
1

-1

18: Distributed Systems

Last Modified:
11/26/2002 5:56:39 PM

-2

A Distributed System

-3

Loosely Coupled Distributed
Systems
❒ Users are aware of multiplicity of

machines. Access to resources of various
machines is done explicitly by:
❍ Remote logging into the appropriate remote

machine.
❍ Transferring data from remote machines to

local machines, via the File Transfer Protocol
(FTP) mechanism.

-4

Tightly Coupled Distributed-
Systems
❒ Users not aware of multiplicity of

machines. Access to remote resources
similar to access to local resources

❒ Examples
❍ Data Migration – transfer data by transferring

entire file, or transferring only those portions
of the file necessary for the immediate task.

❍ Computation Migration – transfer the
computation, rather than the data, across the
system.

-5

Distributed-Operating Systems
(Cont.)

❍ Process Migration – execute an entire process,
or parts of it, at different sites.

• Load balancing – distribute processes across network
to even the workload.

• Computation speedup – subprocesses can run
concurrently on different sites.

• Hardware preference – process execution may require
specialized processor.

• Software preference – required software may be
available at only a particular site.

• Data access – run process remotely, rather than
transfer all data locally.

-6

Why Distributed Systems?
❒ Communication

❍ Dealt with this when we talked about networks

❒ Resource sharing

❒ Computational speedup

❒ Reliability

2

-7

Resource Sharing

❒ Distributed Systems offer access to
specialized resources of many systems
❍ Example:

• Some nodes may have special databases
• Some nodes may have access to special hardware

devices (e.g. tape drives, printers, etc.)

❒ DS offers benefits of locating processing
near data or sharing special devices

-8

OS Support for resource
sharing
❒ Resource Management?

❍ Distributed OS can manage diverse resources
of nodes in system

❍ Make resources visible on all nodes
• Like VM, can provide functional illusion bur rarely hide

the performance cost
❒ Scheduling?

❍ Distributed OS could schedule processes to run
near the needed resources

❍ If need to access data in a large database may
be easier to ship code there and results back
than to request data be shipped to code

-9

Design Issues

❒ Transparency – the distributed system should
appear as a conventional, centralized system to
the user.

❒ Fault tolerance – the distributed system should
continue to function in the face of failure.

❒ Scalability – as demands increase, the system
should easily accept the addition of new resources
to accommodate the increased demand.

❒ Clusters vs Client/Server
❍ Clusters: a collection of semi-autonomous machines that

acts as a single system.
-10

Why Distributed Systems?
❒ Resource sharing

❒ Computational speedup

❒ Reliability

-11

Computation Speedup

❒ Some tasks too large for even the fastest single
computer

❍ Real time weather/climate modeling, human genome
project, fluid turbulence modeling, ocean circulation
modeling, etc.

❍ http://www.nersc.gov/research/GC/gcnersc.html
❒ What to do?

❍ Leave the problem unsolved?
❍ Engineer a bigger/faster computer?
❍ Harness resources of many smaller (commodity?)

machines in a distributed system?

-12

Breaking up the problems

❒ To harness computational speedup must
first break up the big problem into many
smaller problems

❒ More art than science?
❍ Sometimes break up by function

• Pipeline?
• Job queue?

❍ Sometimes break up by data
• Each node responsible for portion of data set?

3

-13

Decomposition Examples

❒ Decrypting a message
❍ Easily parallelizable, give each node a set of

keys to try
❍ Job queue – when tried all your keys go back

for more?
❒ Modeling ocean circulation

❍ Give each node a portion of the ocean to model
(N square ft region?)

❍ Model flows within region locally
❍ Communicate with nodes managing neighboring

regions to model flows into other regions

-14

Decomposition Examples (con’t)

❒ Barnes Hut – calculating effect of
bodies in space on each other

❍ Could divide space into NxN regions?
❍ Some regions have many more bodies

❒ Instead divide up so have roughly
same number of bodies

❒ Within a region, bodies have lots
of effect on each other (close
together)

❒ Abstract other regions as a single
body to minimize communication

-15

Linear Speedup

❒ Linear speedup is often the goal.
❍ Allocate N nodes to the job goes N times as

fast
❒ Once you’ve broken up the problem into N

pieces, can you expect it to go N times as
fast?
❍ Are the pieces equal?
❍ Is there a piece of the work that cannot be

broken up (inherently sequential?)
❍ Synchronization and communication overhead

between pieces?

-16

Super-linear Speedup

❒ Sometimes can actually do better than linear
speedup!

❒ Especially if divide up a big data set so that the
piece needed at each node fits into main memory
on that machine

❒ Savings from avoiding disk I/O can outweigh the
communication/ synchronization costs

❒ When split up a problem, tension between
duplicating processing at all nodes for reliability
and simplicity and allowing nodes to specialize

-17

OS Support for Parallel Jobs

❒ Process Management?
❍ OS could manage all pieces of a parallel job as

one unit
❍ Allow all pieces to be created, managed,

destroyed at a single command line
❍ Fork (process,machine)?

❒ Scheduling?
❍ Programmer could specify where pieces should

run and or OS could decide
• Process Migration? Load Balancing?

❍ Try to schedule piece together so can
communicate effectively

-18

OS Support for Parallel Jobs
(con’t)
❒ Group Communication?

❍ OS could provide facilities for pieces of a single job to
communicate easily

❍ Location independent addressing?
❍ Shared memory?
❍ Distributed file system?

❒ Synchronization?
❍ Support for mutually exclusive access to data across

multiple machines
❍ Can’t rely on HW atomic operations any more
❍ Deadlock management?
❍ We’ll talk about clock synchronization and two-phase

commit later

4

-19

Why Distributed Systems?
❒ Resource sharing

❒ Computational speedup

❒ Reliability

-20

Reliability

❒ Distributed system offers potential for increased
reliability

❍ If one part of system fails, rest could take over
❍ Redundancy, fail-over

❒ !BUT! Often reality is that distributed systems
offer less reliability

❍ “A distributed system is one in which some machine I’ve
never heard of fails and I can’t do work!”

❍ Hard to get rid of all hidden dependencies
❍ No clean failure model

• Nodes don’t just fail they can continue in a broken state
• Partition network = many many nodes fail at once!

(Determine who you can still talk to; Are you cut off or are
they?)

• Network goes down and up and down again!

-21

Robustness

❒ Detect and recover from site failure,
function transfer, reintegrate failed site

❍ Failure detection

❍ Reconfiguration

-22

Failure Detection
❒ Detecting hardware failure is difficult.
❒ To detect a link failure, a handshaking protocol

can be used.
❒ Assume Site A and Site B have established a link.

At fixed intervals, each site will exchange an I-
am-up message indicating that they are up and
running.

❒ If Site A does not receive a message within the
fixed interval, it assumes either (a) the other site
is not up or (b) the message was lost.

❒ Site A can now send an Are-you-up? message to
Site B.

❒ If Site A does not receive a reply, it can repeat
the message or try an alternate route to Site B.

-23

Failure Detection (cont)
❒ If Site A does not ultimately receive a reply from

Site B, it concludes some type of failure has
occurred.

❒ Types of failures:
- Site B is down
- The direct link between A and B is down
- The alternate link from A to B is down
- The message has been lost

❒ However, Site A cannot determine exactly why the
failure has occurred.

❒ B may be assuming A is down at the same time
❒ Can either assume it can make decisions alone?

-24

Reconfiguration
❒ When Site A determines a failure has occurred, it

must reconfigure the system:

1. If the link from A to B has failed, this must be
broadcast to every site in the system.

2. If a site has failed, every other site must also
be notified indicating that the services offered by
the failed site are no longer available.

❒ When the link or the site becomes available again,
this information must again be broadcast to all
other sites.

