
-1

1: Welcome and Overview
COM S 414
Last Modified:

9/2/2002 11:04:21 PM

-2

Logistics

r Course Web Page
http://www.cs.cornell.edu/Courses/cs414/2002fa

rNewsgroup (check daily)
cornell.class.cs414

rStaff
rTextbook

-3

414 vs 415

r 414: Introduction to Operating Systems
m Lecture
m Programming Assignments (mostly small),

Homework, Reading
m Exams

r 415: Practicum in Operating Systems
m Large programming assignments

r Fall: 415 is optional
rSpring: 415 is a required co-requisite

-4

Topics

rOS History, Architectural Support
r Processes, Threads
rScheduling
rSynchronization, Deadlock
rMemory Management
r File Systems, IO Devices
rNetworks, Distributed Systems
rSecurity

-5

What is an operating system?

rA software layer that
mmanages hardware resources
m provides an abstraction of the underlying

hardware that is easier to program and use

Applications

Operating Systems

Hardware

-6

Hardware Resources

r CPU, Functional Units, Registers
r Main memory access
r Storage devices (disk drives, CD-ROMs, tape

drives)
r Network Interface Cards
r Human I/O devices (keyboards, monitors, mice)
r Other? Printers, cameras, sensors, …

How much do you know about what it would be like to
interact with these devices without an OS?

-7

Benefits of Operating Systems
(1)

rAbstracting the Hardware
m Gory details of the raw hardware hidden so

applications can be smaller and simpler
m Application writers can program to a simpler

and more portable “virtual machine”
r Providing useful logical abstractions

mNew types of logical resources (sockets, pipes)

-8

Benefits of Operating Systems
(2)

r Protecting applications from each other
m Enforce “fair” allocation of hardware resources

among applications
m Policies that say what is “fair” and mechanisms

to enforce it

rSupporting communication and coordination
among applications
m Support abstractions through which different

applications can share data and notify each
other of events

-9

What an operating system is
not?
r Compiler
rStandard libraries
r Command Shells

rThese are closely related pieces of system
software, but they are not the OS.

-10

Is OS code like other code?

r Most OSs implemented in C
r Developed without space-age development

environments (kernel debuggers?)
r The buck stops here!

m OS must deal with gory hardware details
• Try to keep hardware dependent parts isolated

m What happens when get a device interrupt in the middle
of executing an application? What happens when get a
device interrupt while servicing another device
interrupt?

m What happens if you take a page fault while executing
operating system code

r Performance and reliability are crucial!
r Still a lot more like application code than you

might think

-11

Lots of variety of OSes

rUnix (Solaris, HP-UX, AIX, FreeBSD,
NetBSD,OpenBSD..)

r Linux
rWindows XP, 2000, NT, ME, 98, 95
r BeOS
rMacOS
r PalmOS
rWindowsCE
rMach, Amoeba, Sprite, Vino, SPIN, QnX,…

-12

What distinguishes operating
systems?
rWhen people talk about which operating

system to run, they often talk about:
m Look and feel of the desktop windowing system
m Devices that are supported
mWhat hardware platforms does it run on?
m Applications that are available for that OS
mWho developed the code? Who supports the

code?
mHow often does the system crash? Reliability?
m Do you pay for it?

rAre these really core OS issues?

-13

Core OS Issues: OS Structure

r How is the OS structured?
m One monolithic kernel of spaghetti code
m One monolithic kernel that is internally composed of

distinct layers
m One monolithic kernel that is internally composed of

distinct objects
m Micro-kernel with trusted user level applications that

provide major OS functionality like virtual memory,
scheduling, file systems, etc.

r Software engineering question
m Maintainability? Performance? Reliability? Portability?

-14

Core OS Issues

r Resource/services provided to applications
m Does the OS offer kernel support for events? Signals?

Threads? Pipes? Shared memory?
r Naming

m How do applications refer to and request the resources
they want for themselves? Resources they want to share
with others?

r Sharing
m What objects can be shared among applications? What is

the granularity of sharing?
r Resource Allocation and Tracking

m What is the unit (or units) of resource allocation?
m Can we track (and bill for) resource usage?

-15

Core OS Issues

r Concurrency
mHow many and what types of activities can

occur simultaneously?
r Protection

mWhat is the granularity at which permission to
access various resources are granted?

mHow do you verify an entity’s right to access a
resource?

r Fault Tolerance
mHow do we deal with faults in applications? In

devices? In our own OS code?

-16

Core OS Issues

rService Time Guarantees
mWhat guarantees (if any) are made to

applications about the servicing of their
requests or about the servicing of device
interrupts?

m Real-time OSs
rScale/Load

mWhat are the limits of resource allocation?
(Biggest file, Maximum number of processes,
etc.)

mWhat happens as the demand for resources
increases? (graceful degradation?)

-17

Core OS Issues

r Extensibility /Tuning
mWhat interfaces are provided to change

operating system behavior?
mHow does (or does) the OS optimize its

behavior based on the characteristics of the
hardware or the application mix?

-18

Evolution of Operating Systems

r At first, OS = library of shared code
m Every programmer did not write code to

manage each device
m Each application when compiled contained

the OS
m Load into memory and execute

• By who? People = Operators
• How? By mechanical switches at first,

then punch cards
m Just one application at a time so no

need for protection and no need for
sharing

m No virtual memory; either the entire
program fit into memory or programmers
handled moving sections of their own
code in and out of memory

-19

Batch Processing

rStill only one application at a time
rOperating system rather than operators

loaded one job after another off of punch
cards or tape

rOS knew how to read next job in, execute
it and when it is done take control back to
read next job

rOperating system stayed in memory
permanently

-20

Spooling

r Problem
m Card readers are slow
m Time to read the next job

from punch cards means lost
CPU time (expensive!)

r Solution: while executing
one job load the next one
into memory

r Might even bring multiple
into memory and allow
them to be executed out
of order
m Need scheduling algorithm

to choose the next one to
run

-21

Multiprogrammed Batch
Systems
r Keep multiple job in memory at the same time and

interleave their execution (not pick one and run it
to completion)
m The applications still couldn’t communicate directly (no

pipes, sockets, shared memory, etc.)
m So why allow more than one to run at a time?

r Able to overlap I/O of one application with the
computation of another!
m If one job requests I/O, don’t leave the CPU idle while

I/O completes- pick something else to run in the
meantime

m Each job take longer to actually run on the machine, but
better machine utilization and throughput (important for
expensive CPUs)

-22

Batch vs
Multiprogrammed Batch

-23

Multiprogramming

r Requires much of the core OS functionality
we will study
m CPU scheduling algorithm to decide which one

of the runnable jobs to run next
mMemory management (simple at first)
m Protection of I/O devices from multiple

applications desiring to use them
m Asynchronous I/O

• CPU issues a command to a device then can go do
something else until job is done

• Device notifies CPU of completion with an interrupts
or CPU periodically polls device for completion

-24

Time Sharing

r Batch systems (even multiprogrammed batch
systems) required users to submit jobs with their
inputs and then later get output back

r Time sharing systems provided interactive
computing
m Connect to computer through a dumb terminal (monitor,

keyboard, serial connection to computer)
m Each interactive user feels like they have their own

computer, but in reality jobs are swapped on and off the
CPU rapidly enough that users don’t notice

m Enables interactive applications like editors and command
shells even debugging running programs

m User interact with job throughout its run time

-25

Scheduling for Time Sharing

rNeed to swap jobs on and off CPU quickly
enough that users don’t notice

r Each job given a “time slice”
r Batch scheduling was very different – let

application run until it did some I/O then
swap it out until its I/O completes

r Batch optimizes for throughput; Time
sharing optimizes for response time

-26

Shared File Systems for Time
Sharing
r How do users who log in over dumb terminal say

which programs to run with what input?
m No longer submit batch jobs with their input on punch

cards
m Log in over a serial line

r Command shells: execute user command then await
the next one

r Thus time sharing systems needed shared file
systems that held commonly used programs

r Users could log in, run utilities, store input and
output file in shared file system

-27

Security for Time Sharing

r Batch systems had multiple applications
running at the same time but there inputs
and actions were fixed at submission time
with no knowledge of what else would be
run with it

rTime Sharing systems mean multiple
interactive users on a machine poking
around = Increased threat to privacy and
security

-28

CTSS and Multics

r Compatible Time Sharing System (CTSS) one of
first time sharing system
m Developed at MIT
m first demonstrated in 1961 on the IBM 709, swapping to

tape.
r Multics (Multiplexed Information and Computing

Service)
m Ambitious timesharing system developed in 1960’s by

MIT, Bell Labs and GE
m Many OS concepts conceived of in Multics, but hard to

implement in 1960
m Last Multics installation in Hallifax Nov Scotia

decommissioned 10/31/2000!

-29

UNIX

r Bell Labs pulled out of MULTICs effort
in 1969 convinced it was economically
infeasible to produce a working system

r Handful of researchers at Bell Labs
including Ken Thompson and Dennis
Ritchie developed a scaled down version
on MULTICS called UNICs (UNiplexed
Information and Computing Service) –
am “emasculated MULTICS”

r AT&T provided licensees (including UC
Berkeley) with the software code and
manuals because Department of Justice
didn't allow AT&T to sell software

-30

UNIX (con’t)

r In 1977, the first Berkeley Software Distribution
(BSD) version of UNIX was released.

r AT&T transferred its own UNIX development
efforts to Western Electric

r In 1982, Western Electric released System III
UNIX (marketing thought that System III
sounded more stable than System I ☺)

r In 1984, UC Berkeley released version 4.2BSD
which included a complete implementation of the
TCP/IP networking protocols

-31

Wow!

-32

rWe’ve been following the development of
corporate/academic computing

rNext, we switch gears to personal
computing

-33

Personal Computers

r Computers become cheap enough that one can be
dedicated to an individual

r First PC was the Altair
m produced by MITS in 1975
m 8 bit Intel 8080, 256 bytes(!) of memory
m No keyboard (front panel switches instead), monitor,

tape or disk!
m $400
m Popular with hobbyists (like building radios or TVs)

r 1975-1980, many companies make PCs (or
microcomputers) based on the 8080 chip
m Still for hobbyists
m For an OS, most run CP/M (Control Program

Microcomputer) from Digital Research

-34

Apple Computer
r 1976 - Members of a California

hobbyist group, Steve Wozniak and
Steve Jobs, sell a fully assembled
microcomputer, Apple I
m No more lights and switches
m $666 for machine with video terminal,

keyboard and 4K RAM, 4 K more for $120,
cassette tape interface for $75

r 1977 - Apple II
m Looks basically like the desktop PC we know

and love
m Mouse, speakers and color (to play Breakout
☺)

-35

IBM PC

r 1980 - IBM decides to get into the PC business
r Rather than build its own hardware, it goes with

the Intel 8088
r Rather than write its own software, it looked to

get a language processor and an OS from
elsewhere
m Licenses Microsoft’s BASIC interpreter
m Still need an OS

• Digital Research’s new version of CP/M way behind schedule
• UNIX needs too many resources (100K of memory and a

hard disk)
• They ask Microsoft if it could deliver an OS too

-36

DOS

r In 1981, QDOS (Quick-and-Dirty OS) purchased
by Microsoft and renamed MS-DOS
m QDOS was a scaled down version of the CP/M OS for the

8088 family of computers
r Features of DOS 1.0 and 2.0

m OS back to a library linked in with applications
• 1
• 1 M address space; Applications got only 640K

m Apps do anything they want! - No memory protection; no
hardware protection

m No hierarchical file system – single directory at most 64
files

-37

Windows On Top,
DOS underneath
r 1981 – Microsoft begins development of

the Interface Manager that would
eventually become Microsoft Windows

r 1985 – Windows 1.0
m runs as a library on top of DOS
m allowed users to switch between several

programs—without requiring them to quit and
restart individual applications

r 1987 – Windows 2.0 offers overlapping
windows

-38

Windows

r Two Windows product lines
m 1994 – Windows NT

• entirely new OS kernel (not DOS!) designed for high-end
server machines

• Microkernel based concepts pioneered in CMU research
project MACH

m 1995 – Windows 95
• Included MS-DOS 7.0, but took over from DOS completely

after starting
• pre-emptive multitasking, advanced file systems, threading,

networking
r 2000 - Windows 2000

m Upgrade to the Windows NT code base
m Designed to permanently replace Windows 95 and its

DOS roots

-39

Linux

r Linus Torvald, a student in Finland, extends an
educational operating system Minix into an Unix
style operating system for PCs (x86 machines) as a
hobby

r In 1991, he posts to the comp.os.minix newsgroup
an invitation for others to join him in developing
this free, open source OS

r Different distributions package the same Linux
kernel together with other various collections of
open source software (GNU-Linux)

r Companies sell support or installation CDs, but
freely software available

r Linux is now the fastest growing segment of the
operating system market

-40

PC-OSs meet Timesharing

r Both Linux and later versions of Windows have
brought many advanced OS concepts to the
desktop
m Multiprogramming first added back in because people like

to do more than one thing at a time (spool job to printer
and continue typing)

m Memory protection added back in to protect against
buggy applications – not other users!

m Linux (and even Windows now) allow users to log in
remotely and multiple users to be running jobs

r Steady increases in hardware performance and
capacity made this possible

-41

Parallel and Distributed
Computing
r Harness resources of multiple computer systems

m Parallel computing focused on splitting up a single task
and getting speed-up proportional to the number of
machines

m Distributed computing focused on harnessing resources
(hardware or data) from geographically dispersed
machines

r Hardware
m SIMD, MIMD, MPPs, SMPs, NOWs, COWs,…
m Tightly or Loosely Coupled machines? Do they share

memory? Do they share a high speed internal network?
Maybe a bus? Do they share a clock? Do all processors
operate the same instruction at the same time but on
different data?

-42

Parallel and Distributed (con’t)

rNeed communication between machines
mNetworking hardware and software protocols?

r Fault tolerance: helps or hurts?
m Ability to offer fail-over to duplicated

resources?
m “A distributed system is one where I can’t do

work because a machine I never heard of goes
down”

r Load balancing, synchronization,
authentication, naming

-43

Real Time OSes

r If application demands guaranteed response times,
OS can be designed to provide service guarantees

r Hard-real time
m Usually need guaranteed physical response to sensors
m Ex. Industrial control, Safety monitoring, medical imaging

r Soft-real time
m OS priorities and can provide desired response time most

of the time
m Ex. Robotics, virtual reality

-44

Embedded OSes

r Cheap processors everywhere – in toys,
appliances, cars, cell phones, PDAs

rTypically designed for one dedicated
application

r Very constrained hardware resource
m Slow processor, no disk, little memory, small

displays, no keyboard
m Better off than early mainframes though ?

r Will march of technology bring power of
today’s desktops and full OS features to
all these devices too?

-45

Lessons from history?

-46

This Semester

rArchitectural support for OS; Application
demand on OS

rMajor components of an OS
m Scheduling, Memory Management,

Synchronization, File Systems, Networking,..
rHow is the OS structured internally and

what interfaces does it provide for using
its services and tuning its behavior?

rWhat are the major abstractions modern
OSes provide to applications and how are
they supported?

