<u>16: Application, Transport,</u> Network and Link Layers

Last Modified: 10/30/2002 9:15:15 PM

Roadmap

- Application Layer (User level)
- Transport Layer (OS)
- Network Layer (OS)
- Link Layer (Device Driver, Adapter Card)

Application Layer

- Network Applications Drive Network Design
- Important to remember that network applications are the reason we care about building a network infrastructure
- Applications range from text based command line ones popular in the 1980s (like telnet, ftp, news, chat, etc) to multimedia applications (Web browsers, audio and video streaming, realtime videoconferencing, etc.)

Applications and application-layer protocols Application: communicating, distributed processes running in network hosts in "user space" exchange messages to implement app o e.g., email, file transfer, the Web Application-layer protocols ○ one "piece" of an app o define messages exchanged by apps and actions taken user services provided by lower layer protocols

-3

Languages and Platforms

- Socket API is available for many languages on many platforms:
 - C, Java, Perl, Python,...
 - *nix, Windows,...
- Socket Programs written in any language and running on any platform can communicate with each other!
- Client and server must agree on the type of socket, the server port number and the protocol

<u>Services provided by Internet</u> <u>transport protocols</u>

TCP service:

- connection-oriented: setup required between client, server
- reliable transport between sending and receiving process
 flow control: sender won't
- overwhelm receiver congestion control: throttle sender when network overloaded
- does not providing: timing, minimum bandwidth auarantees

UDP service:

- unreliable data transfer between sending and receiving process
- does not provide: connection setup, reliability, flow control, congestion control, timing, or bandwidth guarantee
- <u>Q:</u> why bother? Why is there a UDP?

-11

DCP adds functionality over bare IP and over UDP Still has multiplexing/demultiplexing Adds reliable, in-order delivery Adds flow control and congestion control How can you guarantee that other side gets "A B C D E" when network could: Soe dat "A B C D E" Duplicate data "A B C D E B" Beorder data "A C D E B" Or all of the above!

Internet Protocol

- using different technologies (ex. different maximum packet sizes)
- belonging to different administrative authorities (ex. Willing to accept packets from different addresses)
- <u>Goal of IP</u>: interconnect all these networks so can send end to end without any knowledge of the intermediate networks
- Routers, switches, bridges: machines to forward packets between heterogeneous networks

Recall: How to get an IP Address?

- Answer 1: Normally, answer is get an IP address from your upstream provider

 This is essential to maintain efficient routing!
- Answer 2: If you need lots of IP addresses then you can acquire your own block of them.
 - IP address space is a scarce resource must prove you have fully utilized a small block before can ask for a larger one and pay \$\$ (Jan 2002 - \$2250/year for /20 and \$18000/year for a /14)

How to get lots of IP Addresses? Internet Registries

- RIPE NCC (Riseaux IP Europiens Network Coordination Centre) for Europe, Middle-East, Africa
- APNIC (Asia Pacific Network Information Centre) for Asia and Pacific
- ARIN (American Registry for Internet Numbers) for the Americas, the Caribbean, sub-saharan Africa
- Note: Once again regional distribution is important for efficient routing!
- Can also get Autonomous System Numbers (ASNs) from these registries

-31

<u>Classful vs Classless</u>

Class A = /8
 Class B = /16
 Class C = /24

<u>IP addresses: how to get one?</u> <u>revisted</u> Network (network portion): get allocated portion of ISP's address space:					
ISP's block	<u>11001000</u>	00010111	<u>0001</u> 0000	00000000	200.23.16.0/20
Organization 0	<u>11001000</u>	00010111	<u>0001000</u> 0	00000000	200.23.16.0/23
Organization 1	11001000	00010111	<u>0001001</u> 0	00000000	200.23.18.0/23
Organization 2	<u>11001000</u>	<u>00010111</u>	<u>0001010</u> 0	00000000	200.23.20.0/23
Organization 7	<u>11001000</u>	00010111	<u>0001111</u> 0	00000000	200.23.30.0/23
					-33

Current Allocation

- Interesting to exam current IP address space allocation (who has class A's ? Etc)
 - Who has A's?
 - Computer companies around during initial allocation (IBM, Apple)
 - Universities (Stanford, MIT)
 - CAIDA has info on complete allocation

Routing

- IP Routing each router is supposed to send each IP datagram one step closer to its destination
- How do they do that?
 - Hierarchical Routing in ideal world would that be enough? Well its not an ideal world
 Other choices
 - Static Routing
 - Dynamic Routing
 - Before we cover specific routing protocols we will cover principles of dynamic routing protocols

-38

-37

Routing Algorithm classification: Global or decentralized?

Choice 2, if dynamic: global or decentralized information?

Global:

all routers have complete topology, link cost info
 "link state" algorithms

Decentralized:

- router knows physically-connected neighbors, link costs to neighbors
- iterative process of computation, exchange of info with neighbors (gossip)
- " "distance vector" algorithms

-41

Link Layer Services

Framing, link access:

- o encapsulate datagram into frame, adding header, trailer
- implement channel access if shared medium,
- o 'physical addresses' used in frame headers to identify source, dest • different from IP address!

- Reliable delivery between two physically connected devices:
 - Reliable delivery over an unreliable link (like TCP but done at link layer)
 - seldom used on low bit error link (fiber, some twisted pair)
 - wireless links: high error rates
 - Q: why both link-level and end-end reliability?

-43

Link Layer Services (more)

Flow Control:

o pacing between sender and receivers

Error Detection

- errors caused by signal attenuation, noise.
- o receiver detects presence of errors:
 - signals sender for retransmission or drops frame

Error Correction:

 receiver identifies and corrects bit error(s) without resorting to retransmission

CSMA: Carrier Sense Multiple Access

CSMA: listen before transmit:

- If channel sensed idle: transmit entire pkt
- If channel sensed busy, defer transmission
 - O Persistent CSMA: retry immediately with probability p when channel becomes idle (may cause instability)
- O Non-persistent CSMA: retry after random interval human analogy: don't interrupt others!

