
Project 2: Preemption and Alarms

CS 414 / CS 415

Niranjan Nagarajan
Department of Computer Science

Cornell University
niranjan@cs.cornell.edu



What’s the agenda?

• Add Preemption

• Add Alarms

• Implement minithread sleep with timeout

• Replace FCFS with multilevel feedback scheduler



How to add Preemption

• Write a clock interrupt handler

– Updates time

– Schedules the next thread

• Install clock interrupt handler

• Start scheduling threads



How to add Preemption: what to use

• Interrupts.h

#define PERIOD 100*MILLISECOND
extern long ticks;
typedef void (*interrupt_handler_t) (void*);

typedef int interrupt_level_t;
#define ENABLED 1
#define DISABLED 0

interrupt_level_t set_interrupt_level(interrupt_level_t newlevel);

void minithread_clock_init(interrupt_handler_t clock_handler);

• Define void clock handler(void*) in minithread.c



How to add Preemption: how it would work

• Initially interrupts are disabled

• Interrupt handler is installed during system initialization

• Clock interrupts are enabled by minithread switch

• Interrupt Processing

– Arrive on the stack of the running thread

– State saved on the current stack and handler is called

– On return the state is restored



Interrupt Handling Care

• Shouldn’t take too long (no printf’s)

• Extra precaution if using

– Spin Locks (Why?)

– Blocking (for example through a P)



Protecting Critical Sections

• May need to use set interrupt level(DISABLED) to
disable interrupts before modifying system data

• Interrupts should be disabled for as short a period of time as
possible

• Interrupts should be re-enabled before returning control to
application code



Alarms

• Need to implement

int register_alarm(int delay, void (*func)(void*), void *arg);
void deregister_alarm(int alarmid);

• Keep track of time using ticks

• The function func needs to be called with arg as argument
sometime after delay milliseconds have gone by

• register alarm returns an alarm id that can be used with
deregister alarm to deregister the alarm



Thread Sleep

• On calling minithread sleep with timeout(delay) thread
should sleep for delay milliseconds and become available
for scheduling sometime after delay milliseconds have passed

• Use the alarm functions to implement this

• Advice: Use semaphores instead of explicit stops and starts



Multilevel Feedback Scheduler

• Implement multilevel queues using queues

typedef void* multilevel_queue_t;
multilevel_queue_t multilevel_queue_new(int number_of_levels);
int multilevel_queue_enqueue(multilevel_queue_t q, int level, any_t item);
int multilevel_queue_dequeue(multilevel_queue_t q, int level, any_t *item);
int multilevel_queue_free(multilevel_queue_t q);

• Add priorities to minithreads and enqueue them based on
priority.

• Ageing policy: Time-slice between the various levels for the
search for the next thread to schedule


