does not support far jumps (jumps to other code segments). When the target
for the conditional jump is in a different segment, use the opposite condition from the condition
being tested for thecd instruction, and then access the target with an unconditional far jump
(JMP instruction) to the other segment. For example, the following conditional far jump is
illegal:

JZ FARLABEL,
To accomplish this far jump, use the following two instructions:

JNZ BEYOND;
JMP FARLABEL,
BEYOND:

The JECXZ and JCXZ instructions differs from the otleeridstructions because they do not
check the status flags. Instead they check the contents of the ECX and CX registers, respectively,
for 0. Either the CX or ECX register is chosen according to the address-size attribute. These
instructions are useful at the beginning of a conditional loop that terminates with a conditional
loop instruction (such as LOOPNE). They prevent entering the loop when the ECX or CX
register is equal to 0, which would cause the loop to exeétir B4K times, respectively,
instead of zero times.

All conditional jumps are converted to code fetches of one or two cache lines, regardless of jump
address or cacheability.

I 3-331



INSTRUCTION SET REFERENCE Intel ®

Jcc—Jump if Condition Is Met (Continued)

Operation

IF condition
THEN
EIP — EIP + SignExtend(DEST);
IF OperandSize = 16
THEN
EIP — EIP AND 0000FFFFH;
FI;
Fl;

Flags Affected

None.

Protected Mode Exceptions
#GP(0) If the offset being jumped to is beyond the limits of the CS segment.

Real-Address Mode Exceptions

#GP If the offset being jumped to is beyond the limits of the CS segment or is
outside of the effective address space from 0 to FFFFH. This condition can
occur if 32-address size override prefix is used.

Virtual-8086 Mode Exceptions

#GP(0) If the offset being jJumped to is beyond the limits of the CS segment or is
outside of the effective address space from 0 to FFFFH. This condition can
occur if 32-address size override prefix is used.

3-332 I



Intel® INSTRUCTION SET REFERENCE

JMP—Jump
Opcode Instruction Description
EB cb JMP rel8 Jump short, relative, displacement relative to next instruction
E9 cw JMP rell6 Jump near, relative, displacement relative to next instruction
E9 cd JMP rel32 Jump near, relative, displacement relative to next instruction
FF /4 JMP r/m16 Jump near, absolute indirect, address given in /m16
FF /4 JMP r/m32 Jump near, absolute indirect, address given in /m32
EA cd JMP ptr16:16 Jump far, absolute, address given in operand
EA cp JMP ptr16:32 Jump far, absolute, address given in operand
FF /5 JMP m16:16 Jump far, absolute indirect, address given in m16:16
FF /5 JMP m16:32 Jump far, absolute indirect, address given in m16:32
Description

This instruction transfers program control to a different point in the instruction stream without
recording return information. The destination (target) operand specifies the address of the
instruction being jumped to. This operand can be an immediate value, a general-purpose
register, or amemory location.

Thisinstruction can be used to execute four different types of jumps:

® Near jump—A jump to an instruction within the current code segment (the segment
currently pointed to by the CS register), sometimes referred to as an intrasegment jump.

® Short jump—A near jump where the jump range is limited to —128 to +127 from the
current EIP value.

® Far jump—A jump to an instruction located in a different segment than the current code
segment but at the same privilege level, sometimes referred to as an intersegment jump.

® Task switch—A jump to an instruction located in a different task.

A task switch can only be executed in protected mode. Refer to Chapask §janagement,
of the Intel Architecture Software Developer’s Manual, Volumef@ information on
performing task switches with the IMP instruction.

Near and Short Jumps. When executing a near jump, the processor jumps to the address
(within the current code segment) that is specified with the target operand. The target operand
specifies either an absolute offset (that is an offset from the base of the code segment) or arela-
tive offset (a signed displacement relative to the current value of the instruction pointer in the
EIP register). A near jJump to arelative offset of 8-bits (rel8) is referred to as a short jump. The
CSregister is not changed on near and short jumps.

An absolute offset is specified indirectly in a general-purpose register or a memory location
(rfm16or r/m32). The operand-size attribute determines the size of the target operand (16 or 32
bits). Absolute offsets are loaded directly into the EIP register. If the operand-size attribute is
16, the upper two bytes of the EIP register are cleared to Os, resulting in a maximum instruction
pointer size of 16 bits.

I 3-333



INSTRUCTION SET REFERENCE Intel ®

JMP—Jump (Continued)

A relative offset (rel8, rel16, or rel32) is generally specified as alabel in assembly code, but at
the machine code level, it is encoded as asigned 8-, 16-, or 32-bit immediate value. This value
is added to the value in the EIP register. (Here, the EIP register contains the address of the
instruction following the IM P instruction). When using rel ative offsets, the opcode (for short vs.
near jJumps) and the operand-size attribute (for near relative jumps) determines the size of the
target operand (8, 16, or 32 bits).

Far Jumps in Real-Address or Virtual-8086 Mode. When executing a far jump in real-
address or virtual-8086 mode, the processor jumpsto the code segment and offset specified with
the target operand. Here the target operand specifies an absolute far address either directly with
apointer (ptr16:16 or ptr16:32) or indirectly with amemory location (m16: 16 or m16:32). With
the pointer method, the segment and address of the called procedure is encoded in the instruc-
tion, using a4-byte (16-bit operand size) or 6-byte (32-bit operand size) far address immediate.
With the indirect method, the target operand specifies amemory location that contains a 4-byte
(16-bit operand size) or 6-byte (32-bit operand size) far address. The far address is loaded
directly into the CS and EIP registers. If the operand-size attribute is 16, the upper two bytes of
the EIP register are cleared to Os.

Far Jumps in Protected Mode. When the processor is operating in protected mode, the IMP
instruction can be used to perform the following three types of far jumps:

® A far jump to aconforming or non-conforming code segment.

* A far jump through acall gate.

® A task switch.

(The IMP instruction cannot be used to perform interprivilege level far jumps.)

In protected mode, the processor always uses the segment selector part of the far address to
access the corresponding descriptor inthe GDT or LDT. The descriptor type (code segment, call
gate, task gate, or TSS) and access rights determine the type of jump to be performed.

If the selected descriptor isfor a code segment, afar jump to a code segment at the same privi-
legelevel isperformed. (If the selected code segment isat adifferent privilegelevel and the code
segment is non-conforming, ageneral -protection exception isgenerated.) A far jump to the same
privilege level in protected modeisvery similar to one carried out in real-address or virtual-8086
mode. The target operand specifies an absolute far address either directly with a pointer
(ptr16:16 or ptr16:32) or indirectly with amemory location (m16: 16 or m16:32). The operand-
size attribute determines the size of the offset (16 or 32 hits) in the far address. The new code
segment sel ector and its descriptor are loaded into CSregister, and the offset from theinstruction
isloaded into the EI P register. Note that a call gate (described in the next paragraph) can also be
used to perform far call to a code segment at the same privilege level. Using this mechanism
provides an extralevel of indirection and isthe preferred method of making jumps between 16-
bit and 32-bit code segments.

3-334 I



Intel® INSTRUCTION SET REFERENCE

JMP—Jump (Continued)

When executing a far jump through a call gate, the segment selector specified by the target
operand identifiesthe call gate. (The offset part of the target operand isignored.) The processor
then jumps to the code segment specified in the call gate descriptor and begins executing the
instruction at the offset specified in the call gate. No stack switch occurs. Here again, the target
operand can specify the far address of the call gate either directly with a pointer (ptr16:16 or
ptr16:32) or indirectly with amemory location (m16:16 or m16:32).

Executing a task switch with the IMP instruction, is somewhat similar to executing a jump

through a call gate. Here the target operand specifies the segment selector of the task gate for

the task being switched to (and the offset part of the target operand isignored). Thetask gatein

turn points to the TSS for the task, which contains the segment selectors for the task’s code and
stack segments. The TSS also contains the EIP value for the next instruction that was to be
executed before the task was suspended. This instruction pointer value is loaded into EIP
register so that the task begins executing again at this next instruction.

The JMP instruction can also specify the segment selector of the TSS directly, which eliminates
the indirection of the task gate. Refer to Chaptdiagk Management, of thelntel Architecture
Software Developer’s Manual, Volumef8r detailed information on the mechanics of a task

switch.

Note that when you execute at task switch with a IMP instruction, the nested task flag (NT) is

not set in the EFLAGS register and the new TSS’s previous task link field is not loaded with the
old task’s TSS selector. A return to the previous task can thus not be carried out by executing
the IRET instruction. Switching tasks with the JMP instruction differs in this regard from the
CALL instruction which does set the NT flag and save the previous task link information,
allowing a return to the calling task with an IRET instruction.

I 3-335



INSTRUCTION SET REFERENCE Intel ®

JMP—Jump (Continued)

Operation

IF near jump
THEN IF near relative jump
THEN
tempEIP ~ EIP + DEST; (* EIP is instruction following JMP instruction*)
ELSE (* near absolute jump *)
tempEIP —~ DEST;
FI;
IF tempEIP is beyond code segment limit THEN #GP(0); FI;
IF OperandSize = 32
THEN
EIP — tempEIP;
ELSE (* OperandSize=16 *)
EIP — tempEIP AND 0000FFFFH;
Fl;
Fl:

IF far jump AND (PE = 0 OR (PE =1 AND VM = 1)) (* real-address or virtual-8086 mode *)
THEN
tempEIP — DEST(offset); (* DEST is ptr16:32 or [m16:32] *)
IF tempEIP is beyond code segment limit THEN #GP(0); FI;
CS — DEST(segment selector); (* DEST is ptr16:32 or [m16:32] *)
IF OperandSize = 32
THEN
EIP — tempEIP; (* DEST is ptr16:32 or [m16:32] *)
ELSE (* OperandSize = 16 *)
EIP — tempEIP AND 0000FFFFH; (* clear upper 16 bits *)
Fl;
Fl;
IF far jump AND (PE = 1 AND VM = 0) (* Protected mode, not virtual-8086 mode *)
THEN
IF effective address in the CS, DS, ES, FS, GS, or SS segment is illegal
OR segment selector in target operand null
THEN #GP(0);
Fl;
IF segment selector index not within descriptor table limits
THEN #GP(new selector);
FI;
Read type and access rights of segment descriptor;
IF segment type is not a conforming or nonconforming code segment, call gate,
task gate, or TSS THEN #GP(segment selector); Fl;
Depending on type and access rights
GO TO CONFORMING-CODE-SEGMENT;
GO TO NONCONFORMING-CODE-SEGMENT;

3-336 I



Intel® INSTRUCTION SET REFERENCE

JMP—Jump (Continued)

GO TO CALL-GATE;
GO TO TASK-GATE;
GO TO TASK-STATE-SEGMENT,;
ELSE
#GP(segment selector);
Fl;

CONFORMING-CODE-SEGMENT:
IF DPL > CPL THEN #GP(segment selector); FI;
IF segment not present THEN #NP(segment selector); Fl;
tempEIP — DEST(offset);
IF OperandSize=16
THEN tempEIP — tempEIP AND 0000FFFFH;
Fl;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS — DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) — CPL
EIP — tempEIP;
END;

NONCONFORMING-CODE-SEGMENT:
IF (RPL > CPL) OR (DPL # CPL) THEN #GP(code segment selector); FI;

IF segment not present THEN #NP(segment selector); FI;
IF instruction pointer outside code segment limit THEN #GP(0); FI;
tempEIP — DEST(offset);
IF OperandSize=16
THEN tempEIP ~ tempEIP AND 0000FFFFH;
Fl;
IF tempEIP not in code segment limit THEN #GP(0); FI;
CS — DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) ~ CPL
EIP — tempEIP;
END;

CALL-GATE:
IF call gate DPL < CPL
OR call gate DPL < call gate segment-selector RPL
THEN #GP(call gate selector); FI;
IF call gate not present THEN #NP(call gate selector); FI;
IF call gate code-segment selector is null THEN #GP(0); FlI;
IF call gate code-segment selector index is outside descriptor table limits
THEN #GP(code segment selector); Fl;
Read code segment descriptor;

3-337



INSTRUCTION SET REFERENCE Intel ®

JMP—Jump (Continued)

IF code-segment segment descriptor does not indicate a code segment
OR code-segment segment descriptor is conforming and DPL > CPL
OR code-segment segment descriptor is non-conforming and DPL # CPL
THEN #GP(code segment selector); Fl;
IF code segment is not present THEN #NP(code-segment selector); Fl;
IF instruction pointer is not within code-segment limit THEN #GP(0); FlI;
tempEIP —~ DEST(offset);
IF GateSize=16
THEN tempEIP ~ tempEIP AND 0000FFFFH;
FI;
IF tempEIP not in code segment limit THEN #GP(0); FlI;
CS — DEST(SegmentSelector); (* segment descriptor information also loaded *)
CS(RPL) ~ CPL
EIP — tempEIP;
END;

TASK-GATE:
IF task gate DPL < CPL
OR task gate DPL < task gate segment-selector RPL
THEN #GP(task gate selector); Fl;
IF task gate not present THEN #NP(gate selector); Fl;
Read the TSS segment selector in the task-gate descriptor;
IF TSS segment selector local/global bit is set to local
OR index not within GDT limits
OR TSS descriptor specifies that the TSS is busy
THEN #GP(TSS selector); FI;
IF TSS not present THEN #NP(TSS selector); Fl;
SWITCH-TASKS to TSS;
IF EIP not within code segment limit THEN #GP(0); FlI;
END;

TASK-STATE-SEGMENT:
IF TSS DPL < CPL
OR TSS DPL < TSS segment-selector RPL
OR TSS descript