
1

-1

9: Transactions

Last Modified:
10/8/2002 9:39:59 PM

-2

Definition

❒ A transaction is a collection of instructions (or
operations) that perform a single logical function.

❒ Customer buys a car
❍ MerchantsInventory--
❍ Customer Bank Account -=PRICE
❍ Merchant Bank Account+=PRICE
❍ CustomerHistory++
❍ ….

❒ All of these things should happen indivisibly – all
or nothing? Even in the presence of failures and
multiple concurrently executing transactions!

❒ How do you make that happen when it is physically
impossible to change all these things at the same
time?

-3

Commit/Abort

❒ Introduce concept of commit (or save) at
the end of a transaction

❒ Until commit, all the individual operations
that make up the transaction are pending

❒ At any point before the transaction is
committed, it might also be aborted

❒ If a transaction is aborted, the system will
undo or rollback the effects of any
individual operations which have completed

-4

Database Systems

❒ Manage transactions (much like OSes manage
processes)

❒ Ensure the correct synchronization and the saving
of modified data on transaction commit

❒ Databases and OSes have a lot in common!
❒ Databases get a better roadmap

❍ SQL queries provide up front map of transactions data
access intentions

❍ General processes change pattern based on user input
and are not as structured in their data access
specifications

❍ Some OSes provide APIs for programs to declare their
intentions

-5

ACID properties of
Transactions
❒ (A)tomicity

❍ Happen as a unit – all of nothing
❒ (C)onsistency

❍ Integrity constraints on data are maintained
❒ (I)solation

❍ Other transactions cannot see or interfere with the
intermediate stages of a transaction

❒ (D)urability
❍ Committed changes are reflected in the data

permanently even in the face of failures in the system
❒ Atomicity, consistency and isolation are all the

result of synchronization among transactions like
the synchronization we have been studying
between processes

-6

Durability?

❒ How can we guarantee that committed
changes are remembered even in the face
of failures?

❒ Remembering = saving the data to some
kind of storage device

2

-7

Types of Storage

❒ Volatile Storage
❍ DRAM memory loses its contents when the power is

removed
❒ Non-Volatile Storage

❍ Hard disks, floppy disks, CDs, tape drives are all
examples of storage that does not lose its contents when
power is removed

❒ Stable Storage
❍ Still non-volatile storage can lose its contents (magnets,

microwave ovens, sledge hammers,..)
❍ “Stable storage” implies that the data has been backed

up to multiple locations such that it is never lost

-8

So what does this mean?

❒ Processes that run on in a computer system
write the data they compute into registers,
then into caches, then into DRAM
❍ These are all volatile! (but they are also fast)

❒ To survive most common system crashes,
data must be written from DRAM onto disk
❍ This in non-volatile but much slower than DRAM

❒ To survive “all” crashes, the data must be
duplicated to an off-site server or written
to tape or ….. (how paranoid are you/how
important is your data?)

-9

ACID?

❒ So how are we going to guarantee that
transactions fulfill all the ACID properties
❍ Synchronize data access among multiple

transactions
❍ Make sure that before commit, all the changes

are saved to at least non-volatile storage
❍ Make sure that before commit we are able to

undo any intermediate changes if an abort is
requested

❒ How?

-10

Log-Based Recovery

❒ While running a transaction, do not make changes
to the real data; instead make notes in a log about
what *would* change

❒ Anytime before commit can just purge the records
from the log

❒ At commit time, write a “commit” record in the log
so that even if you crash immediately after that
you will find these notes on non-volatile storage
after rebooting

❒ Only after commit, process these notes into real
changes to the data

-11

Log records

❒ Transaction Name or Id
❍ Is this part of a commit or an abort?

❒ Data Item Name
❍ What will change?

❒ Old Value
❒ New Value

-12

Recovery After Crash

❒ Read log
❒ If see operations for a transaction but not

transaction commit, then undo those
operations

❒ If see the commit, then redo the
transaction to make sure that its affects
are durable

❒ 2 phases – look for all committed then go
back and look for all their intermediate
operations

3

-13

Making recovery faster

❒ Reading the whole log can be quite time
consuming
❍ If log is long then transactions at beginning are

likely to already have been incorporated.
❒ Therefore, the system can periodically

write outs its entire state and then discard
the log to that point

❒ This is called a checkpoint
❒ In the case of recovery, the system just

needs to read in the last checkpoint and
process the log that came after it

-14

Synchronization

❒ Just like the execution of our critical sections
❒ The final state of multiple transactions running

must the same as if they ran one after another in
isolation

❍ We could just have all transactions share a lock such that
only one runs at a time

❍ Does that sound like a good idea for some huge
transaction processing system (like airline reservations
say?)

❒ We would like as much concurrency among
transactions as possible

-15

Serializability

❒ Serial execution of transaction A and B
❍ Op 1 in transaction A
❍ Op 2 in transaction A
❍ ….
❍ Op N in transaction A
❍ Op 1 in transaction B
❍ Op 2 in transaction B
❍ …
❍ Op N in transaction B

❒ All of A before any of B
❒ Note: Does not apply outcome of A then B is same

and B then A!
-16

Serializability

❒ Certainly strictly serial access provides
atomicity, consistency and isolation
❍ One lock and each transaction must hold it for

the whole time
❒ Relax this by allowing the overlap of non-

conflicting operations
❒ Also allow possibly conflicting operations to

proceed in parallel and then abort one only
if detect conflict

-17

Timestamp-Based Protocols

❒ Method for selecting the order among
conflicting transactions

❒ Associate with each transaction a number
which is the timestamp or clock value when
the transaction begins executing

❒ Associate with each data item the largest
timestamp of any transaction that wrote
the item and another the largest
timestamp of a transaction reading the
item

-18

Timestamp-Ordering

❒ If timestamp of transaction wanting to
read data < write timestamp on the data
then it would have needed to read a value
already overwritten so abort the reading
transaction

❒ If timestamp if transaction wanting to
read data < read timestamp on the data
then the last read would be invalid but it is
commited so abort the writing transaction

❒ Ability to abort is crucial!

4

-19

Outtakes

-20

Is logging expensive?

❒ Yes and no
❍ Yes because it requires two writes to

nonvolatile storage (disk)
❍ Not necessarily because each of these two

writes can be done more efficiently than the
original

• Logging is sequential
• Playing the log can be reordered for efficient disk

access

-21

Deadlock

❒ We’d also like to avoid deadlock among
transactions

❒ Common solution here is breaking “hold and wait”
❒ Two phase locking approach

❍ Generalization of getting all the locks you need at once
then just release them as you no longer need them

❍ Growing phase – transaction may obtain locks but not
release any

• Violates hold and wait?
❍ Shrinking phase – transaction may release locks but not

obtain any

