
1

-1

17: Protection/Security

Last Modified:
11/26/2002 5:52:39 PM

-2

Protection

❒ Protecting processes/users from each
other is one of the core OS responsibilities

❒ Control access of processes or users to
resources of the computer system (HW
and SW)
❍ Ensure resources are operated on my only those

processes that have gained proper
authorization

❍ Enforcing resource limits

-3

Cross-cutting issue

❒ CPU Scheduling
❍ Protection by timer interrupts and OS scheduling policy

❒ Process Management
❍ Protection by access control and enforcement of

resource limits (most OS?)
❒ Virtual Memory

❍ Protection by inability to name other processes memory
space

❒ File System
❍ User defined access controls per file/directory

❒ Note: Synchronization more voluntary protection
by observing rules within a set of
processes/threads that share data (Monitors
maybe protection?)

-4

How to do protection?

❒ From that brief survey of OS topics it is clear
that protection can be accomplished in many ways

❍ Protection can be based on the design of the system
which makes access impossible (can’t even name things
you shouldn’t access)

• E.g. VM
❍ Protection can be controllable by an OS wide policy (OS

controls resource allocation)
• E.g. timer interrupts

❍ Protection can be controlled by user definable access
controls

• E.g. User can set FS access controls
❒ Implies ability to deny authorized access! Ability

to enforce the policy!

-5

Principles

❒ Generally the more restrictive the system the
more protection

❒ “Need to know” principle says only grant those
rights absolutely necessary to accomplish a task

❍ Start out granting none and see where it breaks, add the
smallest new privileges as possible

❍ Ex. If a process only needs to read/write one specific
file then don’t give it access to all the user’s files

❍ Ex. Don’t give full root privileges just because need to
open a port < 1024

-6

Policy vs Mechanism

❒ Mechanism says “what types of access are
possible” and “defines the means for identifying
authorized vs unauthorized access”

❒ Policy says “which processes/users should have
which kinds of access”

❒ When building system best to make mechanism
match the problem domain rather than a parituclar
desired policy

❍ More flexible if separate mechanism from policy!
❒ Example: if your mechanism does not distinguish

between read and execute rights then impossible
to hand out one without the other; if mechanism
does distinguish then policy may never choose to
hand out one without the other but it could

2

-7

Types of access

❒ The possible types of access depend on the
resource
❍ CPUs can be executed upon
❍ File can be read/written/executed
❍ Directories can be read/inserted into/deleted

from/traversed without displaying all
❍ Tape drives can be read/written/rewound

❒ Begin by thinking about all the possible
actions you might want to allow/disallow on
an object

-8

Protection Domain

❒ Once we determine all the possible
resources in the system and all the
possible types of access to those
resources, the next is to think about all
the possible entities to whom we would like
to grant/deny rights

❒ Associate with each entity a “protection
domain”

❒ Define a protection domain as a collection
of access rights to specified objects

-9

Typical Domain Granularities

❒ One domain for OS; one domain for USER
❒ Domain per user
❒ Domain per process
❒ Domain per procedure
❒ …

-10

Recall: Kernel/User Mode

❒ Hardware needs to be able to distinguish the OS
from user apps

❍ Controls ability to execute privileged instructions etc
❒ Most architectures have a “mode” value in a

protected register
❍ When user applications execute, the mode value is set to

one thing
❍ When the OS kernel executes, the mode value set to

something else
❍ If code running in user mode, an attempt to execute

protected instructions will generate an exception
❍ Switching the mode value must of course be protected

-11

System Call Illustrated

User mode
Kernel mode

File.open(“/home/README”)

Save user registers and mode, lookup
SYS_OPEN in a table of system call procedures,
Change mode bit, jump to the kernelOpen procedure

SystemCall (SYS_OPEN, “/home/README”)

kernelOpen(“/home/README”,
this applications access rights)

Resume application with file
opened or error

Restore user
mode and
application’s
registers etc.

-12

Is Kernel/User distinction
enough?
❒ Not if want to distinguish between users!

❍ How can we distinguish between users?
❒ Is user the best thing to base domain on?

❍ Do you want all processes you run to have your
full privileges?

❍ Do you ever need special privileges but not all
of root access?

3

-13

Distinguishing users: Logging in

❒ When a user logs in, they supply a password which
is checked against a password list

❒ In UNIX, passwords stored in file /etc/passwd
❍ What is in this file?

❒ Naïve approach: file with everyone’s password in it
(but what if that file is compromised)

❒ Better: keep a file with hash(password)
❍ One way hash function makes it hard to get from

hash(password) to password but easy to go password to
hash(password)

❍ Now can distribute the password file in plain text and
passwords not revealed

-14

Other attacks?

❒ Dictionary attack?
❍ Compile a list of common passwords (all English words for

example) and compute hash(password) on all of them
❍ Compare contents of password list to this dictionary list

❒ Solution? Salt
❍ Password file entry = hash (salt+password)
❍ Store salt in clear
❍ Bad guy can’t just use a pre-generated dictionary file –

has to have a different one for each person’s salt
❍ UNIX uses a 12-bit salt

• so need 212 different dictionary files – one for each salt
• Is 4096 times harder hard enough?

-15

Better passwords?

❒ Words in English dictionary? 250,000
❍ http://www.askoxford.com/asktheexperts/faq/about
words/numberwords

❒ Possible 8 character passwords if just
letters: 528= 53,459,728,531,456

❒ If add digits: 628

❒ If add punctuation (32 punctuation
characters??): 948

-16

Distinguishing users (con’t)

❒ Some systems allow other machines to vouch for
the identify of a user

❒ Ex. Rsh/rcpy etc allow user to specify a list of
users and machines allowed to act like them
(without a password)

❒ Example: .rhosts says allow jnm @ * to log in as me
❍ Then if there is an jnm account on any machine it can act

like me
❍ Even if is says jnm @ mymachine other machines can

masquerage as mymachine
❍ Bad stuff!

-17

Logging in

❒ Recall: in last stages of boot process, OS creates
a process called init

❒ Init does various important housecleaning
activities including maintaining a process for each
terminal port (tty)

❒ Getty then executes the login program on that tty
❒ Login gets username/password from user, reads

/etc/password, computes hash(salt+password) and
compares

❒ If login successful, login will spawn a shell process
for the user

❒ Shell and all its children run with that user’s
privileges

-18

User’s processes

❒ OS will keep maintain memory protection
(even amongst processes belonging to the
same user)

❒ OS will also check file permissions for all
files the process attempts to
access/create

❒ More on file permissions later..

4

-19

Root

❒ Root is just a special userId
❒ Can correspond to many user names in

/etc/password, but any user with userId 0
is root

❒ OS gives processes with userId 0 special
privileges e.g.:
❍ Opening privileged ports
❍ Reading/writing/executing all files
❍ Becoming any other user
❍ Exceeding the FS quotas (like FFS’s 10% of

reserve)

-20

SetUid

❒ SetUid allows a process to be run *by* one user
but *with the permissions* of another user

❍ SetUid/Setgid system calls
❍ SetUid is also characteristic of a program in the file

system
❒ E.g. A SetUid root program could be run by normal

users but would run with root privileges
❒ Good idea to set up a special userId with just the

privileges you need and setUid that user rather
than root

-21

Careful

❒ If become root (or any user) once, can
make a setuid program that can be used
any time!
❍ Some systems require all setUid programs to be

in a special directory that can be monitored
❒ Alternative: daemon process running with

root privileges to which users can send
requests for actions
❍ Careful with these too – many attacks focused

on holes in these!

-22

Domain per process

❒ Good for programmer to be able to limit
the protection domain of a process to the
minimal set necessary to accomplish a task
❍ Why do I have to give every process I run my

full access rights!
❍ Trojan horses?

❒ Even within a process, the rights necessary
may vary over the lifetime of the process
❍ If only need to certain privileges to initialize,

why keep them for the entire life of the
process when they might be exploited later

-23

limit/ulimit
getrlimit/setrlimit
❒ Limit resource usage of a process and its

descendents
❒ Examples limits

❍ Limit data segment/heap/stack
❍ Limit amount of address space mapped (VM limit)
❍ Limit max CPU time
❍ Limit size of created files and number of files
❍ Limit max core file size

❒ Each descendent gets to reach the limit not
cumulative – so still can exceed with lots of
children

❒ Soft/hard limits
❍ Any user can decrease or increase up to hard limit
❍ Only root can raise hard limits

-24

Other limits

❒ Quota – allows limiting users consumption
of hard disk space

❒ Chroot – makes a specified directory the
root of a processes file system such that it
cannot access the rest of the file system

❒ Free BSD has “jail” for confining root to a
subset of special privileges
❍ http://docs.freebsd.org/44doc/papers/jail/jail.

html

5

-25

Pluggable Authentication
Modules (PAM)
❒ Linux pluggable user log in procedures

❍ Allow various password systems, smart cards,
anything behind a standard interface

❒ Applications like login or ftpd needn’t be
rewritten for each new mechanism

❒ PAM also allows setting per user resource
limits (similar to ulimit)

-26

Domain per Procedure

❒ ???

-27

Access Matrix

❒ Now we’ve figured out all the objects we
want to protect, the types of access we
might want to grant and the entities to
whom we will grant them

❒ Result = Access Matrix
❍ Rows of matrix can be domains

• Regardless of granularity of domain
• If domain per user then row per user

❍ Columns are objects or resources
❍ Values at entry(i,j) says rights domain i has to

object j

-28

Access Matrix

Figure A

-29

Implementation of Access
Matrices
❒ 2D array – how hard can that be?
❒ Well its not hard but it is big and often filled with

lots of 0’s
❍ If most domains include have permissions to only a few

objects then will be lots of wasted space
❍ Avoid this by chopping up the access matrix and

compressing
❒ OS may also choose to divide up into logical

sections (I.e. all protection info related to files in
one place and all protection info related to users
in another)

❒ Also compression from domain = groups of users
❒ Also compression from inheritance

-30

Access List

❒ Chop access matrix into columns and don’t
list domains that have no access

❒ With each object store the list of domains
that can access it and in what ways

❒ A domain that is not present in the list has
no access rights

❒ Easy to set a default set of right to an
object and then only need to enter
exceptions to the default

6

-31

Capabilities

❒ Chop access matrix into rows and don’t list objects
for which you have no rights

❒ With each domain store the list of objects it can
access and in what ways

❒ Sometimes simply knowing the name of an object
gives you access

❒ Managed by the OS (not managed by
process/users directly)

❍ Usually process given a handle and the capability pointed
to by the handle but stored in the OS

❍ Present capability on every access

-32

Speed of access?

❒ With pure access lists, access list must be
searched on each access = slow

❒ Capabilities on the other hand can be
obtained once and then presented with
each access
❍ Fast as validity check on capability
❍ If stored in OS and process just gets a handle

then can assume valid

-33

Revocation of Access Rights

❒ Does revocation take place immediately or
is there some propagation delay? If there
is a delay is it bounded?

❒ When a given right is revoked does can it
effect just one domain or all? (example:
changing a lock vs removing one user from
an access list)

❒ Can we revoke just a few rights to an
object or must we revoke them all?

❒ Can access be permanently revoked or can
it be revoked and later obtained again?

-34

Access lists vs capabilities

❒ With access lists, revocation is easy
❍ List of rights held with object, simply edit it in

one place
❍ Revocation is immediate and can be flexible

whether it is general/selective, total/partial
and permanent/temporary

❒ Capabilities make it harder
❍ List of rights stored with each domain
❍ How do we find everyone with a given right?

-35

Support for revocation in
capability based systems
❒ Periodically have rights time out and force

them to be reacquired so can bound time
till revocation takes place (not immediate)

❒ Maintain back-pointers to all domains
holding a capability so can find and revoke
at any time(costly!)

❒ Maintain a master key for each object
❍ When grant capability give copy of master key
❍ To revoke, change master key
❍ Then everyone will have to reacquire (not

selective)

-36

Combining access lists and
capabilities
❒ In many OS, on first access search access list
❒ Then enter a capability in the OS for this process

and return a “handle” to this capability to process
❒ Example: file handles

❍ When open a file, search access list in file system
❍ If open succeeds, enter an open file pointer in the

address space of the process along with pointer to file
buffers, vnode, etc

❍ Return a file descriptor or file handle which is simply an
offset into an open file table

❍ Use file descriptor on each additional access
❍ OS uses open file info but doesn’t recheck permissions

for each access

7

-37

Experiment

❒ Write a program to open a file and then
access it many times (maybe ask user
before each access)

❒ After open done successfully and a couple
accesses done ok change permissions in
the file system to disallow access

❒ Does it allow additional accesses or not?

-38

Right to the access matrix?

❒ In addition to object in the matrix, we can also
think about rights to the matrix itself

❍ Who can add rights to an entry?
❍ Who can switch which domain is active?
❍ Who can add domains?

❒ Additional rights
❍ Copy right – allow copying of rights to other domains
❍ Transfer – migrate rights from one domain to another

(different than copying)
❍ Owner right – addition of new rights or removal of rights
❍ Switch right – ability to switch to a domain, consider

domains as object
❍ …

-39

Access Lists in Unix FS

❒ Unix FS usually contain access lists with
each file

❒ Not very extensive access lists though!
❍ Usually just able to specify read, write and

execute rights for three groups: user, group
and world

❒ Can imagine more extensive access list
information than this?
❍ PRO: more flexible
❍ CON: more storage

-40

More extensive mechanisms

❒ More extensive list of possible rights?
❍ Larger list of possible rights to files (not just

read/write/execute)
❒ Finer granularity control of who accesses?

❍ Allow list of users rather than user/group/all
❒ Finer grain mechanism allows policies that

better match “need to know” principle

-41

AFS access control lists

❒ Ability to specify additional types of
access rights on a directory
❍ Administer, delete, insert, lookup, read, write
❍ Group into categories

• Read access – just read
• Write access – all but administer
• None
• All

❒ Can specify a separate set of access rights
for all users and groups (not just single
user and group)

-42

AFS Example

❒ Example:
% fs setacl -dir . -acl pat:friends rl smith write
% fs listacl -path .
Access list for . is
Normal rights:

pat:friends rl
smith rlidwk

8

-43

Windows NT family

❒ Designed with protection/security in mind from
the beginnning

❒ Protection for files, devices, mailslots, pipes, jobs,
processes, threads, events, mutexes, semaphores,
timers, registry keys,…

❒ Even earned a security rating from the
government

❍ Secure logon facility
❍ Discretionary access control: allow owner to specify who

can access object in what way
❍ Security auditing
❍ Object reuse protection: zero out all objects before

reallocate

-44

NT Access Control Lists

❒ Two types
❒ DACL

❍ Specify types of access to object
❍ List of access control entries that can either

specify to allow or deny access
❒ SACL

❍ Specify auditing to be done on access to object
❍ Specify both who should audited and what ops

should be audited

-45

Hydra

❒ Multiprocessor OS from CMU 1974
❒ Extremely fine grained and flexible

protection system
❒ Used capabilities
❒ Early “object-oriented” system – with OS

support for objects
❒ Extensible security system

❍ Users could define new types of objects to be
protected

-46

Hydra Objects

❒ Each object has with it a collection of
access rights
❍ Manipulated by OS so unforgeable
❍ Very early OOP concepts
❍ Each object defined by data, operations that

can be applied and collection of access rights to
it

❒ Kernel provided operations for the
definition of new types of object and
associated rights

-47

Hydra procedures

❒ Each procedure has its code and a list of caller
independent capabilities and caller dependent
capabilities (holes)

❒ Local Name Space (LNS)
❍ When call a procedure fill in “holes” with your own

current capabilities and gain the caller independent
capabilities to form a current set of capabilities

❒ Process = stack not just of procedures but also of
capabilities!!

❒ Great flexibility!
❍ Each procedure can upgrade rights for just that

procedure and also base access on right of caller

-48

Hydra vs OOP Programming

HYDRA
❒ Object
❒ Type
❒ Capability

❒ Local Name Space
❒ Procedure
❒ Templates

❒ Call Mechanism

Programming Language
❒ Variable (Object)
❒ Type
❒ Pointer + (Access

Type?)
❒ Activation Record
❒ Procedure/subroutine
❒ Formal parameter

specification
❒ Subroutine call

9

-49

Hydra Pros and Cons

❒ Very flexible system
❍ Implement “need to know” principle to level of every

object and every procedure!
❒ Requires domain switch for every procedure call

and access rights for each object
❍ GOOD: Each procedure has only rights required
❍ BAD: Expensive to check constantly

• OS trap per procedure call

❒ Modern OS support for protection not this
extensive

❍ As we have extra performance and security more of a
worry….

-50

Language-Based Protection

❒ How far can you get with just language
support and not OS support?

❒ Java VM?
❒ Do you trust your compiler?

❍ Great read for this week “Reflections on
Trusting Trust”

-51

Protection vs Security

❒ So far we have been dealing with protection
❒ Protection deals with internal access controls

❍ Users must log in
❍ Access to resources tracked at certain granularity
❍ Access is granted by way of access list or capability

❒ Security on the other hand deals more with
external access controls

❍ Much more wide reaching!
❍ Physical security
❍ Psychological attacks
❍ Etc.

-52

Example

❒ We discussed how difficult it would be to guess
someone’s password

❍ We considered things like the length of the key and the
types of valid characters

❍ We also discussed briefly the tendency of people to
choose passwords from a much narrower space

❒ Security would also consider
❍ Physical intimidation/bribes to get people’s passwords
❍ Physical access to a machine
❍ Stunts like pretending to be a system administrator to

get someone to voluntarily reveal their password

-53

Physical Security

❒ Are you sure someone can just walk into your
building and

❍ Steal floppies or CD-ROMs that are lying around?
❍ Bring in a laptop and plug into your dhcp-enable ethernet

jacks?
❍ Reboot your computer into single user mode? (using a

bios password?)
❍ Reboot your computer with a live CD-ROM and mount the

drives?
❍ Sit down at an unlocked screen?

❒ Can anyone sit down outside your building and get
on your DHCP-enable 802.11 network?

-54

Social Engineering

❒ Using tricks and lies that take advantage of
people’s trust to gain access to an otherwise
guarded system.

❍ Social Engineering by Phone: “Hi this is your visa credit
card company. We have a charge for $3500 that we
would like to verify. But, to be sure it’s you, please tell
me your social security number, pin, mother’s maiden
name, etc”

❍ Dumpster Diving: collecting company info by searching
through trash.

❍ Online: “hi this is Alice from my other email account on
yahoo. I believe someone broke into my account, can you
please change the password to “Sucker”?

❍ Persuasion: Showing up in a FedEx or police uniform, etc.
❍ Bribery/Threats

10

-55

Administrators
❒ Persons managing the security of a valued resource

consider five steps:

1. Risk assessment: the value of a resource should determine
how much effort (or money) is spent protecting it.
• E.g., If you have nothing in your house of value do you need to

lock your doors other than to protect the house itself?
• If you have an $16,000,000 artwork, you might consider a

security guard. (can you trust the guard?)

2. Policy: define the responsibilities of the organization, the
employees and management. It should also fix
responsibility for implementation, enforcement, audit and
review.

-56

Administrators

3. Prevention: taking measures that prevent
damage.
• E.g., firewalls or one-time passwords (e.g., s/key)

4. Detection: measures that allow detection of
when an asset has been damaged, altered, or
copied.
• E.g., intrusion detection, trip wire,

computerforensics

5. Recovery/Response: restoring systems that
were compromised; patch holes.

-57

Outtakes

❒ Rings in Multics

-58

❒ Ulimit
❍ Linux/tasks.h
❍ Understanding the Linux kernel p 78-80
❍ http://www.experts-

exchange.com/Operating_Systems/Linux/Q_20
291950.html

❒ http://seifried.org/lasg/users

