
1

-1

4: Threads

Last Modified:
9/17/2002 2:27:59 PM

-2

Processes

❒ Recall: A process includes
❍ Address space (Code, Data, Heap, Stack)
❍ Register values (including the PC)
❍ Resources allocated to the process

• Memory, open files, network connections
❒ Recall: how processes are created

❍ Initializing the PCB and the address space (page tables)
takes a significant amount of time

❍ Experiment: Time N iterations of fork or vfork
❒ Recall: Type of interprocess communication

❍ IPC is costly also
❍ Communication must go through OS (“OS has to guard

any doors in the walls it builds around processes for their
protection”)

-3

Problem needs > 1 independent
sequential process?
❒ Some problems are hard to solve as a single

sequential process; easier to express the solution
as a collection of cooperating processes

❍ Hard to write code to manage many different tasks all at
once

❍ How would you write code for “make phone calls while
making dinner while doing dishes while looking through
the mail”

❍ Can’t be independent processes because share data (your
brain) and share resources (the kitchen and the phone)

❍ Can’t do them sequentially because need to make
progress on all tasks at once

❍ Easier to write “algorithm” for each and when there is a
lull in one activity let the OS switch between them

❒ On a multiprocessor, exploit parallelism in problem
-4

Example: Web Server

❒ Web servers listen on an incoming socket for
requests

❍ Once it receives a request, it ignore listening to the
incoming socket while it services the request

❍ Must do both at once
❒ One solution: Create a child process to handle the

request and allow the parent to return to listening
for incoming requests

❒ Problem: This is inefficient because of the
address space creation (and memory usage) and
PCB initialization

2

-5

Observation

❒ There are similarities in the process that
are spawned off to handle requests
❍ They share the same code, have the same

privileges, share the same resources (html files
to return, cgi script to run, database to search,
etc.)

❒ But there are differences
❍ Operating on different requests
❍ Each one will be in a different stage of the

“handle request” algorithm

-6

Idea

❒ Let these tasks share the address space,
privileges and resources

❒ Give each their own registers (like the PC),
their own stack etc

❒ Process – unit of resource allocation
(address space, privileges, resources)

❒ Thread – unit of execution (PC, stack, local
variables)

-7

Single-Threaded vs
Multithreaded Processes

-8

Process vs Thread

❒ Each thread belongs to one process
❒ One process may contain multiple threads
❒ Threads are logical unit of scheduling
❒ Processes are the logical unit of resource

allocation

3

-9

Address Space Map For Single-
Threaded Process

Stack
(Space for local variables etc.
For each nested procedure call)

Heap
(Space for memory dynamically

allocated e.g. with malloc)

Statically declared variables
(Global variables)

Code
(Text Segment)

Stack Pointer

PC

Ox0000

Biggest
Virtual
Address

-10

Address Space Map For
Multithreaded Process

Heap
(Space for memory dynamically

allocated e.g. with malloc)

Statically declared variables
(Global variables)

Code
(Text Segment)

Thread 1 stack
SP (thread 1)

PC (thread 2)
Ox0000

Biggest
Virtual
Address

PC (thread 1)

Thread 2 stack
SP (thread 2)

-11

Kernel support for threads?

❒ Some OSes support the notion of multiple threads
per process and others do not

❒ Even if no “kernel threads” can build threads at
user level

❍ Each “multi-threaded” program gets a single kernel in the
process

❍ During its timeslice, it runs code from its various threads
❍ User-level thread package schedules threads on the

kernel level process much like OS schedules processes on
the CPU

❍ User-level thread switch must be programmed in
assembly (restore of values to registers, etc.)

-12

User-level Threads

4

-13

User-level threads

❒ How do user level thread packages avoid having
one thread monopolize the processes time slice?

❍ Solve much like OS does
❒ Solution 1: Non-preemptive

❍ Rely on each thread to periodically yield
❍ Yield would call the scheduling function of the library

❒ Solution 2: OS is to user level thread package like
hardware is to OS

❍ Ask OS to deliver a periodic timer signal
❍ Use that to gain control and switch the running thread

-14

Kernel vs User Threads

❒ One might think, kernel level threads are
best and only if kernel does not support
threads use user level threads

❒ In fact, user level threads can be much
faster
❍ Thread creation , “Context switch” between

threads, communication between threads all
done at user level

❍ Procedure calls instead of system calls
(verification of all user arguments, etc.) in all
these cases!

-15

Problems with User-level
threads
❒ OS does not have information about thread

activity and can make bad scheduling
decisions

❒ Examples:
❍ If thread blocks, whole process blocks

• Kernel threads can take overlap I/O and computation
within a process!

❍ Kernel may schedule a process with all idle
threads

-16

Scheduler Activations

❒ If have kernel level thread support available then
use kernel threads *and* user-level threads

❒ Each process requests a number of kernel threads
to use for running user-level threads on

❒ Kernel promises to tell user-level before it blocks
a kernel thread so user-level thread package can
choose what to do with the remaining kernel level
threads

❒ User level promises to tell kernel when it no longer
needs a given kernel level thread

5

-17

Thread Support

❒ Pthreads is a user-level thread library
❍ Can use multiple kernel threads to implement it on

platforms that have kernel threads
❒ Java threads (extend Thread class) run by the

Java Virtual Machine
❒ Kernel threads

❍ Linux has kernel threads (each has its own task_struct) –
created with clone system call

❍ Each user level thread maps to a single kernel thread
(Windows 95/98/NT/2000/XP, OS/2)

❍ Many user level threads can map onto many kernel level
threads like scheduler activations (Windows NT/2000
with ThreadFiber package, Solaris 2)

-18

Pthreads Interface

❒ POSIX threads, user-level library supported on
most UNIX platforms

❒ Much like the similarly named process functions
❍ thread = pthread_create(procedure)
❍ pthread_exit
❍ pthread_wait(thread)

Note: To use pthreads library,
#include <pthread.h>
compile with -lpthread

-19

Pthreads Interface (con’t)

❒ Pthreads support a variety of functions for
thread synchronization/coordination
❍ Used for coordination of threads (ITC ☺) –

more on this soon!
❒ Examples:

❍ Condition Variables (pthread_cond_wait,
pthread_signal)

❍ Mutexes(pthread_mutex_lock,
pthread_mutex_unlock)

-20

Performance Comparison

4.5Pthread_create/
Pthread_join

User-level
Threads

94Pthread_create/
Pthread_join

Kernel Threads

251 Fork/ExitProcesses

In microseconds, on a 700 MHz Pentium, Linux 2.2.16, Steve Gribble, 2001.

6

-21

Windows Threads

HANDLE CreateThread(
LPSECURITY_ATTRIBUTES lpThreadAttributes,
DWORD dwStackSize,
LPTHREAD_START_ROUTINE lpStartAddress,
DWORD dwCreationFlags,
LPVOID lpParameter,
DWORD dwCreationFlags,
LPDWORD lpThreadId);

-22

Windows Thread
Synchronization
❒ Windows supports a variety of objects

that can be used for thread
synchronization

❒ Examples
❍ Events (CreateEvent, SetEvent, ResetEvent,

WaitForSingleObject)
❍ Semaphores (CreateSemaphore,

ReleaseSemaphore, WaitForSingleObject)
❍ Mutexes (CreateMutex, ReleaseMutex,

WaitForSingleObject)

-23

Warning: Threads may be
hazardous to your health
❒ One can argue (and John Ousterhout did) that

threads are a bad idea for most purposes
❒ Anything you can do with threads you can do with

an event loop
❍ Remember “make phone calls while making dinner while

doing dishes while looking through the mail”
❒ Ousterhout says thread programming to hard to

get right

-24

Outtakes

❒ Processes that just share code but do not
communicate
❍ Wasteful to duplicate
❍ Other ways around this than threads

7

-25

Example: User Interface

❒ Allow one thread to respond to user input
while another thread handles a long
operation

❒ Assign one thread to print your document,
while allowing you to continue editing

-26

Benefits of Concurrency

❒ Hide latency of blocking I/O without additional
complexity

❍ Without concurrency
• Block whole process
• Manage complexity of asynchronous I/O (periodically

checking to see if it is done so can finish processing)
❒ Ability to use multiple processors to accomplish

the task
❒ Servers often use concurrency to work on multiple

requests in parallel
❒ User Interfaces often designed to allow interface

to be responsive to user input while servicing long
operations

