Midterm Review

Last Modified: 10/8/2002 12:02:48 PM

<u>Specs</u>

- Lectures through 10/3
- Book through chapter 8 (not chapter 3)
- Mostly short answer
- I like compare/contrast questions
- I like "can you think about this idea in a different way" questions
- Goal: do you understand fundamental tradeoffs/issues and basics of how realized in real systems
- Warning: These slides are not an exhaustive list of the topics covered simply a guide to major topics and priorities.

TopicsOS HistoryHardware Support for OSProcessesThreadsCPU SchedulingSynchronizationObject, Classic ProblemsDeadlockTransactions

OS History Define major classes of systems (batch, multiprogrammed batch, timesharing, etc.) Understand how and why they evovled Compare and contrast them No dates or names

Hardware Support

- Understand what the OS has to work with
 RAW hardware interfaces
- Understand that HW must give tools for OS to be able offer certain features
- Give examples of how the OS abstracts the hardware

Processes

- Program vs Process
- Address Space of a Process
- How Processes are Created
- What information OS maintains about processes (PCBs)
- Why the OS must support inter-process communication
- Types of IPC

Threads

- Threads vs Processes
- Address Space for Multithreaded applications
- User vs Kernel Level Threads
 Pros and cons of each
 - Basics of User level thread packages

CPU Scheduling

- Policy vs Mechanism
- Context Switch
- Compare and contrast various scheduling algorithms
- Problems of evaluating scheduling algorithms
- Problems of starvation and priority inversion

Synchronizaton

- Understand why synchronization primitives are necessary
- Understand why need hardware support
- Spinlocks vs Disable/Enable Interupts vs Semaphores
- Binary vs Counting Semaphores
- Event Signaling
- Monitors
- Condition Variables

<u>Classic Synchronization</u> Problems

- Evaluate solutions to bounded buffer/readers writers
 Correctness? Performance?
- Why does the naïve solution to dining philosophers lead to deadlock

<u>Deadlock</u>

- Four necessary conditions
- Preventing deadlock by breaking one of the four conditions
- Deadlock avoidance and deadlock detection
 - \odot Basic idea behind algorithm
 - \odot Why not used in practice?

Transactions

- ACID properties
- Volatile/Nonvolatile/Stable Storage
- Log-based recovery
- How ability to abort allows additional concurrent operations

-10

Logistics

- Thursday October 10, 10:10-11:25 AM
- Two locations: Olin 255 and Barnes Auditorium
 - Sign up for space in Olin
 - Room for everyone in Barnes but no desks
 - We will bring some trays but no guarantees
- No one can leave before 10:30; no one admitted after 10:30

-13