
1

1

Distributed-File Systems

• Background

• Naming and Transparency

• Stateful versus Stateless Service

• NFS

• AFS

2

Background

• Distributed file system – a distributed implementation of a file
system, where multiple users share files and storage
resources.

• A DFS manages set of dispersed storage devices

• Overall storage space managed by a DFS is composed of
different, remotely located, smaller storage spaces.

• There is usually a correspondence between constituent storage
spaces and sets of files.

3

DFS Structure

• Service – software entity running on one or more machines and
providing a particular type of function to a priori unknown
clients.

• Server – service software running on a single machine.

• Client – process that can invoke a service using a set of
operations that forms its client interface.

• A client interface for a file service is formed by a set of primitive
file operations (create, delete, read, write).

4

Naming and Transparency

• Naming – mapping between logical and physical objects

• Ideally, client interface should be transparent, i.e., not
distinguish between local and remote files

– In practice, this is not always possible
– More complicated failure modes, different design goals

sometimes motivate a different interface

• A transparent DFS hides the location where in the network the
file is stored.

– There is a binding from file f to server s
– Either static or dynamic
– S is possibly a set, for replicated files

2

5

Naming Structures

• Location transparency – file name does not reveal the file’s
physical storage location.

– File name still denotes a specific, although hidden, set of
physical disk blocks.

– Convenient way to share data.
– Can expose correspondence between component units

and machines.

• Location independence – file name does not need to be
changed when the file’s physical storage location changes.

– Better file abstraction.
– Promotes sharing the storage space itself.
– Separates the naming hierarchy form the storage-devices

hierarchy.

6

Naming Schemes — Three Main Approaches

• Files named by combination of their host name and local name;
guarantees a unique systemwide name.

• Attach remote directories to local directories, giving the
appearance of a coherent directory tree; only previously
mounted remote directories can be accessed transparently

• Total integration of the component file systems.
– A single global name structure spans all the files in the

system.
– If a server is unavailable, some arbitrary set of directories

on different machines also becomes unavailable. .

7

Caching

• Reduce network traffic by retaining recently accessed disk
blocks in a cache, so that repeated accesses to the same
information can be handled locally.

– If needed data not already cached, a copy of data is
brought from the server to the user.

– Accesses are performed on the cached copy.
– Files identified with one master copy residing at the server

machine, but copies of (parts of) the file ar scattered in
different caches.

– Cache-consistency problem – keeping the cached copies
consistent with the master file.

8

Location – Disk Caches vs. Main Memory Cache

• Advantages of disk caches
– More reliable.
– Cached data kept on disk are still there during recovery

and don’t need to be fetched again.

• Advantages of main-memory caches:
– Permit workstations to be diskless.
– Data can be accessed more quickly.
– Performance speedup in bigger memories.
– Server caches (used to speed up disk I/O) are in main

memory regardless of where user caches are located;
using main-memory caches on the user machine permits
a single caching mechanism for servers and users.

3

9

Cache Placement

• Two locations for a cache
– In the client
– In the server

• Client caches can reduce network traffic:
– Read-only operations on unchanged files do not need to

go over the network

• Server caches can reduce server load:
– Cache is amortized across all clients (but needs to be

bigger to be effective)

• In practice, need both kinds of caches

10

Cache Update Policy

• Write-through – write data through to disk as soon as they are
placed on any cache. Reliable, but poor performance.

• Delayed-write – modifications written to the cache and then
written through to the server later. Write accesses complete
quickly; some data may be overwritten before they are written
back, and so need never be written at all.

– Poor reliability; unwritten data will be lost whenever a user
machine crashes.

– Variation – scan cache at regular intervals and flush
blocks that have been modified since the last scan.

– Variation – write-on-close, writes data back to the server
when the file is closed. Best for files that are open for
long periods and frequently modified.

11

Consistency

• Is locally cached copy of the data consistent with the master
copy?

• Client-initiated approach
– Client initiates a validity check.
– Server checks whether the local data are consistent with

the master copy.

• Server-initiated approach
– Server records, for each client, the (parts of) files it

caches.
– When server detects a potential inconsistency, it must

react.

12

Stateful File Service

• Mechanism.
– Client opens a file.
– Server fetches information about the file from its disk,

stores it in its memory, and gives the client a connection
identifier unique to the client and the open file.

– Identifier is used for subsequent accesses until the
session ends.

• Increased performance.
– Fewer disk accesses
– Stateful server knows if a file was opened for sequential

access and can thus read ahead the next blocks
– RPCs are small, contain only an identifier
– File may be cached entirely on the client, invalidated by

the server if there is a conflicting write

4

13

Stateless File Server

• Avoids state information by making each request self-
contained.

• Each request identifies the file and position in the file.

• No need to establish and terminate a connection by open and
close operations

• Advantage:
– A fileserver crash does not affect any clients

• Disadvantages:
– RPCs need to contain all state associated with the

operation

14

Distinctions Between Stateful & Stateless Service

• Failure Recovery.
– A stateful server loses all its volatile state in a crash.

? Restore state by recovery protocol based on a dialog
with clients, or abort operations that were underway
when the crash occurred.

? Server needs to be aware of client failures in order to
reclaim space allocated to record the state of crashed
client processes (orphan detection and elimination).

– With stateless server, the effects of server failure and
recovery are almost unnoticeable. A newly reincarnated
server can respond to a self-contained request without
any difficulty.

15

Distinctions (Cont.)

• Penalties for using the robust stateless service:
– longer request messages
– slower request processing
– additional constraints imposed on DFS design

• Some environments require stateful service.
– A server employing server-initiated cache validation

cannot provide stateless service, since it maintains a
record of which files are cached by which clients.

– UNIX use of file descriptors and implicit offsets is
inherently stateful; servers must maintain tables to map
the file descriptors to inodes, and store the current offset
within a file.

16

File Replication

• Replicas of the same file reside on failure-independent
machines.

• Improves availability and can shorten service time.

• Naming scheme maps a replicated file name to a particular
replica.

– Existence of replicas should be invisible to higher levels.
– Replicas must be distinguished from one another by

different lower-level names.

• Updates – replicas of a file denote the same logical entity, and
thus an update to any replica must be reflected on all other
replicas.

• Demand replication – reading a nonlocal replica causes it to be
cached locally, thereby generating a new nonprimary replica.

5

17

The Sun Network File System (NFS)

• An implementation and a specification of a software system for
accessing remote files across LANs (or WANs).

• Built on top of an unreliable datagram protocol (UDP/IP)

18

NFS (Cont.)

• Client-server model
– A remote directory is mounted over a local file system

directory. The mounted directory looks like an integral
subtree of the local file system, replacing the subtree
descending from the local directory

– Specification of the remote directory for the mount
operation is nontransparent; the host name of the remote
directory has to be provided. Files in the remote directory
can then be accessed in a transparent manner

– Subject to access-rights accreditation, potentially any file
system (or directory within a file system), can be mounted
remotely on top of any local directory

19

NFS (Cont.)

• NFS is designed to operate in a heterogeneous environment of
different machines, operating systems, and network
architectures; the NFS specifications independent of these
media.

• This independence is achieved through the use of RPC
primitives built on top of an External Data Representation
(XDR) protocol used between two implementation-independent
interfaces.

20

NFS Mount Protocol

• Establishes initial logical connection between server and client.

• Mount operation includes name of remote directory to be mounted
and name of server machine storing it.

– Mount request is mapped to corresponding RPC and forwarded
to mount server running on server machine.

– Export list – specifies local file systems that server exports for
mounting, along with names of machines that are permitted to
mount them.

• Following a mount request that conforms to its export list, the server
returns a filesystem handle— a key for further accesses.

• Filesystem handle – a file-system identifier, and an inode number to
identify the mounted directory within the exported file system.

• The mount operation changes only the user’s view and does not
affect the server side.

6

21

NFS Protocol

• Provides a set of remote procedure calls for remote file
operations. The procedures support the following operations:

– searching for a file within a directory
– reading a set of directory entries
– manipulating links and directories
– accessing file attributes
– reading and writing blocks within files

• NFS servers are stateless; each request has to provide a full
set of arguments.

• Modified data must be committed to the server’s disk before
results are returned to the client (lose advantages of caching).

• The NFS protocol does not provide concurrency-control
mechanisms.

22

Three Major Layers of NFS Architecture

• UNIX file-system interface (based on the open, read, write, and
close calls, and file descriptors).

• Virtual File System (VFS) layer – distinguishes local files from
remote ones, and local files are further distinguished according
to their file-system types.

– The VFS activates file-system-specific operations to
handle local requests according to their file-system types.

– Calls the NFS protocol procedures for remote requests.

• NFS service layer – bottom layer of the architecture;
implements the NFS protocol.

23

Schematic View of NFS Architecture

24

NFS Path-Name Translation

• Performed by breaking the path into component names and
performing a separate NFS lookup call for every pair of
component name and directory vnode.

• To make lookup faster, a directory name lookup cache on the
client’s side holds the vnodes for remote directory names.

7

25

Three Independent File Systems

26

Mounting in NFS

Mounts Cascading mounts

27

Path-name Translation

28

NFS Remote Operations

• Nearly one-to-one correspondence between regular UNIX
system calls and the NFS protocol RPCs (except opening and
closing files).

• NFS adheres to the remote-service paradigm, but employs
buffering and caching techniques for the sake of performance.

• File-blocks cache – when a file is opened, the kernel checks
with the remote server whether to fetch or revalidate the
cached attributes. Cached file blocks are used only if the
corresponding cached attributes are up to date.

• File-attribute cache – the attribute cache is updated whenever
new attributes arrive from the server.

• Clients do not free delayed-write blocks until the server
confirms that the data have been written to disk.

8

29

NFS and Locking

• File locks are a useful abstraction
– Consider mail delivery

• Impossible to implement locks in a stateless way
– The whole point of a lock is to have some state that

protects the file in question
– NFS makes an attempt
– Cannot offer strong guarantees
– Implementation was always ‘buggy’ – a euphemism

30

ANDREW Filesystem

• Andrew filesystem (AFS) is designed to be highly scalable
– The system is designed to be able to name and access all AFS

servers in the world

• Client-server model

• Simple interface
– GET file
– PUT file
– Other calls for manipulating access controls, volumes, etc.

• Whole file caching is the central idea behind AFS
– Later amended with block operations
– Simple, effective

• AFS is stateful
– Servers keep track of which clients have which files
– Recall files when they have been modified

31

ANDREW (Cont.)

• Dedicated servers present an homogeneous, identical, and
location transparent file hierarchy to clients

• Clients are required to have local disks where they store
– their local files
– the result of GET operations

32

ANDREW Shared Name Space

• Servers arrange storage in logical volumes,

• Files and directories are named by an fid. A fid identifies a file
or directory. A fid is 96 bits long and has three equal-length
components:

– volume number
– vnode number – index into an array containing the inodes

of files in a single volume.
– uniquifier – allows reuse of vnode numbers, thereby

keeping certain data structures, compact.

• Fids are location transparent; therefore, file movements from
server to server do not invalidate cached directory contents.

• Location information is kept on a volume basis, and the
information is replicated on each server.

9

33

ANDREW File Operations

• Andrew caches entire files form servers. A client workstation
interacts with servers only during opening and closing of files.

• AFS caches files from servers when they are opened, and
stores modified copies of files back when they are closed.

• Reading and writing bytes of a file are done by the kernel,
without AFS involvement, on the cached copy.

• AFS caches contents of directories and symbolic links, for path-
name translation.

34

ANDREW Implementation

• Client processes are interfaced to a UNIX kernel with the usual
set of system calls.

• AFS carries out path-name translation component by
component.

• The UNIX file system is used as a low-level storage system for
both servers and clients. The client cache is a local directory
on the workstation’s disk.

• Both AFS and server processes access UNIX files directly by
their inodes to avoid the expensive path name-to-inode
translation routine.

