
1

Security Attacks & Defenses

Emin Gun Sirer

Outline

• Attack Nomenclature
– Trojan horses, login spoofers, logic bombs, trap doors,

viruses, worms, buffer overflows, DoS, protocol
attacks, etc.

• Defense mechanisms
– Firewalls, virus scanners, integrity checkers, intrusion

detection
• Mobile code

– Software fault isolation
– Safe interpreters
– Language-based protection
– PCC

Trojan Horses

• A malicious program disguised as an innocent
one

• Login spoofers are a specialized class of
Trojan horses
– Can be circumvented by requiring an operation

that unprivileged programs cannot perform
– E.g. Start login sequence with a key combination

user programs cannot catch, CTRL+ALT+DEL on
Windows

Logic Bombs and Trapdoors

• Hidden, out-of-spec code to go off in the future when certain
conditions are met

• In one case, program checked payroll records for two consecutive periods

• Attacked company has the option of calling the police or
hiring the perpetrator as a “consultant”

• Sometimes propagated by companies to ensure steady income stream in
the future

• A classic trapdoor attack by Ken Thompson, “Trusting Trust”
– Attack code places a trapdoor in a system utility
– Attack code places a trapdoor in the system compiler to go off when

recompiling the utility
– Attack code places a trapdoor in the compiler to go off when

recompiling the compiler

2

Viruses and Worms

• Viruses: passive code attached to other programs
– E.g. a program that modifies MS Word

• Worms: code that actively replicates itself and does not depend
on the execution of another program to spread
– E.g. the Internet worm

• Buffer overflow
– C string libraries are hard to use correctly, easy to allow outsiders to

write outside string bounds
– Most OS code is written in C, ergo many systems have vulnerabilities
– If a string is stored on the stack, someone can modify the behavior of a

program by going off the end of the string and changing a return address
stored on stack

Denial of service

• Client sends a legitimate-looking request for service to a
service provider

• Service provider commits the necessary resources to provide
the service
– Ports, buffer space, bandwidth

• The resources are wasted, legitimate users get diminished
service
– Usually launched from many computers controlled by attackers

• Possible whenever the cost to ask for service is far cheaper
than the cost of providing it
– Challenge-response mechanism, selective packet tagging

Other Attacks

• Protocol Attacks
– Attacks on vulnerabilities in security protocols
– Often based on a formal, abstract model of the

security protocol and its implementation
– E.g. 802.11b security

• Brute force attacks

Security Enforcement

• Need tools to reduce the exposure of systems to
security attacks

• Firewall: a router that restricts network traffic to
those flows that fit a security policy
– E.g. “no incoming mail except to mailhost,” “no

fingerd,” “no TCP unless initiated internally”
• Firewall protects against bad packets

– Instead of protecting every machine on the network,
need only protect one firewall on the perimeter

• Many attacks are at a higher level than bad packets

3

Virus Scanners

• Scan the static program images on disk to check if they contain
viruses

• Viruses have well-known signatures and modes of behavior
– A virus could encrypt the malicious code, but needs an unencrypted

section to decrypt it – look for decryptor
– A virus could mutate the decryption engine to avoid discovery – perform

fuzzy search for polymorphic viruses
• Many public databases contain information on virus behavior,

scanners compare what’s on the disk against the database
– Performance an issue, not effective for worms

• E.g. McAffee

Integrity Checkers

• Instead of looking for viruses, look for change
– Compute a checksum for every program on disk
– Encrypt the checksums, store on disk
– Recompute checksums, compare

• It’s ok for some files and directories to change
– A policy language can specify what is ok what is not
– In general, difficult to differentiate benign changes from

malicious ones
– Can lead to false alarms

• E.g. Tripwire

Lures

• Place a dedicated machine on the network
• Populate it with synthetic users and data

– Make sure it looks exciting
• Raise a red flag as soon as someone gets into the

dedicated machine
– Well-publicized cases involving crackers with KGB ties

• Pros
• Early warning system

• Cons
• Can be a stepping stone to other machines
• Requires management and administration
• Legality not clear, can be considered entrapment

Intrusion Detection

• Examine the behavior of programs, alert someone
if they are “not behaving well”
– Difficult to define
– Some schemes require specifying the range of system

calls a program may perform
– Some schemes use machine learning techniques to

derive a profile from a known-to-be-good system
– Some schemes use static program analysis to determine

the range of behavior possible
• In the limit, encompasses all of machine learning

– Simple schemes can be effective, esp. against worms
– False alarms

4

Summary of attacks and defenses

• Many different types of attacks possible
– Some clever, most not

• Standard techniques, i.e. secure OS design with
secure reference monitors, can fail

• Can reduce risks and exposure with firewalls
• Can locate security breaches with virus scanners,

signature checkers, intrusion detection tools
– Emerging field with many opportunities

Mobile Code

• Shipping computation from one host to another is a
very useful paradigm
– Applets: programs can be more compact than equivalent

data, can interact with user with low latency
• Can be used for complex GUIs, page description languages, etc.

– Agents: program acting on behalf of a user, can interact
with its environment with low latency

• Can be used for data collection (e.g. price comparison), load-
balancing, long-lived computing tasks

– Servlets, ASPs: code submitted by clients that would like
to run in the context of a larger software system

• Web servers, rent-a-server, database systems, etc.

Problems

• Mobile code is invaluable in building extensible
systems

• But in general, running code provided by someone
else poses a security risk

• Could place every extension in a separate
hardware address space
– The code could perform any read, write, jump operation

and the MMU would catch any missteps
– The OS could catch every system call and direct

through a reference monitor
– BUT, the extension code typically must run in the same

protection domain as the base system to be useful

Mobile Code Protection

• Can we place extension code in the same address
space as the base system, yet remain secure ?
– Imagine how an app can modify the paging policy the

OS uses for its pages

• Many techniques have been proposed
– SFI
– Safe interpreters
– Language-based protection
– PCC

5

SFI

• Control what the application can do by
managing the instruction stream

• Software fault isolation (SFI)
• Assign a range of contiguous addresses to each

extension
• Rewrite the extension’s code segment, inserting

checks before every read, write and jump to ensure
that it is legitimate

• Checks can be cheap
• Need only recompute address and perform range

check, 3-7 instructions

SFI Loads and Stores

• Every load and store is
preceded by the check that
the hardware would have
done

• Dedicate two general
purpose registers to hold
the base and limit

• Modern processors have
extra stall cycles during
which the checks can be
performed

base limit

extension

…
LDQ R1, 34(R2)
…

SFI’ed extension

…
ADD R0, 34, R2
SUBU R0, R0, R14
BLT R0, R15, error
LDQ R1, 34(R2)
…

LDQ R14, BASE
LDQ R15, LIMIT
…

SFI control flow

• An extension should only be able to jump to
well-defined entry points in the system

• Restrict control flow to indirect jumps off of
a table

SFI

• Hard to share data
– Must still be copied from one extension’s

memory range into another’s

• Performance problems
– The checks extract a high penalty

• Hard to scale to large numbers of extensions

6

Safe Interpreters

• Restrict code to an interpreted language
– E.g. telescript, python, perl, tcl, etc…

• The application must go through interpreter
for execution
– The interpreter can enforce security checks at

any instruction, the application does not have
direct access to hardware

• Slow

Language-based Typesafety

• Constrain the vocabulary of the extensions to a
subset of safe instruction sequences
– Force the programmer to use a language that cannot

express unsafe operations
• Many instances

– Imperative: Java, Modula-3, Limbo
– Functional: ML, O’caml, Haskell
– Domain-specific: BPF

• Use a verifier to check statically that extensions
will not violate safety at runtime

Verification

• Verifier is a specialized theorem-
prover
– System safety depends on axioms such

as “thou shalt not create arbitrary
pointers through pointer arithmetic”

– Verifier simulates all possible
executions of the program, making
conservative assumptions

– Checks for violation of safety axioms

PUSH 13

PUSH 15
ADDI

PUSH ref
ADDI

…

PCC

• Proof-carrying code
• Extension peresents a certificate that it is safe w.r.t. a

safety policy
– Certificate is a proof in first-order logic
– The proof is linked to the code
– The recipient evaluates the proof to check if the safety

condition holds over the program

• Details beyond scope of this OS course
– See courses by Prof. Morisett and Prof. Kozen

