
Introduction to Operating
Systems

and
Practicum in Operating Systems

COS 414/415
Spring 2002

Prof. Emin Gün Sirer

Administrative

• Instructors:
• Prof. Emin Gün Sirer, egs@cs, 4119A Upson, MF 1:25-2:15

• Communication
• cs414@cs.cornell.edu

• TAs:
• Alin Dobra, dobra@cs
• Hongzhiu Liu, liuhz@cs
• Joseph Aliperti, jra12@cs
• Vincent Eng, ve14@cs
• Devon Welles, dmw22@cs
• Stephen Enochson, sre6@cs

• All official information is on the web site
• http://www.cs.cornell.edu/courses/cs414/2002SP/

Administrative

• 414: Intro to Operating Systems
• Fundamentals of OS design

• Textbook
• Silberschatz & Galvin, Operating System Concepts, 6th Edition,

• Reading, weekly homeworks
• 415: Practicum in Operating Systems

• Major programming assignment
• This year, we’ll use PDAs for the project
• May work in pairs

Grading

• Course prerequisite: Mastery of the material in CS
314, computer architecture

• 414: Intro to Operating Systems
• Reading Assignments (~10%)
• Midterm (~30%)
• Final (~50%)
• Subjective criteria (~10%)

• 415: Practicum in Operating Systems
• Six projects (100%)

• This is a rough guide

Academic Integrity

• Everything you turn in must be your own work
• Certain types of collaboration are a part of the

learning experience
– May consult with others on C syntax, problem clarification,

debugging strategies, etc.
– May NOT be in possession of someone else’s homework or

project, may NOT plagiarize answers to homework
questions, may NOT copy code, etc.

– The academic integrity guidelines provide the general
ground rules

• Dishonesty has no place in any community
– The penalty is an immediate F in 414 and 415

Course Outline

• History, architectural support
• Concurrency, processes, threads
• Synchronization, monitors, semaphores, condition

variables, mutual exclusion
• Networking, distributed systems
• Memory Management, virtual memory
• Storage Management, I/O, filesystems
• Security
• Case studies

What is an Operating System?

• Definition: An Operating System (OS) provides a
virtual machine on top of the hardware that is more
convenient than the raw hardware interface

• “All of the code you did not write”
• Simpler
• More reliable
• More secure
• More portable
• More efficient
• …

Hardware

Operating System

Applications
OS interface

Physical machine interface

What do Operating Systems Do ?

• Manage physical and virtual resources
• Provide users with a well-behaved environment
• Define a set of logical resources (objects) and a set

of well-defined operations on those resources (i.e. an
interface to those objects)

• Provide mechanisms and policies for the control of
resources

• Control how different users and programs interact

What Resources Need to Be
Managed?

• The CPU(s)
• Memory
• Storage devices (disks, tapes, etc)
• Networks
• Input devices (keyboard, mouse, cameras, etc.)
• Output devices (printers, displays, speakers, etc.)

What’s in an OS?

Machine Dependent
Services

CPU, Cache, Physical Memory, TLB, Interrupts, Disks,

Network Interface, Mouse, Frame buffer, Printers, Keyboard …

Generic I/O File System

Memory Management

Process Management

Virtual MemoryNetworking

Naming

Access Control

Windowing & graphics

Windowing & GfxMachine
Independent
Services

Applications

OS Interface

Physical Machine Intf

Device Drivers

ShellsSystem Utils

Quake Sql Server

Logical OS Structure

Major Issues in Operating
Systems

• Structure -- how is an operating system organized ?
• Concurrency -- how are parallel activities created and controlled ?

• Sharing -- how are resources shared among users ?
• Naming -- how are resources named by users or programs ?
• Protection -- how is one user/program protected from another ?
• Security -- how to authenticate, control access, and secure privacy ?
• Performance -- why is it so slow ?
• Reliability and fault tolerance – how do we deal with failures ?
• Extensibility -- how do we add new features ?
• Communication -- how can we exchange information ?

Major Issues in OS (2)
• Scale and growth -- what happens as demands or resources increase ?
• Persistence -- how to make data outlast the processes that created them
• Compatibility -- can we ever do anything new ?
• Distribution -- accessing the world of information
• Accounting -- who pays the bills, and how do we control

resource usage?

Why is this material
critical ?
• Concurrency: Therac-25, Shuttle livelock
• Persistence: Denver airport
• Communication: Air traffic control system
• Virtual Memory: BSOD
• Security: IRS

Therac-25

• Software engineers might insist that it was the
development process that failed

• In reality, people died because a programmer
could (or did) not implement proper semaphores

• They did not use well-defined synchronization primitives

• This class will ensure that you will become
better engineers than the people involved in
these incidents

A Brief History of
Operating Systems
• Initially, the OS was just a run-time library

• You linked your application with the OS, loaded the whole program into
memory, and ran it

• How do you get it into the computer ? Through the control panel!

• Simple batch systems
• Permanently resident OS in primary memory
• It loaded a single job from card reader, ran it, and loaded the next job...
• Control cards in the input file told the OS what to do
• Spooling allowed jobs to be read ahead of time onto tape/disk or into

memory

Compute
I/O

Multiprogrammed
BatchSystems
• Multiprogramming systems provided increased utilization

• Keeps multiple runnable jobs loaded in memory
• Overlaps I/O processing of a job with computation of another
• Benefits from I/O devices that can operate asynchronously
• Requires the use of interrupts and DMA
• Optimizes for throughput at the cost of response time

Compute

I/O

Compute

I/O

Timesharing
• Timesharing supported interactive computer use

• Each user connects to a central machine through a cheap
terminal, feels as if she has the entire machine

• Based on time-slicing -- dividing CPU equally among the users
• Permitted active viewing, editing, debugging, participation of

users in the execution process
• Security mechanisms required to isolate users from each other
• Requires memory protection hardware for isolation
• Optimizes for response time at the cost of throughput

Compute

Personal Computing
• Computers are cheap, so give everyone a dedicated

computer
• Initially, the OS became a library again due to hardware

constraints
• Multiprogramming, memory protection, and other

advances were added back
• For entirely different reasons

Parallel Operating Systems
• Support parallel applications wishing to get speedup of

computationally complex tasks
• Needs basic primitives for dividing one task into multiple

parallel activities
• Supports efficient communication between those

activities
• Supports synchronization of activities to coordinate

sharing of information
• It’s common now to use networks of high-performance

PCs/workstations as a parallel computer

Distributed Operating Systems
• Distributed systems facilitate use of geographically

distributed resources
• Machines connected by wires, no shared memory or clock

• Supports communication between parts of a job or
different jobs

• Interprocess communication

• Sharing of distributed resources, hardware and software
• Resource utilization and access

• Permits some parallelism, but speedup is not the issue

Real-time Operating Systems
• Goal: To cope with rigid time constraints
• Hard real-time

• OS guarantees that applications will meet their deadlines
• Examples: TCAS, health monitors, factory control, etc.

• Soft real-time
• OS provides prioritization, on a best-effort basis
• No deadline guarantees, but bounded delays
• Examples: most electronic appliances

• Real-time means “predictable”
• NOT fast

Ubiquitous Computing
• The decreased cost of processing makes it possible to

embed computers everywhere. Each “embedded”
application needs its own control software:

• PDAs, cell phones, intelligent appliances, etc.

• In the near future, you will have 100s of these devices
• If not already

• Poses lots of problems for current systems
• Structure, naming, scaling, security, etc.

• We will tackle some of them in this class

Lessons from History

• The point is not that batch systems were ridiculous
• They were exactly right for the tradeoffs at the time

• The tradeoffs change

• Need to understand the fundamentals
• So you can design better systems for tomorrow’s tradeoffs

0.1<= 1>> 10# Users

2000256MB128KBDRAM

10000100 Mb/s9600 b/sNet Bandwidth

800080GB10MBDisk

20000$5000$100000$/MIPS

100010001MIPS

Factor20011981

COS 414/415
• In this class we will learn:

• What the parts of an OS are
• How the OS and each sub-part is structured
• What the important mechanisms are
• What the important policies are
• What algorithms are typically used

• We will do this through reading, lectures, and a project
• Project will involve some aspect of ubiquitous computing using HP

Jornada 720’s and Palmax @migo 600’s equipped with Aeronet cards
• Reading: Chapters 1 & 2

• You will need to keep up with all three of these

