
1

-1

6: Synchronization

Last Modified:
9/24/2002 9:54:32 AM

-2

Concurrency is a good thing

❒ So far we have mostly been talking about
constructs to enable concurrency
❍ Multiple processes, inter-process

communication
❍ Multiple threads in a process

❒ Concurrency critical to using the hardware
devices to full capacity
❍ Always something that needs to be running on

the CPU, using each device, etc.
❒ We don’t want to restrict concurrency

unless we absolutely have to

-3

Restricting Concurrency

When might we *have* to restrict concurrency?

❒ Some resource so heavily utilized that no one is
getting any benefit from their small piece

❍ too many processes wanting to use the CPU (while (1)
fork)

❍ “thrashing”
❍ Solution: Access control

❒ Two processes/threads we would like to execute
concurrently are going to access the same data

❍ One writing the data while the other is reading; two
writing over top at the same time

❍ Solution: Synchronization
❍ Synchronization primitives enable SAFE concurrency

-4

Correctness

❒ Two concurrent processes/threads must be able
to execute correctly with *any* interleaving of
their instructions

❍ Scheduling is not under the control of the application
writer

❍ Note: instructions != line of code in high level
programming language

❒ If two processes/threads are operating on
completely independent data, then no problem

❒ If they share data, then application programmer
may need to introduce synchronization primitives
to safely coordinate their access to the shared
data/resources

❍ If shared data/resources are read only, then also no
problem

2

-5

Illustrate the problem

❒ Suppose we have multiple processes/threads
sharing a database of bank account balances

❒ Consider the deposit and withdraw functions
int withdraw (int account, int amount) {

balance = readBalance(account);
balance = balance – amount;
updateBalance(account, balance);
return balance;

}
int deposit (int account, int amount) {

balance = readBalance(account);
balance = balance + amount;
updateBalance(account, balance);
return balance;

}

❒ What happens if multiple threads execute these
functions for the same account at the same time?

❍ Notice this is not read-only access -6

Example

❒ Balance starts at $500 and then two processes
withdraw $100 at the same time

❍ Two people at different ATMs; Update runs on the same
back-end computer at the bank

❒ What could go wrong?
❍ Different Interleavings => Different Final Balances !!!

int
withdraw (int account, int amount)
{

balance = readBalance(account);
balance = balance - amount;
updateBalance(account, balance);
return balance;

}

int
withdraw (int account, int amount)
{

balance = readBalance(account);
balance = balance - amount;
updateBalance(account, balance);
return balance;

}

-7

$500 - $100 - $100 = $400

❒ If the second does readBalance before the second
does writeBalance…….

❒ Two examples:

❒ Before you get too happy, deposits can be lost just
as easily!

balance = readBalance(account);

balance = balance - amount;
updateBalance(account, balance);

balance = readBalance(account);

balance = balance - amount;
updateBalance(account, balance);

balance = readBalance(account);

balance = balance - amount;
updateBalance(account, balance);

balance = readBalance(account);
balance = balance - amount;
updateBalance(account, balance);

$500

$500

$400

-8

Race condition

❒ When the correct output depends on the
scheduling or relative timings of
operations, you call that a race condition.

❒ Output is non-deterministic
❒ To prevent this we need mechanisms for

controlling access to shared resources
❍ Enforce determinism

3

-9

Synchronization Required

❒ Synchronization required for all shared data
structures like

❍ Shared databases (like of account balances)
❍ Global variables
❍ Dynamically allocated structures (off the heap) like

queues, lists, trees, etc.
❍ OS data structures like the running queue, the process

table, …
❒ What are not shared data structures?

❍ Variables that are local to a procedure (on the stack)
❍ Other bad things happen if try to share pointer to a

variable that is local to a procedure

-10

Critical Section Problem

❒ Model processes/threads as alternating
between code that accesses shared data
(critical section) and code that does not
(remainder section)

do {
ENTRY SECTION

critical section
EXIT SECTION

remainder section
}

❒ ENTRY SECTION requests access to
shared data ; EXIT SECTION notifies of
completion of critical section

-11

Solution to Critical Section
Problem
❒ Mutual Exclusion

❍ Only one process is allowed to be in its critical section at
once

❍ All other processes forced to wait on entry
❍ When one process leaves, others may enter

❒ Progress
❍ If process is in the critical section, it should not be able

to stop another process from entering it
❍ Decision of who will be next can’t be delayed indefinitely
❍ Can’t just give one process access; can’t deny access to

everyone
❒ Bounded Waiting

❍ After a process has made a request to enter its critical
section, there should be a bound on the number of times
other processes can enter their critical sections

-12

Synchronization Primitives

❒ Synchronization Primitives are used to implement
a solution to the critical section problem

❒ OS uses HW primitives (we’ve talked about these)
❍ Disable Interrupts
❍ HW Test and set

❒ OS exports primitives to user applications; User
level can build more complex primitives from
simpler OS primitives

❍ Locks
❍ Semaphores
❍ Monitors
❍ Messages

4

-13

Locks

❒ Object with two simple operations: lock
and unlock

❒ Threads use pairs of lock/unlock
❍ Lock before entering a critical section
❍ Unlock upon exiting a critical section
❍ If another thread in their critical section, then

lock will not return until the lock can be
acquired

❍ Between lock and unlock, a thread “holds” the
lock

-14

Withdraw revisited

int
withdraw (int account, int amount)
{

lock(whichLock(acccount));

balance = readBalance(account);
balance = balance - amount;
updateBalance(account, balance);

unlock(whichLock(account));

return balance;
}

ENTER CRITICAL SECTION

ENTER CRITICAL SECTION

EXIT CRITICAL SECTION

What would happen if the programmer
forgot lock? No exclusive access
Forgot unlock? deadlock
put it at the wrong place?
called lock or unlock in both places?

Consider the locking granularity? One lock or one lock per account?
Is it ok for return to be outside the critical section?

-15

$500 - $100 - $100 = $300
lock (whichLock(account));
balance = readBalance(account);

balance = balance - amount;
updateBalance(account, balance);
unlock (whichLock(account));

lock (whichLock(account));

balance = readBalance(account);
balance = balance - amount;
updateBalance(account, balance);
unlock (whichLock(account));

BLOCKS!

UNTIL GREEN UNLOCKS

-16

Implementing Locks

❒ Ok so now we see that all is well *if* we
have these objects called locks

❒ How do we implement locks?
❍ Recall: The implementation of lock has a critical

section too (read lock; if lock free, write lock
taken)

❒ Need help from hardware
❍ Make basic lock primitive atomic

• Atomic instructions like test-and-set or read-modify
–write, compare-and-swap

❍ Prevent context switches
• Disable/enable interrupts

5

-17

Disable/enable interrupts

❒ Recall how the OS can implement lock as
disable interrupts and unlock as enable
interrupts

❒ Problems
❍ Insufficient on a multiprocessor because only

disable interrupts on the single processor
❍ Cannot be used safely at user-level -not even

exposed to user-level through some system call!
• Once interrupts are disabled, there is no way for the

OS to regain control until the user level
process/thread yields voluntarily (or requests some
OS service)

-18

Test-and-set

❒ Suppose the CPU provides an atomic test-
and-set instruction with semantics much
like this:

bool test_and_set(bool *flag){

bool oldValue = *flag;

*flag = true;

return old;

}

❒ Without an instruction like this, use
multiple instructions (not atomic)
load $register $mem vs. test-and-set $register $mem
store 1 $mem

-19

Implementing a lock with
test-and-set
struct lock_t {

bool held = FALSE;

}

void lock(lock_t *l){

while (test_and_set(lock->held)){};

}

void unlock(lock_t *l){

lock->held = FALSE;

}

When call lock function,
if the lock is not held (by
someone else) then
will swap FALSE for TRUE
atomically!!! Test_and_set
will return FALSE jumping
out of the while loop with
the lock held

When call lock function,
if the lock is held (by
someone else) then will
frantically swap TRUE for
TRUE many times until
other person calls unlock

-20

Spinlocks

❒ The type of lock we saw on the last slide is
called a spinlock
❍ If try to lock and find already locked then will

spin waiting for the lock to be released
❒ Very wasteful of CPU time!

❍ Thread spinning still uses its full share of the
CPU cycles waiting – called busy waiting

❍ During that time, thread holding the lock
cannot make progress!

❍ What if thread waiting has higher priority than
the threads holding the lock!!

6

-21

Other choices?

❒ OS can choose between spinlocks and
disable/enable interrupts

❒ At user level are we stuck with wasteful
spinlocks?
❍ No – can build higher level synchronization

primitives and objects that avoid the constant
spinning

❍ Examples: semaphores and monitors

-22

Semaphores

❒ Recall: the lock object has one data
member the boolean value, held

❒ The semaphore object has two data
members: an integer value and a queue of
waiting processes/threads

-23

Wait and Signal

❒ Recall: Locks are manipulated through two
operations: lock and unlock

❒ Semaphores are manipulated through two
operations: wait and signal

❒ Wait operation (like lock)
❍ Decrements the semaphore’s integer value and blocks the

thread calling wait until the semaphore is available
❍ Also called P() after the Dutch word, proberen, to test

❒ Signal operation (like unlock)
❍ Increments the semaphore’s integer value and if threads

are blocked waiting, allow one to “enter” the semphore
❍ Also called V() after the Dutch word, verhogen, to

increment
❒ Why Dutch? Semaphores invented by Edgar

Dykstra for the THE OS (strict layers) in 1968 -24

Implementing a semaphore
struct semaphore_t {

int value;
queue waitingQueue;

}
void wait(semaphore_t *s){

s->value--;
if (s->value < 0){
add self to s->waitingQueue
block
}

}
void signal(semaphore_t *s){

s->value++;
if (s->value <=0) {

P =remove process from s->waitingQueue
wakeup (P)

}

Whats wrong with this?

7

-25

Implementing a semaphore with
a lock
struct semaphore_t {

int value;

queue waitingQueue;

lock_t l;

}

void wait(semaphore_t *s){
lock(&s->l);
s->value--;
if (s->value < 0){
add self to s->waitingQueue
unlock(&s->l);
block
}
unlock(&s->l);

}
void signal(semaphore_t *s){

lock(&s->l);
s->value++;
if (s->value <=0) {

P =remove process from s->waitingQueue
wakeup (P)

} else {
unlock(&s-l);

}
}

-26

Avoiding busy-waiting?

❒ Threads block on the queue associated with
the semaphore instead of busy waiting

❒ Busy waiting is not gone completely
❍ When accessing the semaphore’s critical

section, thread holds the semaphore’s lock and
another process that tries to call wait or signal
at the same time will busy wait

❒ Semaphore’s critical section is normally
much smaller than the critical section it is
protecting so busy waiting is greatly
minimized

-27

Semaphore’s value

❒ When value > 0, semaphore is “open”
❍ Thread calling wait will continue (after

decrementing value)
❒ When value <= 0, semaphore is “closed”

❍ Thread calling wait will decrement value and
block

❒ When value is negative, it tells how many
threads are waiting on the semaphore

❒ What would a positive value say?

-28

Binary vs Counting Semaphores

❒ Binary semaphore
❍ Semaphore’s value initialized to 1
❍ Used to guarantee exclusive access to shared

resource (functionally like a lock but without
the busy waiting)

❒ Counting semaphore
❍ Semaphore’s value initialized to N >0
❍ Used to control access to a resource with N

interchangeable units available (Ex. N
processors, N pianos, N copies of a book,…)

❍ Allow threads to enter semaphore as long as
sufficient resources are available

8

-29

Pthread’s Locks (Mutex)

Create/destroy
int pthread_mutex_init (pthread_mutex_t *mut, const pthread_mutexattr_t

*attr);
int pthread_mutex_destroy (pthread_mutex_t *mut);

Lock
int pthread_mutex_lock (pthread_mutex_t *mut);

Non-blocking Lock
int pthread_mutex_trylock (pthread_mutex_t *mut);

Unlock
int pthread_mutex_unlock (pthread_mutex_t *mut);

-30

Semaphores

Not part of pthreads per se
#include <semaphore.h>
Support for use with pthreads varies (sometime if one
thread blocks whole process does!)

Create/destroy
int sem_init (sem_t *sem, int sharedBetweenProcesses , int initalValue);
Int sem_destory(sem_t *sem)

Wait
int sem_wait (sem_t *sem)
int sem_trywait(sem_t * sem)

Signal
int sem_post(sem_t *sem);

Get value
int sem_getvalue(sem_t *, int * value);

-31

Window’s Locks (Mutex)

Create/destroy
HANDLE CreateMutex(

LPSECURITY_ATTRIBUTES lpsa, // optional security attributes
BOOL bInitialOwner // TRUE if creator wants ownership
LPTSTR lpszMutexName) // object’s name

BOOL CloseHandle(hObject);

Lock
DWORD WaitForSingleObject(

HANDLE hObject, // object to wait for
DWORD dwMilliseconds);

Unlock
BOOL ReleaseMutex(

HANDLE hMutex);

-32

Window’s Locks
(CriticalSection)

Create/Destroy
VOID InitializeCriticalSection(LPCRITICAL_SECTION lpcs);
VOID DeleteCriticalSection(LPCRITICAL_SECTION lpcs);

Lock
VOID EnterCriticalSection(LPCRITICAL_SECTION lpcs);

Unlock
VOID LeaveCriticalSection(LPCRITICAL_SECTION lpcs);

9

-33

Window’s Semaphores

Create
HANDLE CreateSemaphore(

LPSECURITY_ATTRIBUTES lpsa, // optional security attributes
LONG lInitialCount, // initial count (usually 0)
LONG lMaxCount, // maximum count (limits # of threads)
LPTSTR lpszSemName); // name of the semaphore (may be NULL)

BOOL CloseHandle(hObject);

Lock
DWORD WaitForSingleObject(

HANDLE hObject, // object to wait for
DWORD dwMilliseconds);
Unlock

BOOL ReleaseSemaphore(
HANDLE hSemaphore,
LONG lRelease, // amount to increment counter on release

// (usually 1)
LPLONG lplPrevious); // variable to receive the previous count -34

Sharing Window’s
Synchronization Objects
❒ Threads in the same process can share handle

through a global variable
❒ Critical sections can only be used within the same

process
❍ Much faster though

❒ Handles to mutexes and semaphores can be shared
across processes

❍ One process creates another and the child inherits the
handle (must specifically mark handle for inheritance)

❍ Unrelated processes can share through DuplicateHandle
function or OpenMutex or OpenSemaphore (based on
knowledge of the name – like a shared file name)

-35

Next time

❒ Other synchronization primitives
❒ Using synchronization primitives to solve

some classic synchronization problems

