
1

-1

7: Synchronization

Last Modified: 
10/8/2002 9:37:06 PM

-2

Last time

❒ Need for synchronization primitives
❒ Locks and building locks from HW 

primitives
❒ Semaphores and building semaphores from 

locks

-3

Uses of Semaphores

❒ Mutual exclusion
❍ Binary semaphores (wait/signal used just like 

lock/unlock)
❍ “hold”

❒ Managing N copies of a resource
❍ Counting semaphores
❍ “enter”

❒ Anything else?
❍ Another type of synchronization is to express 

ordering/scheduling constraints 
❍ “Don’t allow x to proceed until after y”

-4

Semaphores for expressing ordering

❒ Initialize semaphore value to 0
❒ Code:

Pi Pj
M M

A wait
signal B

❒ Execute B in Pj only after A executed in Pi
❒ Note: If signal executes first, wait will 

find it is an signaled state (history!)

-5

Window’s Events and UNIX 
Signals
❒ Window’s Events

❍ Synchronization objects used somewhat like semaphores 
when they are used for ordering/scheduling constraints

❍ One process/thread can wait for an event to be signaled 
by another process/thread

❒ Recall: UNIX signals 
❍ Kill = send signal; Signal = catch signal
❍ Many system defined but also signals left to user 

definition
❍ Can be used for synchronization

• Signal handler sets a flag
• Main thread polls on the value of the flag
• Busy wait though

-6

Window’s Events

Create/destroy
HANDLE CreateEvent( 

LPSECURITY_ATTRIBUTES lpsa, // security privileges (default = NULL) 
BOOL bManualReset, // TRUE if event must be reset manually 
BOOL bInitialState, // TRUE to create event in signaled state 
LPTSTR lpszEventName ); // name of event (may be NULL) 

BOOL CloseHandle( hObject );

Wait
DWORD WaitForSingleObject( 

HANDLE hObject, // object to wait for 
DWORD dwMilliseconds );

Signal (all threads that wait on it receive)
BOOL SetEvent( HANDLE hEvent );  //signal on
BOOL ResetEvent( HANDLE hEvent ); //signal off



2

-7

Generalize to Messaging

❒ Synchronization based on data transfer 
(atomic) across a channel

❒ In general, messages can be used to 
express ordering/scheduling constraints
❍ Wait for message before do X
❍ Send message = signal 

❒ Direct extension to distributed systems

-8

Problems with Semaphores

❒ There is no syntactic connection between the 
semaphore ( or lock or event) and the shared 
data/resources it is protecting 

❍ Thus the “meaning” of the semaphore is defined by the 
programmer’s use of it

• Bad software engineering
– Semaphores basically global variables accessed by all threads 

• Easy for programmers to make mistakes

❒ Also no separation between use for mutual 
exclusion and use for resource management and 
use for expressing ordering/scheduling 
constraints

-9

Programming Language Support

❒ Add programming language support for 
synchronization
❍ Declare a section of code to require mutually 

exclusive access (like Java’s synchronized)
❍ Associate the shared data itself with the 

locking automatically
❒ Monitor = programming language support to 

enforce synchronization
❍ Mutual exclusion code added by the compiler!

-10

Monitors

❒ A monitor is a software module that 
encapsulates:
❍ Shared data structures
❍ Procedures that operated on them
❍ Synchronization required of processes that 

invoke these procedures
❒ Like a public/private data interface 

prevents access to private data members; 
Monitors prevent unsynchronized access to 
shared data structures 

-11

Example: bankAccount
Monitor bankAccount{

int balance;

int readBalance( ){return balance};
void upateBalance(int newBalance){

balance = newBalance;
} 
int withdraw (int amount) {

balance = balance – amount;
return balance;

}
int deposit (int amount){

balance = balance + amount;
return balance;

}
}

Locking added
by the compiler!

-12

Monitor

S

balance

readBalance
updateBalance

withdraw

deposit

Shared data

ProceduresWaiting queue

One thread
In Monitor



3

-13

Waiting Inside a Monitors

❒ What if you need to wait for an event within one 
of the procedures of a monitor?

❒ Monitors as we have seen to this point enforce 
mutual exclusion – what about the

❒ Introduce another synchronization object, the 
condition variable

❒ Within the monitor declare a condition variable:
condition x;

-14

Wait and signal

❒ Condition variables, like semaphores, have 
the two operations have the two 
operations, wait and signal.
❍ The operation x.wait() means that the process 

invoking this operation is suspended until 
another process invokes x.signal();

❍ The operation wait allows another process to 
enter the monitor (or no one could ever call 
signal!)

❍ The x.signal operation resumes exactly one 
suspended process.  If no process is suspended, 
then the signal operation has no effect 

-15

Semaphores vs Condition 
Variables
❒ I’d like to be able to say that condition 

variables are just like semaphores but …
❒ With condition variables, if no process is 

suspended then the signal operation has no 
effect

❒ With semaphores, signal increments the 
value regardless of whether any process is 
waiting

❒ Semaphores have “history” (they 
remember signals) while condition variables 
have no history

-16

Monitor With Condition 
Variables

S

balance

readBalance
updateBalance

withdraw

deposit

Waiting queue

One thread
Running in 
Monitor

Condition Variables 
and their associated
wait queues

-17

Condition Variable Alone?

❒ Could you use a condition variable concept 
outside of monitors?

❒ Yes, basically a semaphore without history
❍ Couldn’t do locking with it because no mutual 

exclusion on its own
❍ Couldn’t do resource management (counting 

semaphore) because no value/history
❍ Could you use it for ordering/scheduling 

constraints? Yes but with different semantics

-18

Condition Variables for 
ordering/scheduling

❒ Code:
Pi Pj
M M

A wait
signal B

❒ Execute B in Pj only after A executed in Pi
❒ If signal first, it is lost; wait will block 

until next signal ( no history!)



4

-19

Pseudo-Monitors

❒ Monitor = a lock (implied/added by 
compiler) for mutual exclusion PLUS zero 
or more condition variables to express 
ordering constraints

❒ What if we wanted to have monitor without 
programming language support?
❍ Declare locks and then associate condition 

variables with a lock
❍ If wait on the condition variable, then release 

the lock

-20

Pthread’s Condition Variables

Create/destroy
int pthread_cond_init (pthread_cond_t *cond, pthread_condattr_t *attr); 
int pthread_cond_destroy (pthread_cond_t *cond); 

Wait
int pthread_cond_wait (pthread_cond_t *cond, pthread_mutex_t *mut); 

Timed Wait
int pthread_cond_timedwait (pthread_cond_t *cond, pthread_mutex_t *mut, const

struct timespec *abstime); 

Signal
int pthread_cond_signal (pthread_cond_t *cond);

Broadcast
int pthread_cond_broadcast (pthread_cond_t *cond);

-21

Example: Pseudo-monitors
pthread_mutex_t monitorLock;
pthread_cond_t conditionVar;

void pseudoMonitorProc(void)
{

pthread_mutex_lock(&mutexLock);
…..

pthread_cond_wait(&conditionVar, &monitorLock);
….

pthread_mutex_unlock(&mutexLock);
}

-22

More about monitors

-23

Monitor Invariants

❒ Can specify invariants that should hold 
whenever no thread is in the monitor

❒ Not checked by compiler
❒ More like a precondition to be respected 

by the programmer

-24

Who first?

❒ If thread in Monitor calls x.signal waking 
another thread then who is running in the 
monitor now? (Can’t both be running in the 
monitor!)

❒ Hoare monitors
❍ Run awakened thread next; signaler blocks

❒ Mesa monitors
❍ Waiter is made ready; signaler continues



5

-25

Does it matter? Yes

❒ If waiter runs immediately, then clearly 
“condition” being signaled still holds 
❍ Signaler must restore any “monitor invariants” 

before signaling
❒ If waiter runs later, then when waiter 

finally enters monitor must recheck 
condition before executing
❍ Signaler need not restore any “monitor 

invariants” before signaling upon exiting

-26

Write different code as a 
result
❒ If waiter runs immediately then

if (condition not true)
C.wait()

❒ If waiter runs later then
while (condition not true)

C.wait()
❒ Conclusion?

❍ Mesa style (waiter runs later) has fewer 
context switches and directly supports a 
broadcast primitive (I.e. c.signalAll)

❍ While instead of if not a big price to pay

-27

Semaphores vs Monitors

❒ If have one you can implement the other…

-28

Implementing Semaphores 
With Monitors 
Monitor semaphore {

int value;
conditionVariable_t waitQueue;

void setValue(int value){
value = newValue;

}

int getValue(){return value;}

void wait(){
value--;
while (value < 0){

//Notice Mesa 
semantics

condWait(&waitQueue);
}

}

void signal (){
value++;
condSignal(&waitQueue);

}

} //end monitor semaphore

-29

Implementing Monitors with 
Semaphores 
semaphore_t mutex, next;
int nextCount = 1;

Initialization code:

mutex.value = 1;
next.value = 0;

For each procedure P in Monitor,
implement P as

Wait (mutex);
unsynchronizedBodyOfP();
if (nextCount >0){

signal(next);
}else { 

signal(mutex);
}

conditionVariable_t {
int count;
semaphore_t sem;

}
condWait (conditionVariable_t *x) {

//one more waiting on this cond
x->count = x_count++;
//wake up someone 
if (nextCount > 0){

signal(next);
}else {

signal (mutex);
}
wait(x->sem);
x->count = x->count--;

}
condSignal(conditionVariable_t *x){

//if no one waiting do nothing!
if (x->count > 0){

next_count = nextCount++;
signal(x->sem);
wait (next);
nextCount--;

}
} -30

Software Synchronization 
Primitives Summary
❒ Locks

❍ Simple semantics, often close to HW primitives, often 
inefficient 

❍ Used to build other primitives
❒ Semaphores

❍ More efficient
❍ Simple primitives, surprisingly difficult to program 

correctly with
❒ Events/Messages

❍ Simple model of synchronization via data sent over a 
channel

❒ Monitors
❍ Language constructs that automate the locking
❍ Easy to program with where supported and where model 

fits the task



6

-31

Adaptive Locking in Solaris

❒ Adaptive mutexes
❍ Multiprocessor system if can’t get lock

• And thread with lock is not running, then sleep
• And thread with lock is running, spin wait

❍ Uniprocessor if can’t get lock
• Immediately sleep (no hope for lock to be released while 

you are running)
❒ Programmers choose adaptive mutexes for short 

code segments and semaphores or condition 
variables for longer ones 

❒ Blocked threads placed on separate queue for 
desired object

❍ Thread to gain access next chosen by priority and 
priority inversion is implemented 

-32

Conclusion?

❒ Synchronization primitives all boil down to 
representing shared state (possibly large) 
with a small amount of shared state

❒ All need to be built on top of HW support
❒ Once have one kind, can usually get to 

other kinds
❒ Which one you use is a matter of 

programmatic simplicity (matching 
primitive to the problem) and taste

-33

Next time

❒ Classic synchronization problems and their 
solutions
❍ Bounded Buffer
❍ Readers/Writers
❍ Dining Philosophers


