
1

-1

12: FFS,LFS and other file
systems

Last Modified:
10/25/2002 9:26:22 AM

-2

Building a file system

❒ To build a file system from an array of disk
sectors we have to decide things like
❍ Must files be allocated contiguously?
❍ If not how will be find the pieces?
❍ What information is stored about each file in

the directory?
❍ Where do we put new files that are created?
❍ What do we do when files grow or shrink?
❍ How do we recover the FS after a crash?

-3

Answers?

❒ We are going to look at two different file
systems
❍ Fast File System (FFS)
❍ Log-Structured File Systems (LFS)

-4

How are they the same?

❒ Both allow files to be broken into multiple
pieces

❒ Both use fixed sized blocks (for the most
part)

❒ Both use the inode structure we discussed
last time

-5

Fast File System

❒ Fast? Well faster than original UNIX file system
(1970’s)

❍ Original system had poor disk bandwidth utilization
❍ Remember why that is a problem? Too many seeks

❒ BSD UNIX folks redesigned in mid 1980’s
❍ Improved disk utilization by breaking files into larger

pieces
❍ Made FFS aware of disk structure (cylinder groups) and

tried to keep related things together
❍ Other semi-random improvements like support for long

file names etc.

-6

Managing Free Space

❒ Break disk into cylinder groups and then into fixed
size pieces called blocks (commonly 4 KB)

❒ Each cylinder group has a certain number of blocks
❍ Cylinder group’s free list maps which blocks free and

which taken
❍ Cylinder groups also store a copy of the superblock which

contains special bootstrapping information like the
location of the root directory (replicated)

❍ Cylinder groups also contain a fixed number of I-nodes
❍ Rest of blocks used to store file/directory data

2

-7

Inodes in FFS

❒ In FFS, fixed number of inodes at FS
format time
❍ When create file, pick an inode, will never move

(so directory entry need not be updated)
❍ Can run out of inodes and not be able to create

file even though there is free space

-8

Creating a new file

❒ In the pre-FFS UNIX file system
❍ Free list for the entire disk
❍ Started out ordered nicely such that if ask for

3 free blocks likely to get 3 together
❍ Randomized over time as files created and

deleted such that pieces of a new file
scattered over the disk

❍ Also when create new file need a new inode too
• All inodes at beginning of disk, far from the data

❍ When read through a file likely to be seeks
between each block – slow!

-9

FFS

❒ Divide the disk into cylinder groups
❍ Try to put all blocks of file into same cylinder group
❍ Inodes in each cylinder group so inodes near their files
❍ Try to put files in the same directory into the same

cylinder group
❍ Big things forced into new cylinder group

❒ Is this fundamentally a new approach?
❍ Not really…space within a cylinder group gets treated

just like whole disk was
❍ Space in cylinder group gets fragmented etc
❍ Basically sort files into bins so reduce the frequent long

seeks

-10

Cylinder Groups

❒ To keep things together must know when to
keep things apart
❍ Put large files into a different cylinder group

❒ FFS reserves 10% of the disk as free
space
❍ To be able to sort things into cylinder groups,

must have free space in each cylinder group
❍ 10% free space avoids worst allocation choice

as approach full (ex. One block in each cylinder
group)

-11

Other FFS Improvements

❒ Small or large blocks?
❍ Orig UNIX FS had small blocks (1 KB)
❍ ¼ less efficient BW utilization

❒ Larger blocks have problems too
❍ For files < 4K , results in internal fragmentation
❍ FFS uses 4K blocks but allows fragments within a block
❍ Last < 4K of a file can be in fragments

❒ Exactly 4K?
❍ FFS allows FS to be parameterized to the disk and CPU

characteristics
❍ Another cool example: when laying out logically sequential

blocks skip a few blocks in between each to allow for CPU
interrupt processing so don’t just miss the blocks and
force a whole rotation

-12

Update In Place

❒ Both the original UNIX FS and FFS were
update-in-place

❒ When block X of a file is written then
forever more, reads or writes to block X
go to that location until file deleted or
truncated

❒ As things get fragmented need
“defragmenter” to reorganize things

3

-13

Another Problem with Update-
in-place

Poor crash recovery performance
❒ Some operations take multiple disk requests so are

impossible to do atomically
❍ Ex. Write a new file (update directory, remove space

from free list, write inode and data blocks, etc.)
❒ If system crashes (lose power or software

failure), there may be file operations in progress
❒ When system comes back up, may need to find a

fix these half done operations
❒ Where are they?

❍ Could be anywhere?
❍ How can we restore consistency to the file system?

-14

Fixed order

❒ Solution: Specify order in which FS ops are done
❒ Example to add a file

❍ Update free list structures to show data block taken
❍ Write the data block
❍ Update free list structures to show an inode take
❍ Write the inode
❍ Add entry to the directory

❒ If crash occurs, on reboot scan disk looking for
half done operations

❍ Inodes that are marked taken but are not referred to by
any directory

❍ Data blocks that are maked taken but are not referred
to by any inode

-15

Fixed order (con’t)

❒ We’ve found a half done operation now what?
❍ If data blocks not pointed to by any inode then release

them
❍ If inode not pointed to by any directory link into Lost

and Found
❒ Fsck and similar FS recovery programs do these

kinds of checks
❍ Problems can be anywhere with update in place so must

scan the whole FS!!
❒ Problems?

❍ Recovery takes a long time! (System shutdown
uncleanly..checking your FS.. For the next 10 minutes!)

❍ Even worse(?) normal operation takes a long time because
specific order = many small synchronous writes = slow!

-16

Write-Ahead Logging
(Journaling)
❒ How can we solve problem of recovery in

update in place systems?
❒ Borrow a technique from databases!

❍ Logging or journaling
❒ Before perform a file system operation like

create new file or move a file, make a note
in the log

❒ If crash, can simply examine the log to find
interrupted operations
❍ Don’t need to examine the whole disk

-17

Checkpoints

❒ Periodically write a checkpoint to a well known
location

❒ Checkpoint establishes a consistent point in the
file system

❒ Checkpoint also contains pointer to tail of the log
(changes since checkpoint written)

❒ On recovery start at checkpoint and then “roll
forward” through the log

❒ Checkpoint points to location system will use for
first log write after checkpoint, then each log
write has pointer to next location to be used

❍ Eventually go to next location and find it empty or invalid
❒ When write a checkpoint can discard earlier

portions of the log -18

Problems with write-ahead
logging
❒ Do writes twice
❒ Once to log and once to “real” data (still

organized like FFS)
❒ Surprisingly can be more efficient than

update-in-place!
❍ Batched to log and then replayed to “real” in

relaxed order (elevator scheduling on the disk)

4

-19

Recovery of the file system
(not your data)
❒ Write-ahead logging or journaling techniques could

be used to protect FS and user data
❒ Normally just used to protect the FS
❒ I look like a consistent FS but your data may be

inconsistent
❍ Even if some of the last files you were modifying are

inconsistent still better than FS corrupted (insert
bootable device please /)

❒ Still, why do we need a “real” data layout why
couldn’t the log be the FS? Then user data would
get same benefits?

-20

Log-Structured File System

❒ Treat the disk as an infinite append only
log
❍ Data blocks, inodes, directories everything

written to the log
❒ Batch writes in large units called segments

(~ 1 MB)
❒ Garbage collection process called cleaner

reclaims holes in the log to regenerate
large expanses of free space for log writes

-21

Log Writes and Cleaning

-22

Finding Data

❒ Inodes used to find data blocks
❒ Finding inodes?

❍ Directories specify location of a file’s inode

❒ In an FSS, inodes are preallocated in each
cylinder group and a given file’s inode never
moves (update in place)

❒ In an LFS, inodes written to the log and so
they move

-23

Chain Reaction

❒ LFS is not update in place when file block written
its location changes

❍ File location changes => entry in inode (and possibly also
indirect blocks) changes => Inode (and indirect blocks)
must be rewritten

❒ Parent directory contains location of inode – must
directory be rewritten too?

❍ If so then all directories to root must be rewritten?
❒ No! – introduce another level of indirection

❍ Directory says inode *number* (rather than location)
❍ Inode map to map inode number to current location

-24

Inode Map
❒ Inode map maps inode numbers to inode location

❍ Map kept in a special file the ifile
❒ When a file’s inode is written, its parent directory

does not change only the ifile does
❒ Caching inode map (ifile) in memory is pretty

important for good performance
❍ How big is this? Approx 2*4bytes(inode number and disk

LBA) = 8 bytes for every file/directory in the file
system

❍ Can grow dynamically unlike FFS

5

-25

Checkpoint

❒ Like in Write Ahead Logging, write periodic
checkpoints

❍ Kind of like FFS superblocks
❒ Checkpoint region has a fixed location

❍ Actually two fixed locations and alternate between them
in case die in middle of writing and leave corrupt

❍ Checksums to verify consistent; Timestamps say which is
most recent

❒ Whats in checkpoint?
❍ Location of inode for ifile and inode number of the root

directory
❍ Location of next segment will write log to
❍ Basic FS parameters like segment size, block size, etc

-26

LFS Pros and Cons

❒ What is good about this?
❍ Leverage disk BW with large sequential writes
❍ Near perfect write performance
❍ Read performance? Good if read the same way as you

write and many reads absorbed by caches
❍ Cleaning can often be done in idle time
❍ Fast efficient crash recovery
❍ User data gets benefits of a log

❒ What’s bad about this?
❍ Cleaning overhead can be high – especially in the case of

random updates to a full disk with little idle time
❍ Reads may not follow write patterns (they may not follow

directory structure either though!)
❍ Additional metadata handling (inodes, indirect blocks and

ifile rewritten frequently)

-27

Cleaning Costs

❒ We are going to focus on talking about the
problem of high cleaning costs

❒ Often cleaning is not a problem
❍ If there is plenty of idle time (many workloads have

this), cleaning costs hidden
❍ Also if locality to writes, then easier to clean
❍ If disk not very full then, segments clean themselves

(overwrite everything in old segments before run out of
free spaces for new writes)

❒ So when is cleaning a problem?
❍ Cleaning expensive when random writes to full disk with

no idle time

-28

High Cleaning Costs

Random writes, full disk (little free space), no idle time =
Sky-rocketting cleaning costs

For every 4 blocks written, also read 4 segments and write 3 segments!

-29

Copy cleaning vs Hole-plugging

❒ Alternate cleaning method?
❍ Hole-plugging = Take one segment break extract the live

data and use it to plug holes in other segments
❍ This will work well for full disk, random updates, little

idle time!!
❒ Hole-plugging avoid problems with copy cleaning

but transfers many small blocks which uses the
disk less efficiently

❒ Could we get the best of both worlds?
❍ First we have to talk about how to quantify the tradeoffs

-30

Write Cost

❒ How do we quantify the benefits of large
I/Os vs the penalty of copying data?

❒ Original LFS paper evaluated efficiency of
cleaning algorithms according to the
following metric
❍ (DataWrittenNewData + DataReadCleaning +

DataWrittenCleaning)/ DataWrittenNewData
❍ Quantifies cleaning overhead in terms of the

amount of data transferred while cleaning
❍ What about the impact of large vs small

transfers?

6

-31

Cost of Small Transfers

❒ Quantify overhead due to using the disk
inefficiently
❍ TransferTimeActual/TransferTimeIdeal

❍ Where TransferTimeActual includes seek,
rotational delay and transfer time and
TransferTimeIdeal only includes transfer time

❒ By factoring in the cost of small transfers,
we see the cost of holeplugging

-32

Overall Write Cost

❒ Ratio of actual to ideal costs where
❍ Actual includes cost of garbage collection and

includes seek/rotational latency for each
transfer

❍ Ideal includes only cost of original writes to an
infinite append only log – no seek/rotational
delay and no garbage collection

❒ Now we have a metric that lets us compare
hole-plugging to copy-cleaning
❍ System can use this to choose which one to do!
❍ Adaptive cleaning ☺

-33

Adaptive Cleaning

❒ When starting to run out of segments, do garbage
collection

❒ Look in special file called the segmap that tells you
how full each segment is

❍ When rewrite a block in a segment, write in segmap file
that segment is one block less full

❒ Estimate cost to do copy cleaning and cost to do
hole-plugging

❍ Compute overall write cost by seeing how full segments
are

❒ Choose the most cost effective method this time
❍ Can choose a different one next time ☺

-34

Adaptive Cleaning For Random
Update Workload

Assume no idle time to clean

-35

Adaptive Cleaning for Normal
Usage Trace

Assume no idle time to clean
-36

As Technology Changes

7

-37

Other factors?

❒ How does this layout work for reads?
❍ Good if read in the same way you write
❍ Well until start reorganizing during cleaning

(hole-plugging is worse than copy cleaning here)
❍ Special kind of hole-plugging that writes back

on top of where it used to be?
❒ Accounting for additional metadata

handling in the cache?
❍ Modifying the write cost metric to account for

“churn” in the metadata?
❍ Model FFS in this same way

-38

Improving FFS also

❒ Extent like performance (McVoy)
❒ FFS-realloc (McKusick)
❒ FFS-frag and FFS-nochange(Smith)
❒ Colocating FFS (Ganger)
❒ Soft Updates (Ganger)

-39

Other FS?

❒ Update-in-place
❍ FAT
❍ ext2 (extent based rather than fixed size blocks)

❒ Write-ahead Logging (journaling)
❍ NTFS
❍ ReiserFS (B+ tree indices, optimizations for small files)
❍ SGI’s XFS (extent based and B+ trees)
❍ Ext3 (journaling version of ext2)
❍ Veritas VxFS
❍ BeOS’s BeFS

❒ No Update?
❍ CD-ROM FS no update and often contiguous allocations

(why does that make sense?)

-40

Network/Distributed FS

❒ Sun’s NFS
❒ CMU’s AFS and Coda

❍ Transarc’s (now IBM’s) commercial AFS
❍ Intermezzo (Linux Coda like system)

❒ Netware’s NCP
❒ SMB

-41

Multiple FS?

❒ With all these choices, do we really have to
choose just one FS for our OS?

❒ If we want to allow multiple FS in the same
OS, what would be have to do?
❍ Merge them into one directory hierarchy for

the user
❍ Make them obey a common interface for the

rest of the OS

-42

Mount points

❒ Another kind of special file interpreted by
the file system is a mount point

❒ Contains information about how to access
the root of a separate FS tree (device
information if local, server information if
remote, type of FS, etc.)

8

-43

Mount Points

/
a b

c

/

/
x y

z

/

/
a b

c

/

/
x y

z

/

Mount file system 2 on /b then can refer
To z as /b/x/z

File System 1

File System 1

-44

Common Interface?

❒ Different FS usually need the same “hooks”
into the OS
❍ Some need special things?

❒ Vnode interface
❍ Proposed in 1986
❍ Allow multiple FS in the same OS (without ugly

case statements everywhere)
❍ Allow FS to work on multiple OSes? (that’s

harder)

-45

struct vnode

❒ One vnode structure for every opened (in-
use) file

❒ Contains:
❍ Array of pointers to procedures to implement

basic operations on files
❍ Pointer to parent FS
❍ Pointer to FS that is mounted on top of this file

(if any)
❍ Reference count so know when to release the

vnode

-46

Vnode ops

❒ Open, close, create, remove, read, write
❒ Mkdir, rmdir, readdir

❍ You don’t know what that FS’s directory format will be
❒ Symlink, Link, readlink (soft/hard links)
❒ Getattr, setattr, access (get/set/check

attributes like permissions)
❒ Fsync
❒ Seek
❒ Map, getpage, putpage (memory map a file)
❒ Ioctl (misc I/O control ops)
❒ Rename
❒ …

-47

struct vfs

❒ One vfs structure in the OS for each
mounted FS

❒ Contains:
❍ Array of pointers to procedures that implement

basic operations on file systems
❍ FS type
❍ Native block size
❍ Pointer to vnode this FS is mounted on

-48

vfsops
❒ Mount: procedure called to mount a FS of this

type on a specified vnode
❒ Unmount: procedure to release this FS
❒ Root: return root vnode of this Fs
❒ Statvfs: return research usage status of the FS
❒ Sync: flush all dirty memory buffers to persistent

storage managed by this FS
❒ Vget: turn a fileId into a a pointer to vnode for a

specific file
❒ Mountroot: mount this FS as the root FS on this

host
❒ Swapvp: return vnode of file in this FS to which

the OS can swap

9

-49

Evolving vnode interface?

❒ Kleiman86 => Rosenthal90

-50

Do we need FS interface?

❒ FS Interface
❍ Giving things file names seems a bit arbitrary

❒ FS hierarchy vs directory search
❒ People like to find information both ways

❍ I know exactly what I want don’t bother looking
for me I will get it myself

❍ Give me everything matching these
characteristics

-51

Outtakes

