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CHAPTER 1
ABOUT THIS MANUAL

The Intel Architecture Software Developer’s Manual, Volumdn®truction Set Reference
(Order Number 243191) is part of a three-volume set that describes the architecture and
programming environment of all Intel Architecture processors. The other two volumes in this
Set are:

®* The Intel Architecture Software Developer’s Manual, Volume 1: Basic Archite@uder
Number 243190).

® Thelntel Architecture Software Developer’s Manual, Volum8y&tem Programing Guide
(Order Number 243192).

TheIntel Architecture Software Developer’s Manual, Volumdetcribes the basic architecture
and programming environment of an Intel Architecture processor; the Intel Architecture Soft-
ware Developer’s Manual, Volume @escribes the instructions set of the processor and the
opcode structure. These two volumes are aimed at application programmers who are writing
programsto run under existing operating systems or executives. The Intel Architecture Software
Developer’s Manual, Volume 8escribes the operating-system support environment of an Intel
Architecture processor, including memory management, protection, task management, interrupt
and exception handling, and system management mode. It also provides Intel Architecture
processor compatibility information. This volume is aimed at operating-system and BIOS
designers and programmers.

1.1. P6 FAMILY PROCESSOR TERMINOLOGY

This manual includes information pertaining primarily to the 32-bit Intel Architecture proces-
sors, which include the Intel386™, Intel486™, and Perftipnocessors, and the P6 family
processors. The P6 family processors are those Intel Architecture processors based on the P6
family microarchitecture. This family includes the Pentium® Pro, Pentium® 11, Pentium® 1ll
processor, and any future processors based on the P6 family microarchitecture.

1.2. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE
DEVELOPER’S MANUAL, VOLUME 3 : SYSTEM
PROGRAMMING GUIDE

The contents of this manual are as follows:

Chapter 1 — About This Manual. Gives an overview of all three volumes of the Intel Archi-
tecture Software Developer's Manudi also describes the notational conventions in these
manuals and listsrelated Intel manuals and documentation of interest to programmers and hard-
ware designers.
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Chapter 2 — System Architecture OverviewDescribes the modes of operation of an Intel
Architecture processor and the mechanisms provided in the Intel Architecture to support oper-
ating systems and executives, including the system-oriented registers and data structures and the
system-oriented instructions. The steps necessary for switching between real-address and
protected modes are also identified.

Chapter 3 — Protected-Mode Memory ManagemenDescribesthe data structures, registers,
and instructions that support segmentation and paging and explains how they can be used to
implement a “flat” (unsegmented) memory model or a segmented memory model.

Chapter 4 — Protection.Describes the support for page and segment protection provided in
the Intel Architecture. This chapter also explains the implementation of privilege rules, stack
switching, pointer validation, user and supervisor modes.

Chapter 5 — Interrupt and Exception Handling. Describes the basic interrupt mechanisms
defined in the Intel Architecture, shows how interrupts and exceptions relate to protection, and
describes how the architecture handles each exception type. Reference information for each
Intel Architecture exceptionis given at the end of this chapter.

Chapter 6 — Task ManagementDescribes the mechanismsthe Intel Architecture providesto
support multitasking and inter-task protection.

Chapter 7 — Multiple-Processor Management.Describes the instructions and flags that
support multiple processors with shared memory, memory ordering, and the advanced program-
mableinterrupt controller (APIC).

Chapter 8 — Processor Management and InitializationDefines the state of an Intel Archi-
tecture processor and its floating-point and SIMD floating-point units after reset initialization.
This chapter also explains how to set up an Intel Architecture processor for real-address mode
operation and protected- mode operation, and how to switch between modes.

Chapter 9 — Memory Cache Control. Describes the general concept of caching and the
caching mechanisms supported by the Intel Architecture. This chapter also describes the
memory type range registers (MTRRs) and how they can be used to map memory types of phys-
ical memory. MTRRs were introduced into the Intel Architecture with the Pentium® Pro
processor. It also presents information on using the new cache control and memory streaming
instructions introduced with the Pentium® [11 processor.

Chapter 10 — MMX™ Technology System ProgrammingDescribes those aspects of the

Intel MMX™ technology that must be handled and considered at the system programming level,
including task switching, exception handling, and compatibility with existing system environ-
ments. The MMX™ technology was introduced into the Intel Architecture with the P&ntium
processor.

Chapter 11 — Streaming SIMD Extensions System ProgrammindPescribes those aspects
of Streaming SIMD Extensions that must be handled and considered at the system programming
level, including task switching, exception handling, and compatibility with existing system
environments. Streaming SIMD Extensions were introduced into the Intel Architecture with the
Pentium® processor.

Chapter 12 — System Management Mode (SMM)Describes the Intel Architecture’s system
management mode (SMM), which can be used to implement power management functions.
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Chapter 13 — Machine-Check Architecture. Describes the machine-check architecture,
which was introduced into the Intel Architecture with the Pentium® processor.

Chapter 14 — Code Optimization.Discusses general optimization techniques for program-
ming an Intel Architecture processor.

Chapter 15 — Debugging and Performance MonitoringDescribes the debugging registers
and other debug mechanism provided in the Intel Architecture. This chapter also describes the
time-stamp counter and the performance-monitoring counters.

Chapter 16 — 8086 EmulationDescribes the real-address and virtual-8086 modes of the Intel
Architecture.

Chapter 17 — Mixing 16-Bit and 32-Bit Code Describes how to mix 16-bit and 32-bit code
modules within the same program or task.

Chapter 18 — Intel Architecture Compatibility. Describes the programming differences
between the Intel 286, Intel386™, Intel486™, Pentiuft) and P6 family processors. The differ-
ences among the 32-bit Intel Architecture processors (the Intel 386™, Intel486™, Pentiufh and
P6 family processors) are described throughout the three volumes of the Intel Architecture Soft-
ware Developer’s Manuabs relevant to particular features of the architecture. This chapter
provides a collection of all the relevant compatibility information for all Intel Architecture
processors and also describes the basic differences with respect to the 16-bit Intel Architecture
processors (the Intel 8086 and Intel 286 processors).

Appendix A — Performance-Monitoring Events. Lists the events that can be counted with
the performance-monitoring counters and the codes used to select these events. Both Pentium®
processor and P6 family processor events are described.

Appendix B — Model-Specific Registers (MSRs)Lists the MSRs available in the Pentium®
and P6 family processors and their functions.

Appendix C — Dual-Processor (DP) Bootup Sequence Example (Specific to Pentfum
Processor s). Gives an example of how to use the DP protocol to boot two Pentium® processors
(aprimary processor and a secondary processor) in a DP system and initialize their APICs.

Appendix D — Multiple-Processor (MP) Bootup Sequence Example (Specific to P6 Family
Processors)Gives an example of how to use of the MP protocol to boot two P6 family proces-
sorsin aMP system and initialize their APICs.

Appendix E — Programming the LINTO and LINT1 Inputs. Gives an example of how to
program the LINTO and LINT1 pins for specific interrupt vectors.

1.3. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE
DEVELOPER'’S MANUAL, VOLUME 1: BASIC
ARCHITECTURE

The contents of the Intel Architecture Software Developer’s Manual, Volunaeelas follows:

Chapter 1 — About This Manual. Gives an overview of all three volumes of the Intel Archi-
tecture Software Developer's Manudi also describes the notational conventions in these
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manuals and listsrelated Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2— Introduction to the Intel Architecture. Introducesthe Intel Architecture and the
families of Intel processors that are based on this architecture. It also gives an overview of the
common features found in these processors and brief history of the Intel Architecture.

Chapter 3 — Basic Execution Environmentlntroduces the models of memory organization
and describes the register set used by applications.

Chapter 4 — Procedure Calls, Interrupts, and ExceptionsDescribes the procedure stack
and the mechanisms provided for making procedure calls and for servicing interrupts and
exceptions.

Chapter 5 — Data Types and Addressing Moded®escribes the data types and addressing
modes recognized by the processor.

Chapter 6 — Instruction Set Summary. Gives an overview of all the Intel Architecture
instructions except those executed by the processor’s floating-point unit. The instructions are
presented in functionally related groups.

Chapter 7 — Floating-Point Unit. Describes the Intel Architecture floating-point unit,
including the floating-point registers and data types; gives an overview of the floating-point
instruction set; and describes the processor’s floating-point exception conditions.

Chapter 8 — Programming with the Intel MMX™ Technology. Describesthe Intel MM X ™
technology, including MMX™ registers and data types, and gives an overview of the MMX™
instruction set.

Chapter 9 — Programming with the Streaming SIMD Extensions.Describes the Intel
Streaming SIMD Extensions, including the registers and data types.

Chapter 10— Input/Output. Describes the processor’s I/O architecture, including 1/0O port
addressing, the I/O instructions, and the I/O protection mechanism.

Chapter 11 — Processor Identification and Feature DeterminatiorDescribes how to deter-
mine the CPU type and the features that are available in the processor.

Appendix A — EFLAGS Cross-Reference Summarizes how the Intel Architecture instruc-
tions affect the flagsin the EFLAGS register.

Appendix B— EFLAGS Condition Codes.Summarizes how the conditional jump, move, and
byte set on condition code instructions use the condition code flags (OF, CF, ZF, SF, and PF) in
the EFLAGS register.

Appendix C — Floating-Point Exceptions SummarySummarizes the exceptions that can be
raised by floating-point instructions.

Appendix D — SIMD Floating-Point Exceptions Summary.Provides the Streaming SIMD
Extensions mnemonics, and the exceptions that each instruction can cause.

Appendix E — Guidelines for Writing FPU Exception Handlers.Describes how to design
and write MS-DOS* compatible exception handling facilities for FPU and SIMD floating-point
exceptions, including both software and hardware requirements and assembly-language code
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examples. This appendix also describes general techniques for writing robust FPU exception
handlers.

Appendix F — Guidelines for Writing SIMD-FP Exception Handlers. Provides guidelines
for the Streaming SIMD Extensions instructions that can generate numeric (floating-point)
exceptions, and gives an overview of the necessary support for handling such exceptions.

1.4. OVERVIEW OF THE INTEL ARCHITECTURE SOFTWARE
DEVELOPER’S MANUAL, VOLUME 2: INSTRUCTION SET
REFERENCE

The contents of the Intel Architecture Software Developer’s Manual, Volumar@as follows:

Chapter 1 — About This Manual. Gives an overview of all three volumes of the Intel Archi-
tecture Software Developer's Manudi also describes the notational conventions in these
manuals and listsrelated Intel manuals and documentation of interest to programmers and hard-
ware designers.

Chapter 2 — Instruction Format. Describes the machine-level instruction format used for all
Intel Architectureinstructions and gives the allowable encodings of prefixes, the operand-iden-
tifier byte (ModR/M byte), the addressing-mode specifier byte (SIB byte), and the displacement
and immediate bytes.

Chapter 3 — Instruction Set ReferenceDescribes each of the Intel Architecture instructions

in detail, including an algorithmic description of operations, the effect on flags, the effect of
operand- and address-size attributes, and the exceptions that may be generated. The instructions
are arranged in alphabetical order. The FPU, MMX™ Technology instructions, and Streaming
SIMD Extensions are included in this chapter.

Appendix A — Opcode Map.Gives an opcode map for the Intel Architecture instruction set.

Appendix B — Instruction Formats and Encodings.Gives the binary encoding of each form
of each Intel Architectureinstruction.

Appendix C — Compiler Intrinsics and Functional Equivalents. Gives the Intel C/C++
compiler intrinsics and functional equivalents for the MMX™ Technology instructions and
Streaming SIMD Extensions.

1.5. NOTATIONAL CONVENTIONS

This manual uses special notation for data-structure formats, for symbolic representation of
instructions, and for hexadecimal numbers. A review of this notation makes the manual easier
to read.
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1.5.1. Bitand Byte Order

Inillustrations of data structuresin memory, smaller addresses appear toward the bottom of the

figure; addresses increase toward the top. Bit positions are numbered from right to left. The
numerical value of a set bit is equal to two raised to the power of the bit position. Intel Archi-

tecture processors are “little endian” machines; this means the bytes of a word are numbered
starting from the least significant byte. Figure 1-1 illustrates these conventions.

1.5.2. Reserved Bits and Software Compatibility

In many register and memory layout descriptions, certain bits are markescased. When

bits are marked as reserved, it is essential for compatibility with future processors that software
treat these bits as having a future, though unknown, effect. The behavior of reserved bits should
be regarded as not only undefined, but unpredictable. Software should follow these guidelines
in dealing with reserved bits:

® Do not depend on the states of any reserved bits when testing the values of registers which
contain such bits. Mask out the reserved bits before testing.

® Do not depend on the states of any reserved bits when storing to memory or to aregister.
® Do not depend on the ability to retain information written into any reserved bits.

® When loading a register, always load the reserved bits with the values indicated in the
documentation, if any, or reload them with values previously read from the same register.

NOTE

Avoid any software dependence upon the state of reserved bitsin Intel Archi-
tecture registers. Depending upon the values of reserved register bits will
make software dependent upon the unspecified manner in which the
processor handles these bits. Programs that depend upon reserved values risk
incompatibility with future processors.

Data Structure
31 24 23 16 15 8 7 0 -«— Bit offset
28
24
20
16
12
8
4
Byte 3 Byte 2 Byte 1 Byte0 | O

A

Byte Offset

Highest
Address

Lowest
Address

Figure 1-1. Bit and Byte Order
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1.5.3. Instruction Operands

When instructions are represented symbolically, a subset of the Intel Architecture assembly
language is used. In this subset, an instruction has the following format:

label: mnemonic argumentl, argument2, argument3
where:

® Alabd isanidentifier whichisfollowed by acolon.

® A mnemonic is areserved name for a class of instruction opcodes which have the same
function.

® The operands argumentl, argument2, and argument3 are optional. There may be from
zero to three operands, depending on the opcode. When present, they take the form of
either literals or identifiers for dataitems. Operand identifiers are either reserved names of
registers or are assumed to be assigned to data items declared in another part of the
program (which may not be shown in the example).

When two operands are present in an arithmetic or logical instruction, the right operand is the
source and the left operand is the destination.

For example:
LOADREG: MOV EAX, SUBTOTAL

In this example, LOADREG is alabel, MOV is the mnemonic identifier of an opcode, EAX is
the destination operand, and SUBTOTAL is the source operand. Some assembly languages put
the source and destination in reverse order.

1.5.4. Hexadecimal and Binary Numbers

Base 16 (hexadecimal) numbers are represented by a string of hexadecimal digits followed by
the character H (for example, F82EH). A hexadecimal digit is a character from the following
set:0,1,2,3,4,56,7,89A,B,C,D,E,andF.

Base 2 (binary) numbers are represented by a string of 1s and 0s, sometimes followed by the
character B (for example, 1010B). The “B” designation is only used in situations where confu-
sion as to the type of number might arise.

1.5.5. Segmented Addressing

The processor uses byte addressing. This means memory is organized and accessed as a
sequence of bytes. Whether one or more bytes are being accessed, a byte address is used to
locate the byte or bytes of memory. The range of memory that can be addressed is called an
address space.

The processor also supports segmented addressing. This is a form of addressing where a
program may have many independent address spaces,segiteshts. For example, a program
can keep its code (instructions) and stack in separate segments. Code addresses would always
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refer to the code space, and stack addresses would always refer to the stack space. The following
notation is used to specify a byte address within a segment:

Segment-register:Byte-address

For example, the following segment address identifies the byte at address FF79H in the segment
pointed by the DS register:

DS:FF79H

The following segment address identifies an instruction address in the code segment. The CS
register points to the code segment and the EIP register contains the address of the instruction.

CS:EIP

1.5.6. Exceptions

An exception is an event that typically occurs when an instruction causes an error. For example,
an attempt to divide by zero generates an exception. However, some exceptions, such as break-
points, occur under other conditions. Some types of exceptions may provide error codes. An
error code reports additional information about the error. An example of the notation used to
show an exception and error code is shown below.

#PF(fault code)

This example refers to a page-fault exception under conditions where an error code naming a
type of fault isreported. Under some conditions, exceptions which produce error codes may not
be able to report an accurate code. In this case, the error code is zero, as shown below for a
general-protection exception.

#GP(0)

Refer to Chapter 5, Interrupt and Exception Handling, for a list of exception mnemonics and
their descriptions.
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1.6. RELATED LITERATURE

The following books contain additional material related to Intel processors:

® |ntel Pentiunme |1 Processor Specification Update, Order Number 243337-010.

® |ntel Pentium® Pro Processor Specification Update, Order Number 242689-031.
® |ntel Pentium® Processor Specification Update, Order Number 242480.

® AP-485, Intel Processor Identification and the CPUID Instruction, Order Number 241618-
006.

® AP-578, Software and Hardware Considerations for FPU Exception Handlers for Intel
Architecture Processors, Order Number 243291.

®  Pentium® Pro Processor Data Book, Order Number 242690.
®  Pentium®Pro BIOS Writer's Guidghttp://www.intel.com/procs/ppro/info/index.htm.
®  Pentium® Processor Data Book, Order Number 241428.

® 82496 Cache Controller and 82491 Cache SRAM Data Book For Use With the Pentiun®
Processor, Order Number 241429.

®* Intel486™Microprocessor Data BoglOrder Number 240440.

® Intel486™ SX CPU/Intel487™ SX Math Coprocessor Data BOotter Number 240950.
® Intel486™ DX2 Microprocessor Data BadRrder Number 241245,

® Intel486™ Microprocessor Product Brief BqdBrder Number 240459.

®* Intel386™ Processor Hardware Reference Man@ater Number 231732.

®* Intel386™ Processor System Software Writer's Guinider Number 231499.

® Intel386™ High-Performance 32-Bit CHMOS Microprocessor with Integrated Memory
ManagementOrder Number 231630.

® 376 Embedded Processor Programmer’s Reference Manual, Order Number 240314.
® 80387 DX User’'s Manual Programmer’s Reference, Order Number 231917.

® 376 High-Performance 32-Bit Embedded Processor, Order Number 240182.

® Intel386™ SX MicroprocessoDrder Number 240187.

® |ntel Architecture Optimization Manual, Order Number 242816-002.
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CHAPTER 2
SYSTEM ARCHITECTURE OVERVIEW

The 32-bit members of the Intel Architecture family of processors provide extensive support for
operating-system and system-development software. This support is part of the processor’s
system-level architecture and includes features to assist in the following operations:

® Memory management

® Protection of software modules

®* Multitasking

® Exception and interrupt handling

® Multiprocessing

® Cache management

® Hardware resource and power management
® Debugging and performance monitoring

This chapter provides a brief overview of the processor’s system-level architecture; a detailed
description of each part of this architecture given in the following chapters. This chapter also
describes the system registers that are used to set up and control the processor at the system level
and gives a brief overview of the processor’s system-level (operating system) instructions.

Many of the system-level architectural features of the processor are used only by system
programmers. Application programmers may need to read this chapter, and the following chap-
ters which describe the use of these features, in order to understand the hardware facilities used
by system programmers to create a reliable and secure environment for application programs.

NOTE

This overview and most of the subsequent chapters of this book focus on the
“native” or protected-mode operation of the 32-bit Intel Architecture
processors. As described in ChapteP&cessor Management and Initial-
ization, all Intel Architecture processors enter real-address mode following a
power-up or reset. Software must then initiate a switch from real-address
mode to protected mode.

2.1. OVERVIEW OF THE SYSTEM-LEVEL ARCHITECTURE

The Intel Architecture’s system architecture consists of a set of registers, data structures, and
instructions designed to support basic system-level operations such as memory management,
interrupt and exception handling, task management, and control of multiple processors (multi-
processing). Figure 2-1 provides a generalized summary of the system registers and data
structures.
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Figure 2-1. System-Level Registers and Data Structures
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2.1.1. Global and Local Descriptor Tables

When operating in protected mode, al memory accesses pass through either the global
descriptor table (GDT) or the (optional) local descriptor table (LDT), shown in Figure 2-1.
These tables contain entries called segment descriptors. A segment descriptor provides the base
address of a segment and access rights, type, and usage information. Each segment descriptor
has a segment selector associated with it. The segment selector provides an index into the GDT
or LDT (to its associated segment descriptor), a global/local flag (that determines whether the
segment selector pointsto the GDT or the LDT), and access rights information.

To access a byte in a segment, both a segment selector and an offset must be supplied. The
segment selector provides access to the segment descriptor for the segment (in the GDT or
LDT). From the segment descriptor, the processor obtains the base address of the segment inthe
linear address space. The offset then provides the location of the byte relative to the base
address. This mechanism can be used to access any valid code, data, or stack segment in the
GDT or LDT, provided the segment is accessible from the current privilegelevel (CPL) at which
the processor is operating. (The CPL is defined as the protection level of the currently executing
code segment.)

In Figure 2-1 the solid arrows indicate a linear address, the dashed lines indicate a segment
selector, and the dotted arrows indicate a physical address. For simplicity, many of the segment
selectors are shown as direct pointers to a segment. However, the actual path from a segment
selector to its associated segment is always through the GDT or LDT.

The linear address of the base of the GDT is contained in the GDT register (GDTR); the linear
address of the LDT iscontained inthe LDT register (LDTR).

2.1.2. System Segments, Segment Descriptors, and Gates

Besidesthe code, data, and stack segmentsthat make up the execution environment of aprogram
or procedure, the system architecture also defines two system segments: the task-state segment
(TSS) and the LDT. (The GDT is not considered a segment because it is not accessed by means
of a segment selector and segment descriptor.) Each of these segment types has a segment
descriptor defined for it.

The system architecture al so defines a set of special descriptors called gates (the call gate, inter-
rupt gate, trap gate, and task gate) that provide protected gateways to system procedures and
handlers that operate at different privilege levels than application programs and procedures.
For example, aCALL to acall gate provides access to a procedure in a code segment that is at
the same or numerically lower privilege level (more privileged) than the current code segment.
To access a procedure through acall gate, the calling procedure must supply the selector of the
call gate. The processor than performs an access rights check on the call gate, comparing the
CPL with the privilege level of the call gate and the destination code segment pointed to by the
call gate. If access to the destination code segment is allowed, the processor gets the segment
selector for the destination code segment and an offset into that code segment from the call gate.

1. The word “procedure” is commonly used in this document as a general term for a logical unit or block of
code (such as a program, procedure, function, or routine). The term is not restricted to the definition of a
procedure in the Intel Architecture assembly language.
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If the call requires a change in privilege level, the processor also switches to the stack for that
privilege level. (The segment selector for the new stack is obtained from the TSS for the
currently running task.) Gates also facilitate transitions between 16-bit and 32-bit code
segments, and vice versa.

2.1.3. Task-State Segments and Task Gates

The TSS (refer to Figure 2-1) defines the state of the execution environment for a task. It
includes the state of the general-purpose registers, the segment registers, the EFL AGS register,
the EIP register, and segment selectors and stack pointers for three stack segments (one stack
each for privilegelevels0, 1, and 2). It also includes the segment selector for the LD T associated
with the task and the page-table base address.

All program execution in protected mode happens within the context of atask, called the current
task. The segment selector for the TSS for the current task is stored in the task register. The
simplest method of switching to atask isto make acall or jump to the task. Here, the segment
selector for the TSS of the new task isgiveninthe CALL or IMP instruction. In switching tasks,
the processor performs the following actions:

1. Storesthe state of the current task in the current TSS.

2. Loadsthetask register with the segment selector for the new task.
3. Accesses the new TSS through a segment descriptor in the GDT.
4

L oads the state of the new task from the new TSS into the general-purpose registers, the
segment registers, the LDTR, control register CR3 (page-tabl e base address), the EFLAGS
register, and the EIP register.

5. Begins execution of the new task.

A task can also be accessed through atask gate. A task gateis similar to acall gate, except that
it provides access (through a segment selector) to a TSS rather than a code segment.

2.1.4. Interrupt and Exception Handling

External interrupts, software interrupts, and exceptions are handled through the interrupt
descriptor table (IDT), refer to Figure 2-1. The IDT contains a collection of gate descriptors,
which provide access to interrupt and exception handlers. Like the GDT, the IDT is not a
segment. The linear address of the base of the IDT is contained in the IDT register (IDTR).

The gate descriptors in the IDT can be of the interrupt-, trap-, or task-gate type. To access an
interrupt or exception handler, the processor must first receive an interrupt vector (interrupt
number) from internal hardware, an external interrupt controller, or from software by means of
an INT, INTO, INT 3, or BOUND instruction. The interrupt vector provides an index into the
IDT to agate descriptor. If the selected gate descriptor isan interrupt gate or atrap gate, the asso-
ciated handler procedure is accessed in a manner very similar to calling a procedure through a
call gate. If the descriptor is atask gate, the handler is accessed through atask switch.
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2.1.5. Memory Management

The system architecture supports either direct physical addressing of memory or virtual memory
(through paging). When physical addressing is used, a linear address is treated as a physical
address. When paging is used, all the code, data, stack, and system segments and the GDT and
IDT can be paged, with only the most recently accessed pages being held in physical memory.

Thelocation of pages (or page frames as they are sometimes called in the Intel Architecture) in
physical memory is contained in two types of system data structures (a page directory and a set
of pagetables), both of which residein physical memory (refer to Figure 2-1). Anentry in apage
directory contains the physical address of the base of a page table, access rights, and memory
management information. An entry in a page table containsthe physical address of apageframe,
access rights, and memory management information. The base physical address of the page
directory is contained in control register CR3.

To use this paging mechanism, a linear address is broken into three parts, providing separate
offsets into the page directory, the page table, and the page frame.

A system can have a single page directory or several. For example, each task can have its own
page directory.

2.1.6. System Registers

To assist ininitializing the processor and controlling system operations, the system architecture
provides system flagsin the EFLAGS register and several system registers:

® The system flagsand IOPL field in the EFLAGS register control task and mode switching,
interrupt handling, instruction tracing, and access rights. Refer to Section 2.3., “System
Flags and Fields in the EFLAGS Register” for a description of these flags.

® The control registers (CRO, CR2, CR3, and CR4) contain a variety of flags and data fields
for controlling system-level operations. With the introduction of the Pentium® Il
processor, CR4 now contains bits indicating support Pentium® Ill processor specific
capabilities within the OS. Refer to Section 2.5., “Control Registers” for a description of
these flags.

® The debug registers (not shown in Figure 2-1) allow the setting of breakpoints for use in
debugging programs and systems software. Refer to Chapter 15, Debugging and
Performance Monitoring, for adescription of these registers.

® The GDTR, LDTR, and IDTR registers contain the linear addresses and sizes (limits) of
their respective tables. Refer to Section 2.4., “Memory-Management Registers” for a
description of these registers.

® Thetask register contains the linear address and size of the TSS for the current task. Refer
to Section 2.4., “Memory-Management Registers” for a description of this register.
®  Model-specific registers (not shown in Figure 2-1).

The model-specific registers (M SRs) are a group of registers available primarily to operating-
system or executive procedures (that is, code running at privilege level 0). These registers
control items such as the debug extensions, the performance-monitoring counters, the machine-
check architecture, and the memory type ranges (M TRRS). The number and functions of these
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registers varies among the different members of the Intel Architecture processor families.
Section 8.4., “Model-Specific Registers (MSRs)” in ChaptePr&cessor Management and
Initialization for more information about the MSRs and AppenditBdel-pecific Registers
for a complete list of the MSRs.

Most systems restrict access to all system registers (other than the EFLAGS register) by appli-
cation programs. Systems can be designed, however, where all programs and procedures run a
the most privileged level (privilege level 0), in which case application programs are allowed to
modify the system registers.

2.1.7. Other System Resources

Besides the system registers and data structures described in the previous sections, the systen
architecture provides the following additional resources:

® Operating system instructions (refer to Section 2.6., “System Instruction Summary”).
® Performance-monitoring counters (not shown in Figure 2-1).
® |nternal caches and buffers (not shown in Figure 2-1).

The performance-monitoring counters are event counters that can be programmed to count
processor events such as the number of instructions decoded, the number of interrupts received,

or the number of cache loads. Refer to Section 15.6., “Performance-Monitoring Counters”, in
Chapter 15, Debugging and Performance Monitoring, for more information about these
counters.

The processor provides several internal caches and buffers. The caches are used to store bott
data and instructions. The buffers are used to store things like decoded addresses to system ant
application segments and write operations waiting to be performed. Refer to Chieiensy

Cache Control, for a detailed discussion of the processor’s caches and buffers.

2.2. MODES OF OPERATION

The Intel Architecture supports three operating modes and one quasi-operating mode:

® Protected mode. This is the native operating mode of the processor. In this mode all
instructions and architectural features are available, providing the highest performance and
capability. Thisis the recommended mode for al new applications and operating systems.

® Real-address mode. This operating mode provides the programming environment of the
Intel 8086 processor, with a few extensions (such as the ability to switch to protected or
system management mode).

® System management mode (SMM). The system management mode (SMM) is a standard
architectural feature in all Intel Architecture processors, beginning with the Intel386™ SL
processor. This mode provides an operating system or executive with a transparent
mechanism for implementing power management and OEM differentiation features. SMM
is entered through activation of an external system interrupt pin (SMI#), which generates a
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system management interrupt (SM1). In SMM, the processor switchesto a separate address
space while saving the context of the currently running program or task. SMM-specific
code may then be executed transparently. Upon returning from SMM, the processor is
placed back into its state prior to the SMI.

® Virtual-8086 mode. In protected mode, the processor supports a quasi-operating mode
known as virtual-8086 mode. This mode allows the processor to execute 8086 software in
a protected, multitasking environment.

Figure 2-2 shows how the processor moves among these operating modes.

> Real-Address
Mode
A
Reset or _
PE=0 PE=1
Y
- System
Reset Protected Mode | Management
- Mode
A
VM=0 VM=1
Y
Virtual-8086
Mode
RSM

Figure 2-2. Transitions Among the Processor’s Operating Modes

The processor is placed in real-address mode following power-up or areset. Thereafter, the PE

flag in control register CRO controls whether the processor is operating in real-address or
protected mode (refer to Section 2.5., “Control Registers”). Refer to Section 8.8., “Mode
Switching” in Chapter 8Processor Management and Initialization for detailed information on
switching between real-address mode and protected mode.

The VM flag in the EFLAGS register determines whether the processor is operating in protected
mode or virtual-8086 mode. Transitions between protected mode and virtual-8086 mode are
generally carried out as part of a task switch or a return from an interrupt or exception handler
(refer to Section 16.2.5., “Entering Virtual-8086 Mode” in Chaptei8028¢ Emulation).

The processor switches to SMM whenever it receives an SMI while the processor is in real-
address, protected, or virtual-8086 modes. Upon execution of the RSM instruction, the
processor always returns to the mode it was in when the SMI occurred.
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2.3. SYSTEM FLAGS AND FIELDS IN THE EFLAGS REGISTER

The system flags and |OPL field of the EFLAGS register control 1/0, maskable hardware inter-
rupts, debugging, task switching, and the virtual-8086 mode (refer to Figure 2-3). Only privi-
leged code (typically operating system or executive code) should be allowed to modify these
bits.

The functions of the system flags and IOPL are as follows:

TF Trap (bit 8). Set to enable single-step mode for debugging; clear to disable single-step
mode. In single-step mode, the processor generates a debug exception after each
instruction, which allows the execution state of a program to be inspected after each
instruction. If an application program sets the TF flag using a POPF, POPFD, or IRET
instruction, a debug exception is generated after the instruction that follows the POPF,
POPFD, or IRET instruction.

31 222120191817 161514 131211109 8 7 6 5 4 3 2 1 0
ViV o o
Reserved (setto 0) [pl1{|&|MIRIo|N S |RIRIEEIE|E]o]|Rlo|F]2|E
P|F
L
ID — Identification Flag4
VIP — Virtual Interrupt Pending
VIF — Virtual Interrupt Flag
AC — Alignment Check
VM — Virtual-8086 Mode
RF — Resume Flag
NT — Nested Task Flag
IOPL— 1/O Privilege Level
IF — Interrupt Enable Flag
TF — Trap Flag
D Reserved
Figure 2-3. System Flags in the EFLAGS Register
IF Interrupt enable (bit 9). Controls the response of the processor to maskable hardware

IOPL

2-8

interrupt requests (refer to Section 5.1.1.2., “Maskable Hardware Interrupts” in
Chapter 5]nterrupt and Exception Handling). Set to respond to maskable hardware
interrupts; cleared to inhibit maskable hardware interrupts. The IF flag does not affect
the generation of exceptions or nonmaskable interrupts (NMI interrupts). The CPL,
IOPL, and the state of the VME flag in control register CR4 determine whether the IF
flag can be modified by the CLI, STI, POPF, POPFD, and IRET instructions.

I/O privilege level field (bits 12 and 13). Indicates the I/O privilege level (IOPL) of

the currently running program or task. The CPL of the currently running program or
task must be less than or equal to the IOPL to access the I/0O address space. This field
can only be modified by the POPF and IRET instructions when operating at a CPL of
0. Refer to Chapter 10nput/Output, of theIntel Architecture Software Developer’s
Manual, Volume JIfor more information on the rel ationship of the IOPL to I/O opera-

tions.
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The IOPL is aso one of the mechanisms that controls the modification of the IF flag
and the handling of interrupts in virtual-8086 mode when the virtual mode extensions
arein effect (the VME flag in control register CR4 is set).

Nested task (bit 14). Controls the chaining of interrupted and called tasks. The
processor setsthisflag on callsto atask initiated with a CALL instruction, an interrupt,
or an exception. It examines and modifies thisflag on returns from atask initiated with
the IRET instruction. The flag can be explicitly set or cleared with the POPF/POPFD
instructions; however, changing to the state of thisflag can generate unexpected excep-
tions in application programs. Refer to Section 6.4., “Task Linking” in Chaptesl6,
Management for more information on nested tasks.

Resume (bit 16). Controls the processor’s response to instruction-breakpoint condi-
tions. When set, this flag temporarily disables debug exceptions (#DE) from being
generated for instruction breakpoints; although, other exception conditions can
cause an exception to be generated. When clear, instruction breakpoints will generate
debug exceptions.

The primary function of the RF flag is to allow the restarting of an instruction following

a debug exception that was caused by an instruction breakpoint condition. Here,
debugger software must set this flag in the EFLAGS image on the stack just prior to
returning to the interrupted program with the IRETD instruction, to prevent the instruc-
tion breakpoint from causing another debug exception. The processor then automati-
cally clears this flag after the instruction returned to has been successfully executed,
enabling instruction breakpoint faults again.

Refer to Section 15.3.1.1., “Instruction-Breakpoint Exception ConditionChagpter
15, Debugging and Performance Monitoring, for more information on the use of this
flag.

Virtual-8086 mode (bit 17). Set to enable virtual-8086 mode; clear to return to
protected mode. Refer to Section 16.2.1., “Enabling Virtual-8086 Mode” in Chapter
16,8086 Emulation for a detailed description of the use of this flag to switch to virtual-
8086 mode.

Alignment check (bit 18). Set this flag and the AM flag in the CRO register to enable
alignment checking of memory references; clear the AC flag and/or the AM flag to
disable alignment checking. An alignment-check exception is generated when refer-
ence is made to an unaligned operand, such as a word at an odd byte address or a
doubleword at an address which is not an integral multiple of four. Alignment-check
exceptions are generated only in user mode (privilege level 3). Memory references that
default to privilege level 0, such as segment descriptor loads, do not generate this
exception even when caused by instructions executed in user-mode.

The alignment-check exception can be used to check alignment of data. This is useful
when exchanging data with other processors, which require all data to be aligned. The
alignment-check exception can also be used by interpreters to flag some pointers as
special by misaligning the pointer. This eliminates overhead of checking each pointer
and only handles the special pointer when used.
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VIF Virtual Interrupt (bit 19). Contains avirtual image of the IF flag. Thisflagisusedin
conjunction with the VIP flag. The processor only recognizes the VIF flag when either
the VME flag or the PV flag in control register CR4 is set and the IOPL islessthan 3.
(The VME flag enables the virtual-8086 mode extensions; the PVI flag enables the
protected-mode virtual interrupts.) Refer to Section 16.3.3.5., “Method 6: Software
Interrupt Handling” and Section 16.4., “Protected-Mode Virtual Interrupts” in Chapter
16,8086 Emulation for detailed information about the use of this flag.

VIP Virtual interrupt pending (bit 20). Set by software to indicate that an interrupt is
pending; cleared to indicate that no interrupt is pending. This flag is used in conjunc-
tion with the VIF flag. The processor reads this flag but never modifies it. The
processor only recognizes the VIP flag when either the VME flag or the PVI flag in
control register CR4 is set and the IOPL is less than 3. (The VME flag enables the
virtual-8086 mode extensions; the PVI flag enables the protected-mode virtual inter-
rupts.) Refer to Section 16.3.3.5., “Method 6: Software Interrupt Handling” and
Section 16.4., “Protected-Mode Virtual Interrupts” in Chapte8086 Emulation for
detailed information about the use of this flag.

ID Identification (bit 21). The ability of a program or procedure to set or clear this flag
indicates support for the CPUID instruction.

2.4. MEMORY-MANAGEMENT REGISTERS

The processor provides four memory-management registers (GDTR, LDTR, IDTR, and TR)
that specify the locations of the data structures which control segmented memory management
(refer to Figure 2-4). Special instructions are provided for loading and storing these registers.

System Table Registers

47 16 15 0
GDTR 32-bit Linear Base Address 16-Bit Table Limit
IDTR 32-bit Linear Base Address 16-Bit Table Limit

System Segment Segment Descriptor Registers (Automatically Loaded)

15 Registers g Attributes
Reg?—satselﬁ Seg. Sel. 32-bit Linear Base Address Segment Limit
LDTR Seg. Sel. 32-bit Linear Base Address Segment Limit

Figure 2-4. Memory Management Registers

2.4.1. Global Descriptor Table Register (GDTR)

The GDTR register holds the 32-bit base address and 16-bit table limit for the GDT. The base
address specifies the linear address of byte 0 of the GDT; the table limit specifies the number of
bytes in the table. The LGDT and SGDT instructions load and store the GDTR register, respec-
tively. On power up or reset of the processor, the base address is set to the default value of 0 and
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the limit is set to FFFFH. A new base address must be loaded into the GDTR as part of the
processor initialization process for protected-mode operation. Refer to Section 3.5.1., “Segment
Descriptor Tables” in Chapter Brotected-Mode Memory Management for more information

on the base address and limit fields.

2.4.2. Local Descriptor Table Register (LDTR)

The LDTR register holds the 16-bit segment selector, 32-bit base address, 16-bit segment limit,
and descriptor attributes for the LDT. The base address specifies the linear address of byte 0 of
the LDT segment; the segment limit specifies the number of bytes in the segment. Refer to
Section 3.5.1., “Segment Descriptor Tables” in Chapt&r&ected-Mode Memory Manage-

ment for more information on the base address and limit fields.

The LLDT and SLDT instructions load and store the segment selector part of the LDTR register,
respectively. The segment that contains the LDT must have a segment descriptor in the GDT.
When the LLDT instruction loads a segment selector in the LDTR, the base address, limit, and
descriptor attributes from the LDT descriptor are automatically loaded into the LDTR.

When a task switch occurs, the LDTR is automatically loaded with the segment selector and
descriptor for the LDT for the new task. The contents of the LDTR are not automatically saved
prior to writing the new LDT information into the register.

On power up or reset of the processor, the segment selector and base address are set to the defaul
value of 0 and the limit is set to FFFFH.

2.4.3. IDTR Interrupt Descriptor Table Register

The IDTR register holds the 32-bit base address and 16-bit table limit for the IDT. The base
address specifies the linear address of byte 0 of the IDT; the table limit specifies the number of
bytes in the table. The LIDT and SIDT instructions load and store the IDTR register, respec-
tively. On power up or reset of the processor, the base address is set to the default value of 0 and
the limit is set to FFFFH. The base address and limit in the register can then be changed as part
of the processor initialization process. Refer to Section 5.8., “Interrupt Descriptor Table (IDT)”

in Chapter 5|nterrupt and Exception Handling for more information on the base address and

limit fields.

2.4.4. Task Register (TR)

The task register holds the 16-bit segment selector, 32-bit base address, 16-bit segment limit,
and descriptor attributes for the TSS of the current task. It references a TSS descriptor in the
GDT. The base address specifies the linear address of byte 0 of the TSS; the segment limit spec-
ifies the number of bytes in the TSS. (Refer to Section 6.2.3., “Task Register” in Chapskr 6,
Management for more information about the task register.)

The LTR and STR instructions load and store the segment selector part of the task register,
respectively. When the LTR instruction loads a segment selector in the task register, the base
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address, limit, and descriptor attributes from the TSS descriptor are automatically loaded into
thetask register. On power up or reset of the processor, the base addressis set to the default value
of 0 and thelimit is set to FFFFH.

When atask switch occurs, the task register is automatically loaded with the segment selector
and descriptor for the TSS for the new task. The contents of the task register are not automati-
cally saved prior to writing the new TSS information into the register.

2.5. CONTROL REGISTERS

The control registers (CRO, CR1, CR2, CR3, and CR4) determine operating mode of the
processor and the characteristics of the currently executing task (refer to Figure 2-5).

31 10 987 6543210
PIPIM|P|P|ITIPIV
Reserved (set to 0) c|G|c|A[s|2|S|VIM| CR4
E|E|E|E|E|"|D|I|E
OSXMMEXCF’TJ
OSFXSR
31 12 11 5432 0
PlP
. CR3
Page-Directory Base cw
9 y o|T (PDBR)
31 0
Page-Fault Linear Address CR2
31 0
CR1
313029 30 191817 16 15 6543210
Plc|N Al |w N|E|T|E|M|P
G|D|wW M| |P E|T|s|m|p|e| CRO
D Reserved

Figure 2-5. Control Registers
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The control registers:

® CRO—Contains system control flags that control operating mode and states of the
processor.

® CR1—Reserved.
® CR2—Contains the page-fault linear address (the linear address that caused a page fault).

® CR3—Contains the physical address of the base of the page directory and two flags (PCD
and PWT). This register is also known as the page-directory base register (PDBR). Only
the 20 most-significant bits of the page-directory base address are specified; the lower 12
bits of the address are assumed to be 0. The page directory must thus be aligned to a page
(4-KByte) boundary. The PCD and PWT flags control caching of the page directory in the
processor’s internal data caches (they do not control TLB caching of page-directory
information).

When using the physical address extension, the CR3 register contains the base address of
the page-directory-pointer table (refer to Section 3.8., “Physical Address Extension” in
Chapter 3Protected-Mode Memory Management).

® CR4—Contains a group of flags that enable several architectural extensions, as well as
indicating the level of OS support for the Streaming SIMD Extensions.

In protected mode, the move-to-or-from-control-registers forms of the MOV instruction allow
the control registers to be read (at privilege level 0 only) or loaded (at privilege level 0 only).
These restrictions mean that application programs (running at privilege levels 1, 2, or 3) are
prevented from reading or loading the control registers.

A program running at privilege level 1, 2, or 3 should not attempt to read or write the control
registers. An attempt to read or write these registers will result in a general protection fault
(GP(0)). The functions of the flags in the control registers are as follows:

PG Paging (bit 31 of CR0). Enables paging when set; disables paging when clear. When
paging is disabled, all linear addresses are treated as physical addresses. The PG flag
has no effect if the PE flag (bit O of register CRO) is not also set; in fact, setting the PG
flag when the PE flag is clear causes a general-protection exception (#GP) to be gener-
ated. Refer to Section 3.6., “Paging (Virtual Memory)” in Chapté&r8tected-Mode
Memory Management for a detailed description of the processor’s paging mechanism.

CD Cache Disable (bit 30 of CR0). When the CD and NW flags are clear, caching of
memory locations for the whole of physical memory in the processor’s internal (and
external) caches is enabled. When the CD flag is set, caching is restricted as described
in Table 9-4, in Chapter emory Cache Control. To prevent the processor from
accessing and updating its caches, the CD flag must be set and the caches must be
invalidated so that no cache hits can occur (refer to Section 9.5.2., “Preventing
Caching”, in Chapter 9Memory Cache Control). Refer to Section 9.5., “Cache
Control”, Chapter 9Memory Cache Control, for a detailed description of the addi-
tional restrictions that can be placed on the caching of selected pages or regions of
memory.

NW Not Write-through (bit 29 of CR0). When the NW and CD flags are clear, write-back
(for Pentiun® and P6 family processors) or write-through (for Intel486™ processors)
is enabled for writes that hit the cache and invalidation cycles are enabled. Refer to
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Table 9-4, in Chapter 9, Memory Cache Control, for detailed information about the
affect of the NW flag on caching for other settings of the CD and NW flags.

AM Alignment Mask (bit 18 of CROQ). Enables automatic alignment checking when set;
disables alignment checking when clear. Alignment checking is performed only when
the AM flag is set, the AC flag in the EFLAGS register is set, the CPL is 3, and the
processor is operating in either protected or virtual-8086 mode.

WP Write Protect (bit 16 of CRO). Inhibits supervisor-level procedures from writing into
user-level read-only pages when set; allows supervisor-level procedures to write into
user-level read-only pages when clear. Thisflag facilitatesimplementation of the copy-
on-write method of creating anew process (forking) used by operating systems such as
UNIX*.

NE Numeric Error (bit 5of CRO). Enables the native (internal) mechanism for reporting
FPU errors when set; enables the PC-style FPU error reporting mechanism when clear.
When the NE flag is clear and the IGNNE# input is asserted, FPU errors are ignored.
When the NE flag is clear and the IGNNE# input i s deasserted, an unmasked FPU error
causes the processor to assert the FERR# pin to generate an external interrupt and to
stop instruction execution immediately before executing the next waiting floating-
point instruction or WAIT/FWAIT instruction. The FERR# pin is intended to drive an
input to an external interrupt controller (the FERR# pin emulates the ERROR# pin of
the Intel 287 and Intel 387 DX math coprocessors). The NE flag, IGNNE# pin, and
FERR# pin are used with external logic to implement PC-style error reporting. (Refer
to “Software Exception Handling” in Chapter 7, and Appendix D ir ite¢ Architec-
ture Software Developer’s Manual, Volumefdr more information about FPU error
reporting and for detailed information on when the FERR# pin is asserted, which is
implementation dependent.)

ET Extension Type (bit 4 of CR0). Reserved in the P6 family and Pentium® processors.
(In the P6 family processors, this flag is hardcoded to 1.) In the Intel386™ and
Intel486™ processors, this flag indicates support of Intel 387 DX math coprocessor
instructions when set.

TS Task Switched (bit 3 of CRO0). Allows the saving of FPU context on a task switch to
be delayed until the FPU is actually accessed by the new task. The processor sets this
flag on every task switch and tests it when interpreting floating-point arithmetic
instructions.

* If the TSflag is set, a device-not-available exception (#NM) is raised prior to the
execution of afloating-point instruction.

¢ |f the TS flag and the MP flag (also in the CRO register) are both set, an #NM
exception is raised prior to the execution of floating-point instruction or a
WAIT/FWAIT instruction.

Table 2-1 shows the actions taken for floating-point, WAIT/FWAIT, MMX™, and
Streaming SIMD Extensions based on the settings of the TS, EM, and MP flags.
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Table 2-1. Action Taken for Combinations of EM, MP, TS, CR4.0SFEXSR, and CPUID.XMM

SYSTEM ARCHITECTURE OVERVIEW

CRO Flags CR4 CPUID Instruction Type
EM | MP | TS | OSEXSR | XMM | Floating-Point | WAIT/FWAIT MMX™ Streaming
Technology SIMD
Extensions
0 0 0 - - Execute Execute Execute -
0 0 1 - - #NM Exception | Execute #NM -
Exception
0 1 0 - - Execute Execute Execute -
0 1 1 - - #NM Exception | #NM Exception | #NM -
Exception
1 0 0 - - #NM Exception | Execute #UD Exception -
1 0 1 - - #NM Exception | Execute #UD Exception -
1 1 0 - - #NM Exception | Execute #UD Exception -
EM | MP | TS | OSFXSR | XMM | Floating-Point | WAIT/FWAIT MMX™ Streaming
Technology SIMD
Extensions
1 1 1 - - #NM Exception | #NM Exception | #UD Exception -
1 - - - - - - - #UD Interrupt
6
0 - 1 1 1 - - - #NM Interrupt
7
- - - 0 - - - - #UD Interrupt
6
- - - - 0 - - - #UD Interrupt
6

The processor does not automatically save the context of the FPU on a task switch.
Instead it setsthe TSflag, which causes the processor to raise an #NM exception when-
ever it encounters afloating-point instruction in theinstruction stream for the new task.
Thefault handler for the #NM exception can then be used to clear the TS flag (with the
CLTS instruction) and save the context of the FPU. If the task never encounters a
floating-point instruction, the FPU context is never saved.
EM Emulation (bit 2 of CRO). Indicates that the processor does not have an internal or
external FPU when set; indicates an FPU is present when clear. When the EM flag is
set, execution of afloating-point instruction generates a device-not-avail able exception
(#NM). This flag must be set when the processor does not have an internal FPU or is
not connected to a math coprocessor. If the processor does have an internal FPU,
setting this flag would force all floating-point instructions to be handled by software
emulation. Table 8-2 in Chapter 8, Processor Management and Initiali zation showsthe
recommended setting of this flag, depending on the Intel Architecture processor and
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FPU or math coprocessor present in the system. Table 2-1 shows the interaction of the
EM, MP, and TS flags.

Note that the EM flag also affects the execution of the MMX™ instructions (refer to
Table 2-1). When this flag is set, execution of an MMX™ instruction causes an invalid
opcode exception (#UD) to be generated. Thus, if an Intel Architecture processor
incorporates MMX™ technology, the EM flag must be set to 0 to enable execution of
MMX™ instructions.

Similarly for the Streaming SIMD Extensions, when this flag is set, execution of a Streaming
SIMD Extensions instruction causes an invalid opcode exception (#UD) to be generated. Thus,
if an Intel Architecture processor incorporates Streaming SIMD Extensions, the EM flag must
be set to 0 to enable execution of Streaming SIMD Extensions. The exception to this is the
PREFETCH and SFENCE instructions. These instructions are not affected by the EM flag.

MP Monitor Coprocessor (bit 1 of CR0). Controls the interaction of the WAIT (or
FWAIT) instruction with the TS flag (bit 3 of CRO). If the MP flag is set, a WAIT
instruction generates a device-not-available exception (#NM) if the TS flag is set. If the
MP flag is clear, the WAIT instruction ignores the setting of the TS flag. Table 8-2 in
Chapter 8Processor Management and Initialization shows the recommended setting
of this flag, depending on the Intel Architecture processor and FPU or math copro-
cessor present in the system. Table 2-1 shows the interaction of the MP, EM, and TS
flags.

PE Protection Enable (bit 0 of CRO). Enables protected mode when set; enables real-
address mode when clear. This flag does not enable paging directly. It only enables
segment-level protection. To enable paging, both the PE and PG flags must be set.
Refer to Section 8.8., “Mode Switching” in ChapterPBpcessor Management and
Initialization for information using the PE flag to switch between real and protected
mode.

PCD Page-level Cache Disable (bit 4 of CR3). Controls caching of the current page direc-
tory. When the PCD flag is set, caching of the page-directory is prevented; when the
flag is clear, the page-directory can be cached. This flag affects only the processor’s
internal caches (both L1 and L2, when present). The processor ignores this flag if
paging is not used (the PG flag in register CRO is clear) or the CD (cache disable) flag
in CRO is set. Refer to ChapterMemory Cache Control, for more information about
the use of this flag. Refer to Section 3.6.4., “Page-Directory and Page-Table Entries”
in Chapter 3Protected-Mode Memory Management for a description of a companion
PCD flag in the page-directory and page-table entries.

PWT  Page-level Writes Transparent (bit 3 of CR3). Controls the write-through or write-
back caching policy of the current page directory. When the PWT flag is set, write-
through caching is enabled; when the flag is clear, write-back caching is enabled. This
flag affects only the internal caches (both L1 and L2, when present). The processor
ignores this flag if paging is not used (the PG flag in register CRO is clear) or the CD
(cache disable) flag in CRO is set. Refer to Section 9.5., “Cache Control”, in Chapter
9, Memory Cache Control, for more information about the use of this flag. Refer to
Section 3.6.4., “Page-Directory and Page-Table Entries” in ChafRest8¢ted-Mode
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VME

PVI

TSD

DE

PSE

PAE

MCE

PGE

Memory Management for a description of acompanion PCD flag in the page-directory
and page-table entries.

Virtual-8086 Mode Extensions (bit O of CR4). Enables interrupt- and exception-
handling extensionsin virtual-8086 mode when set; disablesthe extensionswhen clear.

Use of the virtual mode extensions can improve the performance of virtual-8086 appli-

cations by eliminating the overhead of calling the virtual-8086 monitor to handle inter-

rupts and exceptions that occur while executing an 8086 program and, instead,
redirecting the interrupts and exceptions back to the 8086 program’s handlers. It also
provides hardware support for a virtual interrupt flag (VIF) to improve reliability of
running 8086 programs in multitasking and multiple-processor environments. Refer to
Section 16.3., “Interrupt and Exception Handling in Virtual-8086 Mode” in Chapter 16,
8086 Emulation for detailed information about the use of this feature.

Protected-Mode Virtual Interrupts (bit 1 of CR4). Enables hardware support for a
virtual interrupt flag (VIF) in protected mode when set; disables the VIF flag in
protected mode when clear. Refer to Section 16.4., “Protected-Mode Virtual Inter-
rupts” in Chapter 168086 Emulation for detailed information about the use of this
feature.

Time Stamp Disable (bit 2 of CR4). Restricts the execution of the RDTSC instruction
to procedures running at privilege level 0 when set; allows RDTSC instruction to be
executed at any privilege level when clear.

Debugging Extensions (bit 3 of CR4). References to debug registers DR4 and DR5
cause an undefined opcode (#UD) exception to be generated when set; when clear,
processor aliases references to registers DR4 and DR5 for compatibility with software
written to run on earlier Intel Architecture processors. Refer to Section 15.2.2., “Debug
Registers DR4 and DR5”, ibhapter 15, Debugging and Performance Monitoring, for

more information on the function of this flag.

Page Size Extensions (bit 4 of CR4). Enables 4-MByte pages when set; restricts pages
to 4 KBytes when clear. Refer to Section 3.6.1., “Paging Options” in Chapter 3,
Protected-Mode Memory Management for more information about the use of this flag.

Physical Address Extension (bit 5 of CR4). Enables paging mechanism to reference
36-bit physical addresses when set; restricts physical addresses to 32 hits when clear.
Refer to Section 3.8., “Physical Address Extension” in Chapt@rdected-Mode

Memory Management for more information about the physical address extension.

Machine-Check Enable (bit 6 of CR4). Enables the machine-check exception when
set; disables the machine-check exception when clear. Refer to ChapNchidie-
Check Architecture, for more information about the machine-check exception and
machine- check architecture.

Page Global Enable (bit 7 of CR4). (Introduced in the P6 family processors.) Enables

the global page feature when set; disables the global page feature when clear. The
global page feature allows frequently used or shared pages to be marked as global to
all users (done with the global flag, bit 8, in a page-directory or page-table entry).
Global pages are not flushed from the translation-lookaside buffer (TLB) on a task
switch or a write to register CR3. In addition, the bit must not be enabled before paging
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is enabled via CRO.PG. Program correctness may be affected by reversing this
sequence, and processor performance will be impacted. Refer to Section 3.7., “Trans-
lation Lookaside Buffers (TLBs)” in ChapterRotected-Mode Memory Management
for more information on the use of this bit.

PCE Performance-Monitoring Counter Enable (bit 8 of CR4). Enables execution of the
RDPMC instruction for programs or procedures running at any protection level when
set; RDPMC instruction can be executed only at protection level 0 when clear.

OSFXSR

Operating Sytsem FXSAVE/FXRSTOR Support (bit 9 of CR4). The operating
system will set this bit if both the CPU and the OS support the use of
FXSAVE/FXRSTOR for use during context switches.

OSXMMEXCPT

Operating System Unmasked Exception Support (bit 10 of CR4). The operating
system will set this bit if it provides support for unmasked SIMD floating-point excep-
tions.

2.5.1. CPUID Qualification of Control Register Flags

The VME, PVI, TSD, DE, PSE, PAE, MCE, PGE, PCE, OSFXSR, and OSXMMCEPT flags in
control register CR4 are model specific. All of these flags (except PCE) can be qualified with
the CPUID instruction to determine if they are implemented on the processor before they are
used.

2.6. SYSTEM INSTRUCTION SUMMARY

The system instructions handle system-level functions such as loading system registers,
managing the cache, managing interrupts, or setting up the debug registers. Many of these
instructions can be executed only by operating-system or executive procedures (that is, proce-
dures running at privilege level 0). Others can be executed at any privilege level and are thus
available to application programs. Table 2-2 lists the system instructions and indicates whether
they are available and useful for application programs. These instructions are described in detail
in Chapter 3Instruction Set Reference, of thelntel Architecture Software Developer’s Manual,
Volume 2
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Table 2-2. Summary of System Instructions

SYSTEM ARCHITECTURE OVERVIEW

Useful to Protected from
Instruction Description Application? Application?
LLDT Load LDT Register No Yes
SLDT Store LDT Register No No
LGDT Load GDT Register No Yes
SGDT Store GDT Register No No
LTR Load Task Register No Yes
STR Store Task Register No No
LIDT Load IDT Register No Yes
SIDT Store IDT Register No No
MOV CRn Load and store control registers Yes Yes (load only)
SMSW Store MSW Yes No
LMSW Load MSW No Yes
CLTS Clear TS flag in CRO No Yes
ARPL Adjust RPL Yes! No
LAR Load Access Rights Yes No
LSL Load Segment Limit Yes No
VERR Verify for Reading Yes No
VERW Verify for Writing Yes No
MOV DBn Load and store debug registers No Yes
INVD Invalidate cache, no writeback No Yes
WBINVD Invalidate cache, with writeback No Yes
INVLPG Invalidate TLB entry No Yes
HLT Halt Processor No Yes
LOCK (Prefix) Bus Lock Yes No
RSM Return from system management mode No Yes
RDMSR? Read Model-Specific Registers No Yes
WRMSR? Write Model-Specific Registers No Yes
RDPMC* Read Performance-Monitoring Counter Yes Yes?
RDTSC? Read Time-Stamp Counter Yes Yes?
LDMXCSR® Load MXCSR Register Yes No
STMXCSR® Store MXCSR Resister Yes No
NOTES:

1. Useful to application programs running at a CPL of 1 or 2.

2. The TSD and PCE flags in control register CR4 control access to these instructions by application
programs running at a CPL of 3.

3. These instructions were introduced into the Intel Architecture with the Pentium® processor.

4. This instruction was introduced into the Intel Architecture with the Pentium® Pro processor and the Pen-
tium processor with MMX™ technology.

5. This instruction was introduced into the Intel Architecture with the Pentium® Il processor.
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2.6.1. Loading and Storing System Registers

The GDTR, LDTR, IDTR, and TR registers each have aload and store instruction for loading
datainto and storing data from the register:

LGDT (Load GDTR Register) Loads the GDT base address and limit from memory into the
GDTR register.

SGDT (Store GDTR Register) Stores the GDT base address and limit from the GDTR register
into memory.

LIDT (Load IDTR Register) Loads the IDT base address and limit from memory into the
IDTR register.

SIDT (Load IDTR Register ~ Stores the IDT base address and limit from the IDTR register
into memory.

LLDT (Load LDT Register) Loads the LDT segment selector and segment descriptor from
memory into the LDTR. (The segment selector operand can also
be located in a general-purpose register.)

SLDT (Store LDT Register)  Stores the LDT segment selector from the LDTR register into
memory or a general-purpose register.

LTR (Load Task Register) Loads segment selector and segment descriptor for a TSS from
memory into the task register. (The segment selector operand
can also be located in a general -purpose register.)

STR (Store Task Register) Stores the segment selector for the current task TSS from the
task register into memory or a general-purpose register.

The LMSW (load machine status word) and SMSW (store machine status word) instructions
operate on bits O through 15 of control register CRO. Theseinstructions are provided for compat-
ibility with the 16-bit Intel 286 processor. Program written to run on 32-bit Intel Architecture
processors should not use these instructions. Instead, they should accessthe control register CRO
using the MOV instruction.

The CLTS (clear TSflag in CRO) instruction is provided for use in handling a device-not-avail-

able exception (#NM) that occurs when the processor attempts to execute a floating-point
instruction when the TS flag is set. This instruction allows the TS flag to be cleared after the

FPU context has been saved, preventing further #NM exceptions. Refer to Section 2.5., “Control
Registers” for more information about the TS flag.

The control registers (CRO, CR1, CR2, CR3, and CR4) are loaded with the MOV instruction.
This instruction can load a control register from a general-purpose register or store the contents
of the control register in a general-purpose register.

2.6.2. Verifying of Access Privileges

The processor provides several instructions for examining segment selectors and segment
descriptors to determine if access to their associated segments is allowed. These instructions
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duplicate some of the automatic access rights and type checking done by the processor, thus
allowing operating-system or executive software to prevent exceptions from being generated.

The ARPL (adjust RPL) instruction adjusts the RPL (requestor privilege level) of a segment
selector to match that of the program or procedure that supplied the segment selector. Refer to
Section 4.10.4., “Checking Caller Access Privileges (ARPL Instruction)” in ChaRentdc-
tion for a detailed explanation of the function and use of this instruction.

The LAR (load access rights) instruction verifies the accessibility of a specified segment and
loads the access rights information from the segment’s segment descriptor into a general-
purpose register. Software can then examine the access rights to determine if the segment type
is compatible with its intended use. Refer to Section 4.10.1., “Checking Access Rights (LAR
Instruction)” in Chapter 4Protection for a detailed explanation of the function and use of this
instruction.

The LSL (load segment limit) instruction verifies the accessibility of a specified segment and
loads the segment limit from the segment’s segment descriptor into a general-purpose register.
Software can then compare the segment limit with an offset into the segment to determine
whether the offset lies within the segment. Refer to Section 4.10.3., “Checking That the Pointer
Offset Is Within Limits (LSL Instruction)” in Chapter Brotection for a detailed explanation of

the function and use of this instruction.

The VERR (verify for reading) and VERW (verify for writing) instructions verify if a selected
segment is readable or writable, respectively, at the CPL. Refer to Section 4.10.2., “Checking
Read/Write Rights (VERR and VERW Instructions)” in ChaptePrtection for a detailed
explanation of the function and use of this instruction.

2.6.3. Loading and Storing Debug Registers

The internal debugging facilities in the processor are controlled by a set of 8 debug registers
(DRO through DR7). The MOV instruction allows setup data to be loaded into and stored from
these registers.

2.6.4. Invalidating Caches and TLBs

The processor provides several instructions for use in explicitly invalidating its caches and TLB
entries. The INVD (invalidate cache with no writeback) instruction invalidates all data and
instruction entries in the internal caches and TLBs and sends a signal to the external caches indi-
cating that they should be invalidated also.

The WBINVD (invalidate cache with writeback) instruction performs the same function as the
INVD instruction, except that it writes back any modified lines in its internal caches to memory
before it invalidates the caches. After invalidating the internal caches, it signals the external
caches to write back modified data and invalidate their contents.

The INVLPG (invalidate TLB entry) instruction invalidates (flushes) the TLB entry for a spec-
ified page.
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2.6.5. Controlling the Processor

TheHLT (halt processor) instruction stops the processor until an enabled interrupt (such asNMI
or SMI, which are normally enabled), the BINIT# signal, the INIT# signal, or the RESET#
signal isreceived. The processor generates aspecial bus cycle to indicate that the halt mode has
been entered. Hardware may respond to this signal in a number of ways. An indicator light on
the front panel may be turned on. An NMI interrupt for recording diagnostic information may
be generated. Reset initialization may be invoked. (Note that the BINIT# pin was introduced
with the Pentium® Pro processor.)

The LOCK prefix invokes a locked (atomic) read-modify-write operation when modifying a
memory operand. Thismechanism isused to allow reliable communications between processors
in multiprocessor systems. In the Pentium® and earlier Intel Architecture processors, the LOCK
prefix causes the processor to assert the LOCK# signal during the instruction, which always
causesan explicit buslock to occur. In the P6 family processors, thelocking operation ishandled
with either a cache lock or bus lock. If a memory access is cacheable and affects only a single
cacheline, acachelock isinvoked and the system bus and the actual memory location in system
memory are not locked during the operation. Here, other P6 family processors on the bus write-
back any modified data and invalidate their caches as necessary to maintain system memory
coherency. If the memory access is not cacheable and/or it crosses a cache line boundary, the
processor’'s LOCK# signal is asserted and the processor does not respond to requests for bus
control during the locked operation.

The RSM (return from SMM) instruction restores the processor (from a context dump) to the
state it was in prior to an system management mode (SMM) interrupt.

2.6.6. Reading Performance-Monitoring and Time-Stamp
Counters

The RDPMC (read performance-monitoring counter) and RDTSC (read time-stamp counter)
instructions allow an application program to read the processors performance-monitoring and
time-stamp counters, respectively.

The P6 family processors have two 40-bit performance counters that record either the occur-
rence of events or the duration of events. The events that can be monitored include the number
of instructions decoded, number of interrupts received, of number of cache loads. Each counter
can be set up to monitor a different event, using the system instruction WRMSR to set up values
in the model-specific registers PerfEvtSel0 and PerfEvtSell. The RDPMC instruction loads the
current count in counter O or 1 into the EDX:EAX registers.

The time-stamp counter is a model-specific 64-bit counter that is reset to zero each time the
processor is reset. If not reset, the counter will increment ~6.3%if®@s per year when

the processor is operating at a clock rate of 200 MHz. At this clock frequency, it would take
over 2000 years for the counter to wrap around. The RDTSC instruction loads the current
count of the time-stamp counter into the EDX:EAX registers.
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Refer to Section 15.5., “Time-Stamp Counter”, and Section 15.6., “Performance-Monitoring
Counters”, inChapter 15, Debugging and Performance Monitoring, for more information about
the performance monitoring and time-stamp counters.

The RDTSC instruction was introduced into the Intel Architecture with the Pénpracessor.
The RDPMC instruction was introduced into the Intel Architecture with the Pentium® Pro
processor and the Pentium® processor with MMX™ technology. Earlier Pentiuftrprocessors
have two performance-monitoring counters, but they can be read only with the RDM SR instruc-
tion, and only at privilege level 0.

2.6.7. Reading and Writing Model-Specific Registers

The RDM SR (read model-specific register) and WRM SR (write model-specific register) allow

the processor’s 64-bit model-specific registers (MSRs) to be read and written to, respectively.
The MSR to be read or written to is specified by the value in the ECX register. The RDMSR
instruction reads the value from the specified MSR into the EDX:EAX registers; the WRMSR
writes the value in the EDX:EAX registers into the specified MSR. Refer to Section 8.4.,
“Model-Specific Registers (MSRs)” in Chaptef8pcessor Management and Initialization for

more information about the MSRs.

The RDMSR and WRMSR instructions were introduced into the Intel Architecture with the
Pentiun® processor.

2.6.8. Loading and Storing the Streaming SIMD Extensions
Control/Status Word

The LDMXCSR (load Streaming SIMD Extensions control/status word from memory) and
STMXCSR (store Streaming SIMD Extensions control/status word to memory) alow the
Pentium® 11l processor’s 32-bit control/status word to be read and written to, respectively. The
MXCSR control/status register is used to enable masked/unmasked exception handling, to set
rounding modes, to set flush-to-zero mode, and to view exception status flags. For more infor-
mation on the LDMXCSR and STMXCSR instructions, refer td it Architecture Software
Developer’s Manual, Vol Zpr a complete description of these instructions.
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CHAPTER 3
PROTECTED-MODE MEMORY MANAGEMENT

This chapter describes the Intel Architecture’s protected-mode memory management facilities,
including the physical memory requirements, the segmentation mechanism, and the paging
mechanism. Refer to ChapterRtptection for a description of the processor’s protection mech-
anism. Refer to Chapter 18)86 Emulation for a description of memory addressing protection

in real-address and virtual-8086 modes.

3.1. MEMORY MANAGEMENT OVERVIEW

The memory management facilities of the Intel Architecture are divided into two parts: segmen-
tation and paging. Segmentation provides a mechanism of isolating individual code, data, and
stack modules so that multiple programs (or tasks) can run on the same processor without inter-
fering with one another. Paging provides a mechanism for implementing a conventional
demand-paged, virtual-memory system where sections of a program’s execution environment
are mapped into physical memory as needed. Paging can also be used to provide isolation
between multiple tasks. When operating in protected mode, some form of segmentation must be
used.Thereisno mode bit to disable ssgmentation. The use of paging, however, is optional.

These two mechanisms (segmentation and paging) can be configured to support simple single-
program (or single-task) systems, multitasking systems, or multiple-processor systems that used
shared memory.

As shown in Figure 3-1, segmentation provides a mechanism for dividing the processor’s
addressable memory space (calledlthear address space) into smaller protected address
spaces callegegments. Segments can be used to hold the code, data, and stack for a program

or to hold system data structures (such as a TSS or LDT). If more than one program (or task) is
running on a processor, each program can be assigned its own set of segments. The processor
then enforces the boundaries between these segments and insures that one program does not
interfere with the execution of another program by writing into the other program’s segments.
The segmentation mechanism also allows typing of segments so that the operations that may be
performed on a particular type of segment can be restricted.

All of the segments within a system are contained in the processor’s linear address space. To
locate a byte in a particular segmenpgical address (sometimes called a far pointer) must be
provided. A logical address consists of a segment selector and an offset. The segment selector
is a unique identifier for a segment. Among other things it provides an offset into a descriptor
table (such as the global descriptor table, GDT) to a data structure called a segment descriptor.
Each segment has a segment descriptor, which specifies the size of the segment, the access rights
and privilege level for the segment, the segment type, and the location of the first byte of the
segment in the linear address space (called the base address of the segment). The offset part of
the logical address is added to the base address for the segment to locate a byte within the
segment. The base address plus the offset thus foiimsaa address in the processor’s linear
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address space.

Logical Address
(or Far Painter)

Segment l

Selector Offset Linear Address

| | | | Space
Rl o Dir Tlnizggdjre(sjsﬁset | Physical
Table (GDT) Physical
Space
Segment b Tabi
Segment age Table Page
Descrippor— | | [ (| || 1| [~-""""7
> I Page Directory Phy. Addr.
ﬂr Lin. Addr.
Entry S S ——
* Entry >

Segment_J

Base Address

| Page

}— Segmentation I Paging I

Figure 3-1. Segmentation and Paging

If paging is not used, the linear address space of the processor is mapped directly into the phys-
ical address space of processor. The physical address space is defined as the range of addresses
that the processor can generate on its address bus.

Because multitasking computing systems commonly define a linear address space much larger

than it is economically feasible to contain al at once in physical memory, some method of
“virtualizing” the linear address space is needed. This virtualization of the linear address space
is handled through the processor’s paging mechanism.

Paging supports a “virtual memory” environment where a large linear address space is simulated
with a small amount of physical memory (RAM and ROM) and some disk storage. When using
paging, each segment is divided into pages (ordinarily 4 KBytes each in size), which are stored
either in physical memory or on the disk. The operating system or executive maintains a page
directory and a set of page tables to keep track of the pages. When a program (or task) attempts
to access an address location in the linear address space, the processor uses the page directol
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and page tables to trandlate the linear address into a physical address and then performs the
requested operation (read or write) on the memory location. If the page being accessed is not
currently in physical memory, the processor interrupts execution of the program (by generating
a page-fault exception). The operating system or executive then reads the page into physical
memory from the disk and continues executing the program.

When paging is implemented properly in the operating-system or executive, the swapping of
pages between physical memory and the disk is transparent to the correct execution of a
program. Even programswritten for 16-bit Intel Architecture processors can be paged (transpar-
ently) when they are run in virtual-8086 mode.

3.2. USING SEGMENTS

The segmentation mechanism supported by the Intel Architecture can be used to implement a
wide variety of system designs. These designs range from flat models that make only minimal
use of segmentation to protect programs to multisegmented models that employ segmentation
to create arobust operating environment in which multiple programs and tasks can be executed
reliably.

Thefollowing sections give several examples of how segmentation can be employed in asystem
to improve memory management performance and reliability.

3.2.1. Basic Flat Model

The simplest memory model for a system is the basic “flat model,” in which the operating
system and application programs have access to a continuous, unsegmented address space. To
the greatest extent possible, this basic flat model hides the segmentation mechanism of the archi-
tecture from both the system designer and the application programmer.

To implement a basic flat memory model with the Intel Architecture, at least two segment
descriptors must be created, one for referencing a code segment and one for referencing a data
segment (refer to Figure 3-2). Both of these segments, however, are mapped to the entire linear
address space: that is, both segment descriptors have the same base address value of 0 and the
same segment limit of 4 GBytes. By setting the segment limit to 4 GBytes, the segmentation
mechanism is kept from generating exceptions for out of limit memory references, even if no
physical memory resides at a particular address. ROM (EPROM) is generally located at the top

of the physical address space, because the processor begins execution at FFFF_FFFOH. RAM
(DRAM) is placed at the bottom of the address space because the initial base address for the DS
data segment after reset initialization is 0.
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Linear Address Space
(or Physical Memory)
Sggg‘t‘;rr‘; Code | FFFFFFFFH
Code- and Data-Segment
Descriptors Not Present
| Access | Limit - Data and
Base Address L - Stack 0

Figure 3-2. Flat Model

3.2.2. Protected Flat Model

The protected flat model is similar to the basic flat model, except the segment limits are set to
include only the range of addresses for which physical memory actually exists (refer to Figure
3-3). A general-protection exception (#GP) is then generated on any attempt to access nonex-
istent memory. Thismodel providesaminimum level of hardware protection against some kinds
of program bugs.

Segment Linear Address Space
Descriptors (or Physical Memory)
Segment imi
Registers Access Limit > Code FFFFFFFFH
Base Address —>
Not Present
Memory 1/O
e T
Base Address
Data and
Stack
> 0

Figure 3-3. Protected Flat Model

More complexity can be added to this protected flat model to provide more protection. For
example, for the paging mechanism to provide isolation between user and supervisor code and
data, four segments need to be defined: code and data segments at privilege level 3 for the user,
and code and data segments at privilege level 0 for the supervisor. Usually these segments all
overlay each other and start at address O in the linear address space. This flat segmentation

3-4 I



Intel® PROTECTED-MODE MEMORY MANAGEMENT

model along with a simple paging structure can protect the operating system from applications,
and by adding a separate paging structure for each task or process, it can also protect applica
tions from each other. Similar designs are used by several popular multitasking operating
systems.

3.2.3. Multisegment Model

A multisegment model (such as the one shown in Figure 3-4) uses the full capabilities of the
segmentation mechanism to provided hardware enforced protection of code, data structures, and
programs and tasks. Here, each program (or task) is given its own table of segment descriptors
and its own segments. The segments can be completely private to their assigned programs or
shared among programs. Accessto all ssgments and to the execution environments of individual
programs running on the system is controlled by hardware.

Segment Segment Linear Address Space
Registers Descriptors (or Physical Memory)
cs « | Access \dd Limit
Base Address Stack
IE - Access \ Limit
Base Address
IE - Access \ Limit
Base Address Code
IE > Access \ Limit
Base Address
— Data
Access \ Limit
FS >
Base Address
Data
Access \ Limit
GS > >
: Base Address
— Data
Access \ Limit
Base Address
»
Access \ Limit
Base Address
Data

Access \ Limit
Base Address

Access \ Limit

Base Address T

Figure 3-4. Multisegment Model
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Access checks can be used to protect not only against referencing an address outside the limit
of a segment, but also against performing disallowed operations in certain segments. For
example, since code segments are designated as read-only segments, hardware can be used to
prevent writes into code segments. The access rights information created for segments can also
be used to set up protection rings or levels. Protection levels can be used to protect operating-
system procedures from unauthorized access by application programs.

3.2.4. Paging and Segmentation

Paging can be used with any of the segmentation models described in Figures 3-2, 3-3, and 3-4.

The processor’s paging mechanism divides the linear address space (into which segments are
mapped) into pages (as shown in Figure 3-1). These linear-address-space pages are then mappe!
to pages in the physical address space. The paging mechanism offers several page-level protec-
tion facilities that can be used with or instead of the segment-protection facilities. For example,

it lets read-write protection be enforced on a page-by-page basis. The paging mechanism also
provides two-level user-supervisor protection that can also be specified on a page-by-page basis.

3.3. PHYSICAL ADDRESS SPACE

In protected mode, the Intel Architecture provides a normal physical address space of 4 GBytes
(2*2bytes). This is the address space that the processor can address on its address bus. Thi:
address space is flat (unsegmented), with addresses ranging continuously from 0 to
FFFFFFFFH. This physical address space can be mapped to read-write memory, read-only
memory, and memory mapped I/0. The memory mapping facilities described in this chapter can
be used to divide this physical memory up into segments and/or pages.

(Introduced in the PentiutiPro processor.) The Intel Architecture also supports an extension of

the physical address space to 2% bytes (64 GBytes), with a maximum physical address of
FFFFFFFFFH. This extension is invoked with the physical address extension (PAE) flag,
located in bit 5 of control register CR4. (Refer to Section 3.8., “Physical Address Extension” for
more information about extended physical addressing.)

3.4. LOGICAL AND LINEAR ADDRESSES

At the system-architecture level in protected mode, the processor uses two stages of address
translation to arrive at a physical address: logical-address translation and linear address space

paging.

Even with the minimum use of segments, every byte in the processor’s address space is accessec
with a logical address. A logical address consists of a 16-bit segment selector and a 32-bit offset
(refer to Figure 3-5). The segment selector identifies the segment the byte is located in and the
offset specifies the location of the byte in the segment relative to the base address of the segment.

The processor translates every logical address into a linear address. A linear address is a 32-bit
address in the processor’s linear address space. Like the physical address space, the lineat
address space is a flat (unsegmentetpyte address space, with addresses ranging from 0 to

3-6 I



Intel® PROTECTED-MODE MEMORY MANAGEMENT

FFFFFFFH. The linear address space contains all the segments and system tables defined for a
system.

To translate alogical addressinto alinear address, the processor does the following:

1. Usesthe offset in the segment selector to locate the segment descriptor for the segment in
the GDT or LDT and reads it into the processor. (This step is needed only when a new
segment selector isloaded into a segment register.)

2. Examines the segment descriptor to check the access rights and range of the segment to
insure that the segment is accessible and that the offset is within the limits of the segment.

3. Adds the base address of the segment from the segment descriptor to the offset to form a
linear address.

15 0 31 0
| Offset |

Descriptor Table

Segment

Base Address
H > +
Descriptor .

31 0
| Linear Address |

Figure 3-5. Logical Address to Linear Address Translation

If paging is not used, the processor maps the linear address directly to a physical address (that

is, the linear address goes out on the processor’s address bus). If the linear address space is
paged, a second level of address translation is used to translate the linear address into a physical
address. Page translation is described in Section 3.6., “Paging (Virtual Memory)”

3.4.1. Segment Selectors

A segment selector is a 16-bit identifier for a segment (refer to Figure 3-6). It does not point
directly to the segment, but instead points to the segment descriptor that defines the segment. A
segment selector contains the following items:

I ndex (Bits 3 through 15)Selects one of 8192 descriptors in the GDT or LDT. The
processor multiplies the index value by 8 (the number of bytes in a segment
descriptor) and adds the result to the base address of the GDT or LDT (from
the GDTR or LDTR register, respectively).
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TI (tableindicator) flag
(Bit 2). Specifiesthe descriptor table to use: clearing thisflag selects the GDT;
setting this flag selects the current LDT.

15 3210
‘ Index H‘RPL‘
+ A
Table Indicator
0=GDT
1=LDT
Requested Privilege Level (RPLy———

Figure 3-6. Segment Selector

Requested Privilege Level (RPL)
(Bits 0 and 1). Specifies the privilege level of the selector. The privilege level
can range from 0 to 3, with 0 being the most privileged level. Refer to Section
4.5., “Privilege Levels” in Chapter £rotection for a description of the rela-
tionship of the RPL to the CPL of the executing program (or task) and the
descriptor privilege level (DPL) of the descriptor the segment selector points
to.

The first entry of the GDT is not used by the processor. A segment selector that points to this
entry of the GDT (that is, a segment selector with an index of 0 and the Tl flag set to 0) is used
as a “null segment selector.” The processor does not generate an exception when a segment
register (other than the CS or SS registers) is loaded with a null selector. It does, however,
generate an exception when a segment register holding a null selector is used to access memory
A null selector can be used to initialize unused segment registers. Loading the CS or SS register
with a null segment selector causes a general-protection exception (#GP) to be generated.

Segment selectors are visible to application programs as part of a pointer variable, but the values
of selectors are usually assigned or modified by link editors or linking loaders, not application
programs.

3.4.2. Segment Registers

To reduce address translation time and coding complexity, the processor provides registers for
holding up to 6 segment selectors (refer to Figure 3-7). Each of these segment registers support
a specific kind of memory reference (code, stack, or data). For virtually any kind of program
execution to take place, at least the code-segment (CS), data-segment (DS), and stack-segmen
(SS) registers must be loaded with valid segment selectors. The processor also provides three
additional data-segment registers (ES, FS, and GS), which can be used to make additional data
segments available to the currently executing program (or task).

For a program to access a segment, the segment selector for the segment must have been loade
in one of the segment registers. So, although a system can define thousands of segments, only 6
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can be available for immediate use. Other segments can be made available by loading their
segment selectors into these registers during program execution.

Visible Part Hidden Part
Segment Selector Base Address, Limit, Access Information | CS
SS
DS
ES
FS
GS

Figure 3-7. Segment Registers

Every segment register has a “visible” part and a “hidden” part. (The hidden part is sometimes
referred to as a “descriptor cache” or a “shadow register.”) When a segment selector is loaded
into the visible part of a segment register, the processor also loads the hidden part of the segment
register with the base address, segment limit, and access control information from the segment
descriptor pointed to by the segment selector. The information cached in the segment register
(visible and hidden) allows the processor to translate addresses without taking extra bus cycles
to read the base address and limit from the segment descriptor. In systems in which multiple
processors have access to the same descriptor tables, it is the responsibility of software to reload
the segment registers when the descriptor tables are modified. If this is not done, an old segment
descriptor cached in a segment register might be used after its memory-resident version has been
modified.

Two kinds of load instructions are provided for loading the segment registers:

1. Direct load instructions such as the MOV, POP, LDS, LES, LSS, LGS, and LFS instruc-
tions. These instructions explicitly reference the segment registers.

2. Implied load instructions such as the far pointer versions of the CALL, JMP, and RET
instructions and the IRET, INTT INTO and INT3 instructions. These instructions change
the contents of the CS register (and sometimes other segment registers) as an incidental
part of their operation.

The MOV instruction can also be used to store visible part of a segment register in a general-
purpose register.

3.4.3. Segment Descriptors

A segment descriptor is a data structure in a GDT or LDT that provides the processor with the
size and location of a segment, as well as access control and status information. Segment
descriptors are typically created by compilers, linkers, loaders, or the operating system or exec-
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utive, but not application programs. Figure 3-8 illustrates the general descriptor format for all
types of segment descriptors.

Theflags and fields in a segment descriptor are as follows:
Segment limit field

3-10

Specifiesthe size of the segment. The processor puts together the two segment
limit fields to form a 20-bit value. The processor interprets the segment limit
in one of two ways, depending on the setting of the G (granularity) flag:

< If the granularity flag is clear, the segment size can range from 1 byte to 1
MByte, in byte increments.

« If the granularity flag is set, the segment size can range from 4 KBytes to
4 GBytes, in 4-KByte increments.

The processor uses the segment limit in two different ways, depending on
whether the segment is an expand-up or an expand-down segment. Refer to
Section 3.4.3.1., “Code- and Data-Segment Descriptor Types” for more infor-
mation about segment types. For expand-up segments, the offset in a logical
address can range from 0 to the segment limit. Offsets greater than the segment
limit generate general-protection exceptions (#GP). For expand-down
segments, the segment limit has the reverse function; the offset can range from
the segment limit to FFFFFFFFH or FFFFH, depending on the setting of the B
flag. Offsets less than the segment limit generate general-protection excep-
tions. Decreasing the value in the segment limit field for an expand-down
segment allocates new memory at the bottom of the segment's address space,
rather than at the top. Intel Architecture stacks always grow downwards,
making this mechanism is convenient for expandable stacks.
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31 242322212019 1615141312 11 8 7 0
D| |A|l Seg. D
Base 31:24 G(/|0|v| Limt |P| p |S| Type Base 23:16 4
B L| 19:16 L
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0
AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
DPL — Descriptor privilege level
G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

Figure 3-8. Segment Descriptor

Base addressfields
Definesthelocation of byte 0 of the segment within the 4-GByte linear address
space. The processor putstogether the three base addressfieldsto form asingle
32-bit value. Segment base addresses should be aligned to 16-byte boundaries.
Although 16-byte alignment is not required, this alignment allows programsto
maximize performance by aligning code and data on 16-byte boundaries.

Typefield Indicates the segment or gate type and specifies the kinds of accessthat can be
madeto the segment and the direction of growth. Theinterpretation of thisfield
depends on whether the descriptor type flag specifies an application (code or
data) descriptor or a system descriptor. The encoding of the type field is
different for code, data, and system descriptors (refer to Figure 4-1 in Chapter
4, Protection). Refer to Section 3.4.3.1., “Code- and Data-Segment Descriptor
Types” for a description of how this field is used to specify code and data-
segment types.

S (descriptor type) flag
Specifies whether the segment descriptor is for a system segment (S flag is
clear) or a code or data segment (S flag is set).
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DPL (descriptor privilegelevel) field

Specifiestheprivilegelevel of the segment. The privilegelevel can range from

0to 3, with 0 being the most privileged level. The DPL isused to control access

to the segment. Refer to Section 4.5., “Privilege Levels” in ChapRotec-

tion for a description of the relationship of the DPL to the CPL of the executing
code segment and the RPL of a segment selector.

P (segment-present) flag

Indicates whether the segment is present in memory (set) or not present (clear).
If this flag is clear, the processor generates a segment-not-present exception
(#NP) when a segment selector that points to the segment descriptor is loaded
into a segment register. Memory management software can use this flag to
control which segments are actually loaded into physical memory at a given
time. It offers a control in addition to paging for managing virtual memory.

Figure 3-9 shows the format of a segment descriptor when the segment-present
flag is clear. When this flag is clear, the operating system or executive is free
to use the locations marked “Available” to store its own data, such as informa-
tion regarding the whereabouts of the missing segment.

D/B (default operation size/default stack pointer size and/or upper bound) flag

3-12

Performs different functions depending on whether the segment descriptor is
an executable code segment, an expand-down data segment, or a stack
segment. (This flag should always be set to 1 for 32-bit code and data segments
and to O for 16-bit code and data segments.)

« Executable code segment. The flag is called the D flag and it indicates the
default length for effective addresses and operands referenced by instruc-
tions in the segment. If the flag is set, 32-bit addresses and 32-bit or 8-bit
operands are assumed; if it is clear, 16-bit addresses and 16-bit or 8-bit
operands are assumed. The instruction prefix 66H can be used to select an
operand size other than the default, and the prefix 67H can be used select
an address size other than the default.

e Stack segment (data segment pointed to by the SSregister). The flag is

called the B (big) flag and it specifies the size of the stack pointer used for
implicit stack operations (such as pushes, pops, and calls). If the flag is set,
a 32-bit stack pointer is used, which is stored in the 32-bit ESP register; if
the flag is clear, a 16-bit stack pointer is used, which is stored in the 16-bit
SP register. If the stack segment is set up to be an expand-down data
segment (described in the next paragraph), the B flag also specifies the
upper bound of the stack segment.

« Expand-down data segment. The flag is called the B flag and it specifies
the upper bound of the segment. If the flag is set, the upper bound is
FFFFFFFFH (4 GBytes); if the flag is clear, the upper bound is FFFFH (64
KBytes).
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31 16 15 14 13 12 11 8 7 0
Available 0| P [S| Type Available 4
L
31 0
Available 0

Figure 3-9. Segment Descriptor When Segment-Present Flag Is Clear

G (granularity) flag

Determines the scaling of the segment limit field. When the granularity flag is
clear, the segment limit is interpreted in byte units; when flag is set, the
segment limit is interpreted in 4-KByte units. (This flag does not affect the
granularity of the base address; it is always byte granular.) When the granu-
larity flag is set, thetwelve least significant bits of an offset are not tested when
checking the offset against the segment limit. For example, when the granu-
larity flag is set, alimit of O resultsin valid offsets from O to 4095.

Available and reserved bits
Bit 20 of the second doubleword of the segment descriptor is available for use
by system software; bit 21 is reserved and should always be set to 0.

3.4.3.1. CODE- AND DATA-SEGMENT DESCRIPTOR TYPES

When the S (descriptor type) flag in asegment descriptor is set, the descriptor isfor either acode
or a data segment. The highest order bit of the type field (bit 11 of the second double word of
the segment descriptor) then determines whether the descriptor is for a data segment (clear) or
a code segment (set).

For data segments, the three low-order bits of the type field (bits 8, 9, and 10) are interpreted as
accessed (A), write-enable (W), and expansion-direction (E). Refer to Table 3-1 for a descrip-
tion of the encoding of the bitsin the type field for code and data segments. Data segments can
be read-only or read/write segments, depending on the setting of the write-enable bit.
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Table 3-1. Code- and Data-Segment Types

Type Field
) 1 10 9 8 Descriptor
Decimal E W A Type Description
0 0 0 0 0 Data Read-Only
1 0 0 0 1 Data Read-Only, accessed
2 0 0 1 0 Data Read/Write
3 0 0 1 1 Data Read/Write, accessed
4 0 1 0 0 Data Read-Only, expand-down
5 0 1 0 1 Data Read-Only, expand-down, accessed
6 0 1 1 0 Data Read/Write, expand-down
7 0 1 1 1 Data Read/Write, expand-down, accessed
C R A
8 1 0 0 0 Code Execute-Only
9 1 0 0 1 Code Execute-Only, accessed
10 1 0 1 0 Code Execute/Read
11 1 0 1 1 Code Execute/Read, accessed
12 1 1 0 0 Code Execute-Only, conforming
13 1 1 0 1 Code Execute-Only, conforming, accessed
14 1 1 1 0 Code Execute/Read-Only, conforming
15 1 1 1 1 Code Execute/Read-Only, conforming, accessed

Stack segments are data segments which must be read/write segments. Loading the SS register
with asegment selector for anonwritabl e data segment generates ageneral -protection exception
(#GP). If the size of astack segment needs to be changed dynamically, the stack segment can be
an expand-down data segment (expansion-direction flag set). Here, dynamically changing the
segment limit causes stack space to be added to the bottom of the stack. If the size of a stack
segment isintended to remain static, the stack segment may be either an expand-up or expand-
down type.

The accessed bit indicates whether the segment has been accessed since the last time the oper-
ating-system or executive cleared the bit. The processor setsthis bit whenever it loads a segment
selector for the segment into a segment register. The bit remains set until explicitly cleared. This
bit can be used both for virtual memory management and for debugging.

For code segments, the three low-order bits of thetypefield areinterpreted as accessed (A), read
enable (R), and conforming (C). Code segments can be execute-only or execute/read, depending
on the setting of the read-enable bit. An execute/read segment might be used when constants or
other static data have been placed with instruction code in a ROM. Here, data can be read from
the code segment either by using an instruction with a CS override prefix or by loading a
segment selector for the code segment in a data-segment register (the DS, ES, FS, or GS regis-
ters). In protected mode, code segments are not writable.

Code segments can be either conforming or nonconforming. A transfer of execution into amore-
privileged conforming segment allows execution to continue at the current privilege level. A

transfer into a nonconforming segment at a different privilege level results in a general-protec-

tion exception (#GP), unless a call gate or task gate is used (refer to Section 4.8.1., “Direct Calls
or Jumps to Code Segments” in ChaptdPrétection for more information on conforming and
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nonconforming code segments). System utilities that do not access protected facilities and
handlers for some types of exceptions (such as, divide error or overflow) may be loaded in
conforming code segments. Utilities that need to be protected from less privileged programs and
procedures should be placed in nonconforming code segments.

NOTE

Execution cannot be transferred by a call or a jump to a less-privileged
(numerically higher privilege level) code segment, regardless of whether the
target segment is a conforming or nonconforming code segment. Attempting
such an execution transfer will result in a general-protection exception.

All data segments are nonconforming, meaning that they cannot be accessed by less privileged
programs or procedures (code executing at numerically high privilege levels). Unlike code
segments, however, data segments can be accessed by more privileged programs or procedures
(code executing at numerically lower privilege levels) without using a special access gate.

The processor may update the Typefield when a segment is accessed, even if the accessisaread

cycle. If the descriptor tables have been putin ROM, it may be necessary for hardwareto prevent

the ROM from being enabled onto the data bus during awrite cycle. It also may be necessary to

return the READY# signal to the processor when a write cycle to ROM occurs, otherwise

the cycle will not terminate. These features of the hardware design are necessary for using
ROM-based descriptor tables with the Intel386™ DX processor, which always sets the
Accessed bit when a segment descriptor is loaded. The P6 family, Peranghintel 486™
processors, however, only set the accessed bit if it is not already set. Writes to descriptor tables
in ROM can be avoided by setting the accessed bits in every descriptor.

3.5. SYSTEM DESCRIPTOR TYPES

When the S (descriptor type) flag in a segment descriptor is clear, the descriptor type is a system
descriptor. The processor recognizes the following types of system descriptors:

® | ocal descriptor-table (LDT) segment descriptor.
® Task-state segment (TSS) descriptor.

® (Call-gate descriptor.

® |nterrupt-gate descriptor.

®* Trap-gate descriptor.

® Task-gate descriptor.

These descriptor typesfall into two categories. system-segment descriptors and gate descriptors.
System-segment descriptors point to system segments (LDT and TSS segments). Gate descrip-

tors are in themselves “gates,” which hold pointers to procedure entry points in code segments
(call, interrupt, and trap gates) or which hold segment selectors for TSS'’s (task gates). Table 3-2
shows the encoding of the type field for system-segment descriptors and gate descriptors.
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Table 3-2. System-Segment and Gate-Descriptor Types

Type Field
Decimal 11 10 9 8 Description
0 0 0 0 0 Reserved
1 0 0 0 1 16-Bit TSS (Available)
2 0 0 1 0 LDT
3 0 0 1 1 | 16-Bit TSS (Busy)
4 0 1 0 0 16-Bit Call Gate
5 0 1 0 1 Task Gate
6 0 1 1 0 16-Bit Interrupt Gate
7 0 1 1 1 16-Bit Trap Gate
8 1 0 0 0 Reserved
9 1 0 0 1 | 32-Bit TSS (Available)
10 1 0 1 0 Reserved
11 1 0 1 1 | 32-Bit TSS (Busy)
12 1 1 0 0 32-Bit Call Gate
13 1 1 0 1 Reserved
14 1 1 1 0 32-Bit Interrupt Gate
15 1 1 1 1 32-Bit Trap Gate

For more information on the system-segment descriptors, refer to Section 3.5.1., “Segment
Descriptor Tables”, and Section 6.2.2., “TSS Descriptor” in Chapfesk Management. For

more information on the gate descriptors, refer to Section 4.8.2., “Gate Descriptors” in Chapter
4, Protection; Section 5.9., “IDT Descriptors” in Chapterlsterrupt and Exception Handling;

and Section 6.2.4., “Task-Gate Descriptor” in Chaptdag Management.

3.5.1. Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors (refer to Figure 3-10). A descriptor
table is variable in length and can contain up to 81%3) @byte descriptors. There are two
kinds of descriptor tables:

® Theglobal descriptor table (GDT)
® Thelocal descriptor tables (LDT)
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Global Local
Descriptor Descriptor
Table (GDT) Table (LDT)
L] ¢ ¢
I TI=0 TI=1
Segment
Selector
56 56
48 48
40 40
32 32
24 24
16 16
8 8
First Descriptor in
GDT is Not Used 0 0
GDTR Register LDTR Register
Limit | Limit
| Base Address Base Address
Seg. Sel.

Figure 3-10. Global and Local Descriptor Tables

Each system must have one GDT defined, which may be used for al programs and tasksin the
system. Optionally, one or more LDTs can be defined. For example, an LDT can be defined for
each separate task being run, or some or all tasks can share the same LDT.

The GDT is not a segment itself; instead, it is a data structure in the linear address space. The
baselinear address and limit of the GDT must beloaded into the GDTR register (refer to Section

2.4., “Memory-Management Registers” in Chapte®y@tem Architecture Overview). The base
addresses of the GDT should be aligned on an eight-byte boundary to yield the best processor
performance. The limit value for the GDT is expressed in bytes. As with segments, the limit
value is added to the base address to get the address of the last valid byte. A limit value of O
results in exactly one valid byte. Because segment descriptors are always 8 bytes long, the GDT
limit should always be one less than an integral multiple of eight (that is, 8N — 1).

The first descriptor in the GDT is not used by the processor. A segment selector to this “null
descriptor” does not generate an exception when loaded into a data-segment register (DS, ES,
FS, or GS), but it always generates a general-protection exception (#GP) when an attempt is
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made to access memory using the descriptor. By initializing the segment registers with this
segment sel ector, accidental reference to unused segment registers can be guaranteed to generate
an exception.

The LDT islocated in a system segment of the LDT type. The GDT must contain a segment
descriptor for the LDT segment. If the system supports multiple LDTSs, each must have a sepa-

rate segment selector and segment descriptor in the GDT. The segment descriptor for an LDT

can be located anywhere in the GDT. Refer to Section 3.5., “System Descriptor Types” for infor-
mation on the LDT segment-descriptor type.

An LDT is accessed with its segment selector. To eliminate address translations when accessing
the LDT, the segment selector, base linear address, limit, and access rights of the LDT are stored
in the LDTR register (refer to Section 2.4., “Memory-Management Registers” in Chapter 2,
System Architecture Overview).

When the GDTR register is stored (using the SGDT instruction), a 48-bit “pseudo-descriptor”

is stored in memory (refer to Figure 3-11). To avoid alignment check faults in user mode (priv-
ilege level 3), the pseudo-descriptor should be located at an odd word address (that is, address
MOD 4 is equal to 2). This causes the processor to store an aligned word, followed by an aligned
doubleword. User-mode programs normally do not store pseudo-descriptors, but the possibility
of generating an alignment check fault can be avoided by aligning pseudo-descriptors in this
way. The same alignment should be used when storing the IDTR register using the SIDT instruc-
tion. When storing the LDTR or task register (using the SLTR or STR instruction, respectively),
the pseudo-descriptor should be located at a doubleword address (that is, address MOD 4 is
equal to 0).

47 16 15 0
| Base Address | Limit

Figure 3-11. Pseudo-Descriptor Format

3.6. PAGING (VIRTUAL MEMORY)

When operating in protected mode, the Intel Architecture permits the linear address space to be
mapped directly into a large physical memory (for example, 4 GBytes of RAM) or indirectly
(using paging) into a smaller physical memory and disk storage. This latter method of mapping
the linear address space is commonly referred to as virtual memory or demand-paged virtual
memory.

When paging is used, the processor divides the linear address space into fixed-size pages (gener-
ally 4 KBytes in length) that can be mapped into physical memory and/or disk storage. When a
program (or task) references a logical address in memory, the processor translates the address
into a linear address and then uses its paging mechanism to translate the linear address into &
corresponding physical address. If the page containing the linear address is not currently in
physical memory, the processor generates a page-fault exception (#PF). The exception handler
for the page-fault exception typically directs the operating system or executive to load the page
from disk storage into physical memory (perhaps writing a different page from physical memory
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out to disk in the process). When the page has been loaded in physical memory, a return from
the exception handler causes the instruction that generated the exception to be restarted. The
information that the processor uses to map linear addresses into the physical address space and
to generate page-fault exceptions (when necessary) is contained in page directories and page
tables stored in memory.

Paging is different from segmentation through its use of fixed-size pages. Unlike segments,
which usually are the same size as the code or data structures they hold, pages have afixed size.
If segmentation isthe only form of address translation used, a data structure present in physical
memory will have all of its partsin memory. If paging is used, a data structure can be partly in
memory and partly in disk storage.

To minimize the number of bus cycles required for address trandation, the most recently
accessed page-directory and page-table entries are cached in the processor in devices called
translation lookaside buffers (TLBS). The TLBs satisfy most requests for reading the current

page directory and page tables without requiring a bus cycle. Extra bus cycles occur only when

the TLBs do not contain a page-table entry, which typically happens when a page has not been
accessed for a long time. Refer to Section 3.7., “Translation Lookaside Buffers (TLBs)” for
more information on the TLBs.

3.6.1. Paging Options
Paging is controlled by three flags in the processor’s control registers:

® PG (paging) flag, bit 31 of CRO (available in al Intel Architecture processors beginning
with the Intel386™ processor).

® PSE (page size extensions) flag, bit 4 of CR4 (introduced in the Pentium® and Pentium®
Pro processors).

® PAE (physical address extension) flag, bit 5 of CR4 (introduced in the Pentium® Pro
processors).

The PG flag enabl es the page-trandl ation mechanism. The operating system or executive usually

sets this flag during processor initialization. The PG flag must be set if the processor’s page-
translation mechanism is to be used to implement a demand-paged virtual memory system or if
the operating system is designed to run more than one program (or task) in virtual-8086 mode.

The PSE flag enables large page sizes: 4-MByte pages or 2-MByte pages (when the PAE flag is
set). When the PSE flag is clear, the more common page length of 4 KBytes is used. Refer to
Chapter 3.6.2.2.Linear Address Trandation (4-MByte Pages) and Section 3.8.2., “Linear
Address Translation With Extended Addressing Enabled (2-MByte or 4-MByte Pages)” for
more information about the use of the PSE flag.

The PAE flag enables 36-bit physical addresses. This physical address extension can only be
used when paging is enabled. It relies on page directories and page tables to reference physical
addresses above FFFFFFFFH. Refer to Section 3.8., “Physical Address Extension” for more
information about the physical address extension.
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3.6.2. Page Tables and Directories

The information that the processor uses to trandlate linear addresses into physical addresses
(when paging is enabled) is contained in four data structures:

® Page directory—An array of 32-bit page-directory entries (PDES) contained in a 4-KByte
page. Up to 1024 page-directory entries can be held in a page directory.

® Page table—An array of 32-bit page-table entries (PTES) contained in a 4-KByte page. Up
to 1024 page-table entries can be held in a page table. (Page tables are not used for 2-
MByte or 4-MByte pages. These page sizes are mapped directly from one or more page-
directory entries.)

® Page—A 4-KByte, 2-MByte, or 4-MByte flat address space.

® Page-Directory-Pointer Table—An array of four 64-bit entries, each of which points to a
page directory. This data structure is only used when the physical address extension is
enabled (refer to Section 3.8., “Physical Address Extension”).

These tables provide access to either 4-KByte or 4-MByte pages when normal 32-bit physical
addressing is being used and to either 4-KByte, 2-MByte, or 4-MByte pages when extended (36-
bit) physical addressing is being used. Table 3-3 shows the page size and physical address size
obtained from various settings of the paging control flags. Each page-directory entry contains a
PS (page size) flag that specifies whether the entry points to a page table whose entries in turn
point to 4-KByte pages (PS set to 0) or whether the page-directory entry points directly to a 4-
MByte or 2-MByte page (PSE or PAE setto 1 and PS set to 1).

Table 3-3. Page Sizes and Physical Address Sizes

PAE Flag, Physical
PG Flag, CRO CR4 PSE Flag, CR4 PS Flag, PDE Page Size Address Size

0 X X X — Paging Disabled
1 0 0 X 4 KBytes 32 Bits
1 0 1 0 4 KBytes 32 Bits
1 0 1 1 4 MBytes 32 Bits
1 1 X 0 4 KBytes 36 Bits
1 1 X 1 2 MBytes 36 Bits

3.6.2.1. LINEAR ADDRESS TRANSLATION (4-KBYTE PAGES)

Figure 3-12 shows the page directory and page-table hierarchy when mapping linear addresses
to 4-KByte pages. The entries in the page directory point to page tables, and the entries in a page
table point to pages in physical memory. This paging method can be used to addres$ up to 2
pages, which spans a linear address spacg bf2s (4 GBytes).
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Linear Address
31 22 21 12 11 0

Directory Table Offset

12 4-KByte Page

10 10 Page Table Physical Address

Page Directory

Y

Page-Table Entry

Directory Entry ——>»

=
’
L
>
*

32
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.

1024 PDE 01024 PTE = 2?° Pages

Figure 3-12. Linear Address Translation (4-KByte Pages)

To select the various table entries, the linear address is divided into three sections:

® Page-directory entry—Bits 22 through 31 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a page table.

® Page-table entry—Bits 12 through 21 of the linear address provide an offset to an entry in
the selected page table. This entry provides the base physical address of a page in physical
memory.

® Page offset—Bits 0 through 11 provides an offset to a physical address in the page.

Memory management software has the option of using one page directory for all programs and
tasks, one page directory for each task, or some combination of the two.

3.6.2.2. LINEAR ADDRESS TRANSLATION (4-MBYTE PAGES)

Figure 3-12 shows how a page directory can be used to map linear addresses to 4-MByte pages.
The entries in the page directory point to 4-MByte pages in physical memory. This paging
method can be used to map up to 1024 pages into a 4-GByte linear addcess sp

I 3-21



PROTECTED-MODE MEMORY MANAGEMENT Intel®

Linear Address
31 22 21 0

| Directory | Offset

22 4-MByte Page

10 _Page Directory Physical Address

Directory Entry >

L.
>
=
’
*

32
CR3 (PDBR)

*32 bits aligned onto a 4-KByte boundary.

1024 PDE = 1024 Pages

Figure 3-13. Linear Address Translation (4-MByte Pages)

The 4-MByte page size is selected by setting the PSE flag in control register CR4 and setting
the page size (PS) flag in a page-directory entry (refer to Figure 3-14). With these flags set, the
linear addressis divided into two sections:

® Page directory entry—Bits 22 through 31 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a 4-MByte page.

® Page offset—Bits 0 through 21 provides an offset to a physical address in the page.

NOTE

(For the Pentiufh processor only.) When enabling or disabling large page
sizes, the TLBs must be invalidated (flushed) after the PSE flag in control
register CR4 has been set or cleared. Otherwise, incorrect page translation
might occur due to the processor using outdated page translation information
stored in the TLBs. Refer to Section 9.10., “Invalidating the Translation
Lookaside Buffers (TLBs)”, in Chapter demory Cache Control, for
information on how to invalidate the TLBs.

3.6.2.3. MIXING 4-KBYTE AND 4-MBYTE PAGES

When the PSE flag in CR4 is set, both 4-MByte pages and page tables for 4-KByte pages can
be accessed from the same page directory. If the PSE flag is clear, only page tables for 4-KByte
pages can be accessed (regardless of the setting of the PS flag in a page-directory entry).

A typical example of mixing 4-KByte and 4-MByte pages is to place the operating system or
executive’s kernel in a large page to reduce TLB misses and thus improve overall system perfor-
mance. The processor maintains 4-MByte page entries and 4-KByte page entries in separate
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TLBs. So, placing often used code such as the kernel in a large page, frees up 4-KByte-page
TLB entries for application programs and tasks.

3.6.3. Base Address of the Page Directory

The physical address of the current page directory is stored in the CR3 register (also called the

page directory base register or PDBR). (Refer to Figure 2-5 and Section 2.5., “Control Regis-
ters” in Chapter 23ystem Architecture Overview for more information on the PDBR.) If paging

is to be used, the PDBR must be loaded as part of the processor initialization process (prior to
enabling paging). The PDBR can then be changed either explicitly by loading a new value in
CR3 with a MOV instruction or implicitly as part of a task switch. (Refer to Section 6.2.1.,
“Task-State Segment (TSS)” in ChapterTask Management for a description of how the
contents of the CR3 register is set for a task.)

There is no present flag in the PDBR for the page directory. The page directory may be not-
present (paged out of physical memory) while its associated task is suspended, but the operating
system must ensure that the page directory indicated by the PDBR image in a task's TSS is
present in physical memory before the task is dispatched. The page directory must also remain
in memory as long as the task is active.

3.6.4. Page-Directory and Page-Table Entries

Figure 3-14 shows the format for the page-directory and page-table entries when 4-KByte
pages and 32-bit physical addresses are being used. Figure 3-14 shows the format for the
page-directory entries when 4-MByte pages and 32-bit physical addresses are being used. Refer
to Section 3.8., “Physical Address Extension” for the format of page-directory and page-table
entries when the physical address extension is being used.
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Page-Directory Entry (4-KByte Page Table)

31 1211 9876543210
P|P|U|R
Page-Table Base Address Avail. |G 2 o|A|C|W|/ |/
D|T|S|W
Available for system programmer’s use J
Global page (Ignored)
Page size (0 indicates 4 KBytes)
Reserved (set to 0)
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present
Page-Table Entry (4-KByte Page)
31 1211 987654321
P|P|U|R
Page Base Address Avail. |G|o|D|A|C|W|/ |/
D|T|S|W

Available for system programmer’s use J
Global page

Reserved (set to 0)
Dirty
Accessed
Cache disabled

Write-through

User/Supervisor

Read/Write

Present

Figure 3-14. Format of Page-Directory and Page-Table Entries for 4-KByte Pages
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Page-Directory Entry (4-MByte Page)
31 22 21 1211 9876543210

Page Base Address Reserved Avail. |G|P P

P
D|A|C|W|/

S T

Available for system programmer’s useJ ‘ ‘

R
/
S|W

Global page
Page size (1 indicates 4 MBytes)
Dirty
Accessed
Cache disabled
Write-through
User/Supervisor
Read/Write
Present

Figure 3-15. Format of Page-Directory Entries for 4-MByte Pages and 32-Bit Addresses

The functions of the flags and fields in the entries in Figures 3-14 and 3-15 are as follows:

Page base address, bits 12 through 32
(Page-table entries for 4-KByte pages.) Specifies the physical address of the
first byte of a4-KByte page. Thebitsinthisfield areinterpreted as the 20 most-
significant bits of the physical address, which forces pages to be aligned on
4-K Byte boundaries.

(Page-directory entries for 4-KByte page tables.) Specifies the physical
address of the first byte of a page table. The bitsin thisfield are interpreted as
the 20 most-significant bits of the physical address, which forces pagetablesto
be aligned on 4-KByte boundaries.

(Page-directory entries for 4-MByte pages.) Specifies the physical address of
the first byte of a4-MByte page. Only bits 22 through 31 of thisfield are used
(and bits 12 through 21 are reserved and must be set to O, for Intel Architecture
processors through the Pentium® 11 processor). The base address bits are inter-
preted as the 10 most-significant bits of the physical address, which forces 4-
M Byte pages to be aligned on 4-MByte boundaries.

Present (P) flag, bit 0
Indicates whether the page or page table being pointed to by the entry is
currently loaded in physical memory. When the flag is set, the pageisin phys-
ical memory and address translation is carried out. When the flag is clear, the
page is not in memory and, if the processor attempts to access the page, it
generates a page-fault exception (#PF).

The processor does not set or clear thisflag; it isup to the operating system or
executive to maintain the state of the flag.
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The bit must be set to 1 whenever extended physical addressing mode is
enabled.

If the processor generates a page-fault exception, the operating system must
carry out the following operations in the order below:

1. Copy the page from disk storage into physical memory, if needed.

2. Load the page address into the page-table or page-directory entry and set
its present flag. Other bits, such as the dirty and accessed flags, may also
be set at thistime.

3. Invalidate the current page-table entry in the TLB (refer to Section 3.7.,
“Translation Lookaside Buffers (TLBs)” for a discussion of TLBs and
how to invalidate them).

4. Return from the page-fault handler to restart the interrupted program or
task.

Read/write (R/W) flag, bit 1
Specifies the read-write privileges for a page or group of pages (in the case of
a page-directory entry that points to a page table). When this flag is clear, the
page is read only; when the flag is set, the page can be read and written into.
This flag interacts with the U/S flag and the WP flag in register CRO. Refer to
Section 4.11., “Page-Level Protection” and Table 4-2 in Chap&notection
for a detailed discussion of the use of these flags.

User/supervisor (U/S) flag, bit 2
Specifies the user-supervisor privileges for a page or group of pages (in the
case of a page-directory entry that points to a page table). When this flag is
clear, the page is assigned the supervisor privilege level; when the flag is set,
the page is assigned the user privilege level. This flag interacts with the R/W
flag and the WP flag in register CRO. Refer to Section 4.11., “Page-Level
Protection” and Table 4-2 in ChaptePtotection for a detail discussion of the
use of these flags.

Page-level write-through (PWT) flag, bit 3
Controls the write-through or write-back caching policy of individual pages or
page tables. When the PWT flag is set, write-through caching is enabled for the
associated page or page table; when the flag is clear, write-back caching is
enabled for the associated page or page table. The processor ignores this flag if
the CD (cache disable) flag in CRO is set. Refer to Section 9.5., “Cache
Control”, in Chapter 9emory Cache Control, for more information about the
use of this flag. Refer to Section 2.5., “Control Registers” in Chap&ystzm
Architecture Overview for a description of a companion PWT flag in control
register CR3.

Page-level cachedisable (PCD) flag, bit 4
Controls the caching of individual pages or page tables. When the PCD flag is
set, caching of the associated page or page table is prevented; when the flag is
clear, the page or page table can be cached. This flag permits caching to be
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disabled for pages that contain memory-mapped 1/O ports or that do not
provide a performance benefit when cached. The processor ignores this flag
(assumesitis set) if the CD (cache disable) flag in CRO is set. Refer to Chapter
9, Memory Cache Control, for more information about the use of this flag.
Refer to Section 2.5. in Chapter 2, System Architecture Overview for a descrip-
tion of acompanion PCD flag in control register CR3.

Accessed (A) flag, bit 5
Indicates whether a page or page table has been accessed (read from or written
to) when set. Memory management software typically clears this flag when a
page or pagetableisinitially loaded into physical memory. The processor then
sets this flag the first time a page or page table is accessed. This flag is a
“sticky” flag, meaning that once set, the processor does not implicitly clear it.
Only software can clear this flag. The accessed and dirty flags are provided for
use by memory management software to manage the transfer of pages and page
tables into and out of physical memory.

Dirty (D) flag, bit 6

Indicates whether a page has been written to when set. (This flag is not used in
page-directory entries that point to page tables.) Memory management soft-
ware typically clears this flag when a page is initially loaded into physical
memory. The processor then sets this flag the first time a page is accessed for
a write operation. This flag is “sticky,” meaning that once set, the processor
does not implicitly clear it. Only software can clear this flag. The dirty and
accessed flags are provided for use by memory management software to
manage the transfer of pages and page tables into and out of physical memory.

Page size (PS) flag, bit 7

Determines the page size. This flag is only used in page-directory entries.
When this flag is clear, the page size is 4 KBytes and the page-directory entry
points to a page table. When the flag is set, the page size is 4 MBytes for normal
32-bit addressing (and 2 MBytes if extended physical addressing is enabled)
and the page-directory entry points to a page. If the page-directory entry points
to a page table, all the pages associated with that page table will be 4-KByte
pages.

Global (G) flag, bit 8
(Introduced in the PentiuhPro processor.) Indicates a global page when set.
When apageismarked global and the page global enable (PGE) flag in register
CR4 is set, the page-table or page-directory entry for the pageisnot invalidated
in the TLB when register CR3 is loaded or a task switch occurs. Thisflag is
provided to prevent frequently used pages (such as pagesthat contain kernel or
other operating system or executive code) from being flushed from the TLB.
Only software can set or clear thisflag. For page-directory entriesthat point to
page tables, this flag is ignored and the global characteristics of a page are set
in the page-table entries. Refer to Section 3.7., “Translation Lookaside Buffers
(TLBs)” for more information about the use of this flag. (This bit is reserved in
Pentiun? and earlier Intel Architecture processors.)
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Reserved and available-to-software bits

In apage-table entry, bit 7 isreserved and should be set to O; in apage-directory

entry that points to a page table, bit 6 is reserved and should be set to 0. For a
page-directory entry for a 4-MByte page, bits 12 through 21 are reserved and

must be set to O, for Intel Architecture processors through the Pentium® I1
processor. For both types of entries, bits 9, 10, and 11 are available for use by

software. (When the present bit is clear, bits 1 through 31 are available to soft-
ware—refer to Figure 3-16.) When the PSE and PAE flags in control register
CRA4 are set, the processor generates a page fault if reserved bits are not set to 0.

3.6.5. Not Present Page-Directory and Page-Table Entries

When the present flag is clear for a page-table or page-directory entry, the operating system or
executive may use the rest of the entry for storage of information such as the location of the page
in the disk storage system (refer to ).

31 0

Available to Operating System or Executive ‘ 0‘

Figure 3-16. Format of a Page-Table or Page-Directory Entry for a Not-Present Page

3.7. TRANSLATION LOOKASIDE BUFFERS (TLBS)

The processor stores the most recently used page-directory and page-table entries in on-chip
caches called translation lookaside buffers or TLBs. The P6 family and P&ipiocessors

have separate TLBsfor the data and instruction caches. Also, the P6 family processors maintain

separate TLBs for 4-KByte and 4-MByte page sizes. The CPUID instruction can be used to
determine the sizes of the TLBs provided in the P6 family and Pentium® processors.

Most paging is performed using the contents of the TLBs. Bus cycles to the page directory and
page tables in memory are performed only when the TLBs do not contain the trandlation infor-
mation for arequested page.

TheTLBsareinaccessibleto application programs and tasks (privilegelevel greater than 0); that

is, they cannot invalidate TLBs. Only operating system or executive procedures running at priv-

ilege level of O can invalidate TLBs or selected TBL entries. Whenever a page-directory or
page-table entry is changed (including when the present flag is set to zero), the operating-system

must immediately invalidate the corresponding entry in the TLB so that it can be updated the

next time the entry is referenced. However, if the physical address extension (PAE) feature is

enabled to use 36-hit addressing, a new table is added to the paging hierarchy. This new tableis

called the page directory pointer table (as described in Section 3.8., “Physical Address Exten-
sion”). If an entry is changed in this table (to point to another page directory), the TLBs must
then be flushed by writing to CR3.
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All (nonglobal) TLBs are automatically invalidated any time the CR3 register is loaded (unless
the G flag for apage or page-table entry is set, as describe later in this section). The CR3 register
can be loaded in either of two ways:

® Explicitly, using the MOV instruction, for example:
MOV CR3, EAX

where the EAX register contains an appropriate page-directory base address.

* Implicitly by executing atask switch, which automatically changes the contents of the CR3
register.

The INVLPG instruction is provided to invalidate a specific page-table entry in the TLB.
Normally, this instruction invalidates only an individual TLB entry; however, in some cases, it
may invalidate more than the selected entry and may even invalidate all of the TLBs. This
instruction ignores the setting of the G flag in a page-directory or page-table entry (refer to the
following paragraph).

(Introduced in the Pentium® Pro processor.) The page global enable (PGE) flag in register CR4

and the global (G) flag of a page-directory or page-table entry (bit 8) can be used to prevent
frequently used pages from being automatically invalidated in the TLBs on atask switch or a

load of register CR3. (Refer to Section 3.6.4., “Page-Directory and Page-Table Entries” for more
information about the global flag.) When the processor loads a page-directory or page-table
entry for a global page into a TLB, the entry will remain in the TLB indefinitely. The only way

to deterministically invalidate global page entries is to clear the PGE flag and then invalidate the
TLBs or to use the INVLPG instruction to invalidate individual page-directory or page-table
entries in the TLBs.

For additional information about invalidation of the TLBs, refer to Section 9.10., “Invalidating
the Translation Lookaside Buffers (TLBs)", in ChaptelM@mory Cache Control.

3.8. PHYSICAL ADDRESS EXTENSION

The physical address extension (PAE) flag in register CR4 enables an extension of physical
addresses from 32 bits to 36 bits. (This feature was introduced into the Intel Architecture in the
Pentiun® Pro processors.) Here, the processor provides 4 additional address line pinsto accom-

modate the additional address bits. This option can only be used when paging is enabled (that

is, when both the PG flag in register CRO and the PAE flag in register CR4 are set).

When the physical address extension is enabled, the processor allows several sizes of pages:
4-KByte, 2-MByte, or 4-MByte. As with 32-bit addressing, these page sizes can be addressed
within the same set of paging tables (that is, apage-directory entry can point to either a2-MByte
or 4-MByte page or a page table that in turn points to 4-KByte pages). To support the 36-bit
physical addresses, the following changes are made to the paging data structures:

® The paging table entries are increased to 64 bits to accommodate 36-bit base physica
addresses. Each 4-KByte page directory and page table can thus have up to 512 entries.
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* A new table, caled the page-directory-pointer table, is added to the linear-address
translation hierarchy. This table has 4 entries of 64-bits each, and it lies above the page
directory in the hierarchy. With the physical address extension mechanism enabled, the
processor supports up to 4 page directories.

® The 20-bit page-directory base address field in register CR3 (PDPR) is replaced with a
27-hit page-directory-pointer-table base address field (refer to Figure 3-17). (In this case,
register CR3 is called the PDPTR.) This field provides the 27 most-significant bits of the
physical address of the first byte of the page-directory-pointer table, which forces the table
to be located on a 32-byte boundary.

® Linear address translation is changed to allow mapping 32-bit linear addresses into the
larger physical address space.

31 0

o0
—HST
o
o
o

Page-Directory-Pointer-Table Base Address

Figure 3-17. Register CR3 Format When the Physical Address Extension is Enabled

3.8.1. Linear Address Translation With Extended Addressing
Enabled (4-KByte Pages)

Figure 3-12 shows the page-directory-pointer, page-directory, and page-table hierarchy when

mapping linear addresses to 4-KByte pages with extended physical addressing enabled. This

paging method can be used to address up to 22° pages, which spans alinear address space of 2%
bytes (4 GBytes).
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Linear Address
31 30 29 21 20 12 11 0

Directory Pointer —>| | Directory Table Offset

12 4-KByte Page

Page Table Physical Address

Page Directory 9

Y

Page-Table Entry

Y

» Directory Entry

Page-Directory-
Pointer Table

4 PDPTE 0512 PDE 0512 PTE = 2%° Pages

—| Dir. Pointer Entry
—

32+
CR3 (PDBR)

*32 bits aligned onto a 32-byte boundary

Figure 3-18. Linear Address Translation With Extended Physical Addressing Enabled
(4-KByte Pages)

To select the various table entries, the linear address is divided into three sections:

® Page-directory-pointer-table entry—Bits 30 and 31 provide an offset to one of the 4 entries
in the page-directory-pointer table. The selected entry provides the base physical address
of a page directory.

® Page-directory entry—Bits 21 through 29 provide an offset to an entry in the selected page
directory. The selected entry provides the base physical address of a page table.

® Page-table entry—Bits 12 through 20 provide an offset to an entry in the selected page
table. This entry provides the base physical address of a page in physical memory.

® Page offset—Bits 0 through 11 provide an offset to a physical address in the page.
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3.8.2. Linear Address Translation With Extended Addressing
Enabled (2-MByte or 4-MByte Pages)

Figure 3-12 shows how a page-directory-pointer table and page directories can be used to map
linear addresses to 2-MByte or 4-MByte pages. This paging method can be used to map up to
2048 pages (4 page-directory-pointer-table entries times 512 page-directory entries) into a
4-GByte linear address space.

The 2-MByte or 4-MByte page size is selected by setting the PSE flag in control register CR4
and setting the page size (PS) flag in a page-directory entry (refer to Figure 3-14). With these
flags set, the linear addressis divided into three sections:

® Page-directory-pointer-table entry—Bits 30 and 31 provide an offset to an entry in the
page-directory-pointer table. The selected entry provides the base physical address of a
page directory.

® Page-directory entry—Bits 21 through 29 provide an offset to an entry in the page
directory. The selected entry provides the base physical address of a 2-MByte or 4-MByte

page.
® Page offset—Bits 0 through 20 provides an offset to a physical address in the page.

3.8.3. Accessing the Full Extended Physical Address Space
With the Extended Page-Table Structure

The page-table structure described in the previous two sections allows up to 4 GBytes of
the 64-GByte extended physical address space to be addressed at one time. Additional 4-GByte
sections of physical memory can be addressed in either of two way:

® Change the pointer in register CR3 to point to another page-directory-pointer table, which
in turn points to another set of page directories and page tables.

® Change entriesin the page-directory-pointer table to point to other page directories, which
in turn point to other sets of page tables.
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Linear Address
3130 29 21 20 0

—>| ‘ Directory Offset

Directory
Pointer

21 2or4-MByte Pages

Page Directory Physical Address

Page-Directory-
Pointer Table

Y

—>| Directory Entry

Y

»| Dir. Pointer Entry

—
30% 4 PDPTE 0512 PDE = 2048 Pages

CR3 (PDBR)

*32 bits aligned onto a 32-byte boundary

Figure 3-19. Linear Address Translation With Extended Physical Addressing Enabled
(2-MByte or 4-MByte Pages)

3.8.4. Page-Directory and Page-Table Entries With Extended
Addressing Enabled

Figure 3-20 shows the format for the page-directory-pointer-table, page-directory, and
page-table entries when 4-KByte pages and 36-bit extended physical addresses are being
used. Figure 3-21 shows the format for the page-directory-pointer-table and page-directory
entries when 2-MByte or 4-MByte pages and 36-bit extended physical addresses are being
used. The functions of the flags in these entries are the same as described in Section 3.6.4.,

“Page-Directory and Page-Table Entries”. The major differences in these entries are as follows:

® A page-directory-pointer-table entry is added.

® Thesize of the entries are increased from 32 bits to 64 bits.

®*  The maximum number of entriesin a page directory or page tableis 512.
® The base physical addressfield in each entry is extended to 24 hits.
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Page-Directory-Pointer-Table Entry

63 36 35 32
Reserved (set to 0) 233?_

31 1211 98 543210

Page-Directory Base Address Avail. | Reserved cg \Zv Res.| 1

Page-Directory Entry (4-KByte Page Table)

63 3635 32
Base
Reserved (set to 0) Addr.

31 1211 9876543210
P[PIUIR

Page-Table Base Address Avail. [0|0|0|A|C|W|/|/|P
D|T|S|W

Page-Table Entry (4-KByte Page)

63 3635 32
Base
Reserved (set to 0) Addr.

31 1211 9876543210
PIP[U[R

Page Base Address Avail. [G|0|D|A|C|W|/|/|P
D|T|S|W

Figure 3-20. Format of Page-Directory-Pointer-Table, Page-Directory, and Page-Table
Entries for 4-KByte Pages and 36-Bit Extended Physical Addresses

The base physical address in an entry specifies the following, depending on the type of entry:

® Page-directory-pointer-table entry—the physical address of the first byte of a
4-KByte page directory.

® Page-directory entry—the physical address of the first byte of a 4-KByte page table or a
2-MByte page.

® Page-table entry—the physical address of the first byte of a 4-KByte page.

For all table entries (except for page-directory entries that point to 2-MByte or 4-MByte pages),
the bits in the page base address are interpreted as the 24 most-significant bits of a 36-bit phys-
ical address, which forces page tables and pages to be aligned on 4-KByte boundaries. When a
page-directory entry points to a 2-MByte or 4-MByte page, the base address is interpreted as the
15 most-significant bits of a 36-bit physical address, which forces pages to be aligned on 2-
MByte or 4-MByte boundaries.

3-34 I



Intel® PROTECTED-MODE MEMORY MANAGEMENT

Page-Directory-Pointer-Table Entry

63 36 35 32
Reserved (set to 0) ngﬁ

31 1211 9 8 543210

Page Directory Base Address Avail. | Reserved g \Zv Res.| 1

Page-Directory Entry (2- or 4-MByte Pages)

63 36 35 32
Base
Reserved (set to 0) Addr.

31 21 20 1211 9876543210
. P|P|U|R

Page Base Address Reserved (set to 0) Avail. |[G|1|D|A|CW|/|/|P
D|T|S|W

Figure 3-21. Format of Page-Directory-Pointer-Table and Page-Directory Entries for
2- or 4-MByte Pages and 36-Bit Extended Physical Addresses

The present (P) flag (bit 0) in all page-directory-pointer-table entries must be set to 1 anytime
extended physical addressing mode is enabled; that is, whenever the PAE flag (bit 5 in register
CR4) and the PG flag (bit 31 in register CRO) are set. If the Pflagisnot set in al 4 page-direc-
tory-pointer-tabl e entries in the page-directory-pointer table when extended physical addressing
is enabled, a general-protection exception (#GP) is generated.

The page size (PS) flag (bit 7) in a page-directory entry determinesif the entry pointsto a page
table or a 2-MByte or 4-MByte page. When this flag is clear, the entry points to a page table;
when the flag is set, the entry points to a 2-MByte or 4-MByte page. This flag allows 4-KByte,
2-MByte, or 4-MByte pages to be mixed within one set of paging tables.

Access (A) and dirty (D) flags (bits 5 and 6) are provided for table entries that point to pages.

Bits 9, 10, and 11 in all the table entries for the physical address extension are available for use
by software. (When the present flag is clear, bits 1 through 63 are avail able to software.) All bits
in Figure 3-14 that are marked reserved or 0 should be set to 0 by software and not accessed by
software. When the PSE and/or PAE flags in control register CR4 are set, the processor gener-
ates a page fault (#PF) if reserved bits in page-directory and page-table entries are not set to 0,
and it generates a general-protection exception (#GP) if reserved bits in a page-directory-
pointer-table entry are not set to O.

3.9. 36-BIT PAGE SIZE EXTENSION (PSE)

The 36-hit PSE extends 36-bit physical address support to 4-MByte pages while maintaining a
4-byte page-directory entry. This approach provides a simple mechanism for operating system
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vendors to address physical memory above 4-GBytes without requiring major design changes,
but has practical limitations with respect to demand paging.

The P6 family of processors’ physical address extension (PAE) feature provides generic access
to a 36-bit physical address space. However, it requires expansion of the page-directory and
page-table entries to an 8-byte format (64 bit), and the addition of a page-directory-pointer table,
resulting in another level of indirection to address translation.

For P6-family processors that support the 36-bit PSE feature, the virtual memory architecture is
extended to support 4-MByte page size granularity in combination with 36-bit physical
addressing. Note that some P6-family processors do not support this feature. For information
about determining a processor’s feature support, refer to the following documents:

® AP-485, Intel Processor |dentification and the CPUID Instruction

®* Addendum—Intel Architecture Software Developer’s Manual, Volumel: Basic Archi-
tecture

For information about the virtual memory architecture features of P6-family processors, refer to
Chapter 3 of théntel Architecture Software Developer’'s Manual, Volume3: System Program-
ming Guide

3.9.1. Description of the 36-bit PSE Feature

The 36-bit PSE feature (PSE-36) is detected by an operating system through the CPUID instruc-

tion. Specifically, the operating system executes the CPUID instruction with the value 1 in the
EAX register and then determines support for the feature by inspecting bit 17 of the EDX
register return value (see Addendum—Intel Architecture Software Developer’s Manual,
Volumel: Basic Architectuyelf the PSE-36 feature is supported, an operating system is
permitted to utilize the feature, as well as use certain formerly reserved bits. To use the 36-hit

PSE feature, the PSE flag must be enabled by the operating system (bit 4 of CR4). Note that a
separate control bit in CR 4 does not exist to regulate the use of 36-bit MByte pages, because

this feature becomes the example for 4-M Byte pages on processors that support it.

Table 3-8 shows the page size and physical address size obtained from various settings of the
page-control flags for the P6-family processors that support the 36-bit PSE feature. Shaded in
gray isthe change to thistable resulting from the 36-bit PSE feature.
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Table 3-4. Paging Modes and Physical Address Size

PG Flag PAE Flag PSE Flag PS Flag Page Physical

(in CRO) (in CR4) (in CR4) (in the PDE) Size Address Size
0 X X X — Paging Disabled
1 0 0 X 4 KB 32 bits
1 0 1 0 4 KB 32 bits
1 0 1 1 4 KB 36 bits
1 1 X 0 4 KB 36 bits
1 1 X 1 2 KB 36 bits

To use the 36-bit PSE feature, the PAE feature must be cleared (as indicated in Table 3-4).
However, the 36-bit PSE in no way affectsthe PAE feature. Existing operating systems and soft-
wware that use the PAE will continue to have compatible functionality and features with P6-
family processorsthat support 36-bit PSE. Specifically, the Page-Directory Entry (PDE) format
when PAE is enabled for 2-MByte or 4-MByte pagesisexactly as depicted in Figure 3-21 of the
Intel Architecture Software Developer’s Manual, Volume3: System Programming Guide

No matter which 36-bit addressing feature is used (PAE or 36-bit PSE), the linear address space
of the processor remains at 32 bits. Applications must partition the address space of their work
loads across multiple operating system process to take advantage of the additonal physical
memory provided in the system.

The 36-bit PSE feature estends the PDE format of the Intel Architecture for 4-MByte pages and
32-bit addresses by utilizing bits 16-13 (formerly reserved bits that were required to be zero) to
extend the physical address without requiring an 8-byte page-directory entry. Therefore, with
the 36-bit PSE feature, a page directory can contain up to 1024 entries, each pointing to a 4-
MByte page that can exist anywhere in the 36-bit physical address space of the processor.

Figure 3-22 showsthe difference between PDE formatsfor 4-MByte pages on P6-family proces-
sors that support the 36-bit PSE feature compared to P6-family processors that do not support
the 36-bit PSE feature (i.e., 32-bit addressing).

Figure 3-22 also shows the linear address mapping to 4-MByte pages when the 36-bit PSE is
enabled. The base physical address of the 4-M Byte pageis contained in the PDE. PA-2 (bits 13-
16) is used to provide the upper four bits (bits 32-35) of the 36-bit physical address. PA-1 (bits
22-31) continuesto provide the next ten bits (bits 22-31) of the physical addressfor the 4-MByte
page. The offset into the pageis provided by the lower 22 bits of the linear address. This scheme
eliminates the second level of indirection caused by the use of 4-KByte page tables.
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Page Directory Entry format for processors that support 36-bit addressing for 4-MByte pages
31 22 |21 17 | 16 13 12 11 8 7 6 0
PA-1 Reserved PA -2 PAT pPS=1

Page Directory Entry format for processors that support 32-bit addressing for 4-MByte pages
31 22 |21 12 |11 8 7 6 0

Base Page Address Reserved PS=1

Figure 3-22. PDE Format Differences between 36-bit and 32-bit addressing

Notes:
1. PA-2 = Bits 35-32 of thebase physical address for the 4-MByte page (correspond to bits 16-13)
2. PA-2 = Bits 31-22 of thebase physical address for the 4-MByte page

3. PAT = Bit 12 used as the Most Significant Bit of the index into Page Attribute Table (PAT); see Section
10.2.

4. PS = Bit 7 is the Page Size Bit—indicates 4-MByte page (must be set to 1)
5. Reserved = Bits 21-17 are reserved for future expansion
6. No change in format or meaning of bits 11-8 and 6-0; refer to Figure 3-15 for details.

The PSE-36 feature is transparent to existing operating systems that utilize 4-MByte pages,
because unused bits in PA-2 are currently enforced as zero by Intel processors. The feature
requires 4-M Byte pages aligned on a4-M Byte boundary and 4 M Bytes of physically contiguous
memory. Therefore, theten bits of PA-1 are sufficient to specify the base physical address of any
4-MByte page below 4 GBytes. An operating system can easily support addresses greater than
4 GBytes simply by providing the upper 4 bits of the physical address in PA-2 when creating a
PDE for a 4-MByte page.

Figure 3-23 shows the linear address mapping to 4 MB pages when the 36-bit PSE is enabled.
The base physical address of the 4 MB page is contained in the PDE. PA-2 (bits 13-16) is used
to provide the upper four bits (bits 32-35) of the 36-hit physical address. PA-1 (bits 22-31)
continuesto provide the next ten bits (bits 22-31) of the physical addressfor the4 MB page. The
offset into the pageis provided by thelower 22 bits of thelinear address. This scheme eliminates
the second level of indirection caused by the use of 4 KB page tables.

3-38 I



Intel® PROTECTED-MODE MEMORY MANAGEMENT

Linear Address 4 MB Page
31 2221 0
‘ Directory Index ‘ ‘

Page Directory >
31 2221 1716 131211 8 7 6 0
Page Frame Addres§ Reserved PA-2 | PAT PS=1
PA-1
|
CR3—

Figure 3-23. Page Size Extension Linear to Physical Translation

The PSE-36 feature is transparent to existing operating systems that utilize 4 MB pages because
unused bits in PA-2 are currently enforced as zero by Intel processors. The feature requires 4
MB pages aligned on a4 MB boundary and 4 MB of physically contiguous memory. Therefore,
the ten bits of PA-1 are sufficient to specify the base physical address of any 4 MB page below
4GB. An operating system easily can support addresses greater than 4 GB simply by providing
the upper 4 bits of the physical addressin PA-2 when creating a PDE for a4 MB page.

3.9.2. Fault Detection

There are several conditions that can cause P6-family processors that support this feature to
generate apage fault (PF) fault. These conditions are related to the use of, or switching between,
various memory management features:

* |f the PSE feature is enabled, a nonzero value in any of the remaining reserved bits (17-21)
of a4-MByte PDE causes a page fault, with the reserved bit (bit 3) set in the error code.

* |f the PAE feature is enabled and set to use 2-MByte or 4-MByte pages (that is, 8-byte
page-directory table entries are being used), anonzero value in any of the reserved bits 13-
20 causes a page fault, with the reserved bit (bit 3) set in the error code. Note that bit 12 is
now being used to support the Page Attribute Table feature (refer to Section 9.13., “Page
Attribute Table (PAT)").
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3.10. MAPPING SEGMENTS TO PAGES

The segmentation and paging mechanisms provide in the Intel Architecture support a wide
variety of approaches to memory management. When segmentation and paging is combined,
segments can be mapped to pages in severa ways. To implement a flat (unsegmented)
addressing environment, for example, all the code, data, and stack modules can be mapped to
one or more large segments (up to 4-GBytes) that share same range of linear addresses (refer to
Figure 3-2). Here, segments are essentially invisible to applications and the operating-system or
executive. If paging is used, the paging mechanism can map a single linear address space
(contained in asingle segment) into virtual memory. Or, each program (or task) can haveits own
large linear address space (contained in its own segment), which is mapped into virtual memory
through its own page directory and set of page tables.

Segments can be smaller than the size of a page. If one of these segmentsis placed in a page
whichisnot shared with another segment, the extramemory iswasted. For example, asmall data
structure, such as a 1-byte semaphore, occupies 4K bytes if it is placed in a page by itself. If
many semaphores are used, it is more efficient to pack them into a single page.

The Intel Architecture does not enforce correspondence between the boundaries of pages and
segments. A page can contain the end of one segment and the beginning of another. Likewise, a
segment can contain the end of one page and the beginning of another.

Memory-management software may be simpler and more efficient if it enforces some alignment
between page and segment boundaries. For example, if a segment which can fit in one page is
placed in two pages, there may be twice as much paging overhead to support access to that
segment.

One approach to combining paging and segmentation that simplifies memory-management soft-
ware isto give each segment its own page table, as shown in Figure 3-24. This convention gives
the segment a single entry in the page directory that provides the access control information for
paging the entire segment.

Page Frames

LDT Page Directory Page Tables >
PTE —
PTE >
PTE -
Seg. Descript.[—> PDE 4|—>
Seg. Descript.[—> PDE >

PTE | =

PTE —‘

Figure 3-24. Memory Management Convention That Assigns a Page Table to Each
Segment
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CHAPTER 4
PROTECTION

In protected mode, the Intel Architecture provides a protection mechanism that operates at both

the segment level and the page level. This protection mechanism provides the ability to limit
accessto certain segments or pages based on privilege levels (four privilege levelsfor segments

and two privilege levelsfor pages). For example, critical operating-system code and data can be
protected by placing them in more privileged segments than those that contain applications

code. The processor’s protection mechanism will then prevent application code from accessing
the operating-system code and data in any but a controlled, defined manner.

Segment and page protection can be used at all stages of software development to assist in local-
izing and detecting design problems and bugs. It can also be incorporated into end-products to
offer added robustness to operating systems, utilities software, and applications software.

When the protection mechanism is used, each memory reference is checked to verify that it
satisfies various protection checks. All checks are made before the memory cycle is started; any
violation results in an exception. Because checks are performed in parallel with address transla-
tion, there is no performance penalty. The protection checks that are performed fall into the
following categories:

® Limit checks.

®*  Typechecks.

®  Privilege level checks.

® Restriction of addressable domain.

® Restriction of procedure entry-points.
® Restriction of instruction set.

All protection violation results in an exception being generated. Refer to Chapter 5, Interrupt
and Exception Handling for an explanation of the exception mechanism. This chapter describes
the protection mechanism and the violations which lead to exceptions.

Thefollowing sections describe the protection mechanism available in protected mode. Refer to
Chapter 16, 8086 Emulation for information on protection in real-address and virtual-8086
mode.
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4.1. ENABLING AND DISABLING SEGMENT AND PAGE
PROTECTION

Setting the PE flag in register CRO causes the processor to switch to protected mode, which in
turn enabl es the segment-protection mechanism. Once in protected mode, there is no control bit
for turning the protection mechanism on or off. The part of the segment-protection mechanism
that is based on privilege levels can essentially be disabled while still in protected mode by
assigning a privilege level of 0 (most privileged) to all segment selectors and segment descrip-
tors. This action disables the privilege level protection barriers between segments, but other
protection checks such as limit checking and type checking are still carried out.

Page-level protection is automatically enabled when paging is enabled (by setting the PG flag

in register CRO). Here again there is no mode bit for turning off page-level protection once

paging is enabled. However, page-level protection can be disabled by performing the following

operations:

® Clear the WP flag in control register CRO.

®  Set theread/write (R/W) and user/supervisor (U/S) flags for each page-directory and page-
table entry.

This action makes each page a writable, user page, which in effect disables page-level
protection.

4.2. FIELDS AND FLAGS USED FOR SEGMENT-LEVEL AND
PAGE-LEVEL PROTECTION

The processor’s protection mechanism uses the following fields and flags in the system data

structures to control access to segments and pages:

® Descriptor type (S) flag—(Bit 12 in the second doubleword of a segment descriptor.)
Determines if the segment descriptor is for a system segment or a code or data segment.

®* Type field—(Bits 8 through 11 in the second doubleword of a segment descriptor.)
Determines the type of code, data, or system segment.

® Limit field—(Bits O through 15 of the first doubleword and bits 16 through 19 of the

second doubleword of a segment descriptor.) Determines the size of the segment, along

with the G flag and E flag (for data segments).

* G flag—(Bit 23 in the second doubleword of a segment descriptor.) Determines the size of
the segment, along with the limit field and E flag (for data segments).

* E flag—(Bit 10 in the second doubleword of a data-segment descriptor.) Determines the
size of the segment, along with the limit field and G flag.

® Descriptor privilege level (DPL) field—(Bits 13 and 14 in the second doubleword of a
segment descriptor.) Determines the privilege level of the segment.

® Requested privilegelevel (RPL) field. (Bits 0 and 1 of any segment selector.) Specifiesthe
requested privilege level of a segment selector.
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®  Current privilegelevel (CPL) field. (Bits 0 and 1 of the CS segment register.) Indicates the
privilege level of the currently executing program or procedure. The term current privilege
level (CPL) refersto the setting of thisfield.

® User/supervisor (U/S) flag. (Bit 2 of a page-directory or page-table entry.) Determines the
type of page: user or supervisor.

* Read/write (R/W) flag. (Bit 1 of a page-directory or page-table entry.) Determines the type
of access alowed to a page: read only or read-write.

Figure 4-1 shows the location of the various fields and flags in the data, code, and system-
segment descriptors; Figure 3-6 in Chapter 3, Protected-Mode Memory Management shows the
location of the RPL (or CPL) field in a segment selector (or the CSregister); and Figure 3-14in
Chapter 3, Protected-Mode Memory Management shows the location of the U/S and R/W flags
in the page-directory and page-table entries.
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Data-Segment Descriptor

31 242322 212019 161514 1312 11 8 7 0
Base31:24  |G[B|o|v| LML lp| p P Base 23:16 |4
L : L |10 | E ‘w| A
31 1615 0
Base Address 15:00 Segment Limit 15:00 0

Code-Segment Descriptor

31 242322212019 161514 1312 11 8 7 0
A [, D Type
Base3124  [o|pjo|v| LML |pl p P Base 23:16 |4
L : L |11 |c ‘ R | A
31 1615 0
Base Address 15:00 Segment Limit 15:00 0

System-Segment Descriptor

31 242322 212019 1615141312 11 8 7 0
Base 31:24 |G| |o tmit ol 2 1| Type Base 23:16 4
’ 19:16 L '
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0
A Accessed E Expansion Direction
AVL Available to Sys. Programmer’s G Granularity
B Big R Readable
C Conforming LIMIT Segment Limit
D Default w Writable
DPL Descriptor Privilege Level P Present

\:’ Reserved

Figure 4-1. Descriptor Fields Used for Protection

Many different styles of protection schemes can be implemented with these fields and flags.
When the operating system creates a descriptor, it places values in these fields and flags in
keeping with the particular protection style chosen for an operating system or executive. Appli-
cation program do not generally access or modify these fields and flags.

The following sections describe how the processor uses these fields and flags to perform the
various categories of checks described in the introduction to this chapter.
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4.3. LIMIT CHECKING

The limit field of a segment descriptor prevents programs or procedures from addressing
memory locations outside the segment. The effective value of the limit depends on the setting
of the G (granularity) flag (refer to Figure 4-1). For data segments, the limit al so depends on the
E (expansion direction) flag and the B (default stack pointer size and/or upper bound) flag. The
E flag is one of the bitsin the type field when the segment descriptor isfor a data-segment type.

When the G flag isclear (byte granularity), the effective limit isthe value of the 20-bit limit field
in the segment descriptor. Here, the limit ranges from 0 to FFFFFH (1 MByte). Whenthe G flag
is set (4-KByte page granularity), the processor scales the value in the limit field by afactor of
2712 (4 KBytes). In this case, the effective limit ranges from FFFH (4 KBytes) to FFFFFFFFH
(4 GBytes). Note that when scaling is used (G flag is set), the lower 12 hits of a segment offset
(address) are not checked against the limit; for example, note that if the segment limit is O,
offsets 0 through FFFH are still valid.

For all types of segments except expand-down data segments, the effective limit is the last
address that is allowed to be accessed in the segment, which is one less than the size, in bytes,
of the segment. The processor causes ageneral -protection exception any time an attempt ismade
to access the following addresses in a segment:

® A byte at an offset greater than the effective limit

®* A word at an offset greater than the (effective-limit — 1)

® A doubleword at an offset greater than the (effective-limit — 3)
®* A quadword at an offset greater than the (effective-limit — 7)

For expand-down data segments, the segment limit has the same function but is interpreted
differently. Here, the effective limit specifies the last address that is not allowed to be accessed
within the segment; the range of valid offsets is from (effective-limit + 1) to FFFFFFFFH if the

B flag is set and from (effective-limit + 1) to FFFFH if the B flag is clear. An expand-down
segment has maximum size when the segment limit is 0.

Limit checking catches programming errors such as runaway code, runaway subscripts, and
invalid pointer calculations. These errors are detected when they occur, so identification of the
cause is easier. Without limit checking, these errors could overwrite code or data in another
segment.

In addition to checking segment limits, the processor also checks descriptor table limits. The
GDTR and IDTR registers contain 16-bit limit values that the processor uses to prevent
programs from selecting a segment descriptors outside the respective descriptor tables. The
LDTR and task registers contain 32-bit segment limit value (read from the segment descriptors
for the current LDT and TSS, respectively). The processor uses these segment limits to prevent
accesses beyond the bounds of the current LDT and TSS. Refer to Section 3.5.1., “Segment
Descriptor Tables” in Chapter Brotected-Mode Memory Management for more information

on the GDT and LDT limit fields; refer to Section 5.8., “Interrupt Descriptor Table (IDT)” in
Chapter 5/nterrupt and Exception Handling for more information on the IDT limit field; and

refer to Section 6.2.3., “Task Register” in Chaptéliaék Management for more information on

the TSS segment limit field.
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4.4. TYPE CHECKING

Segment descriptors contain type information in two places:
® The S (descriptor type) flag.
®* Thetypefield.

The processor uses thisinformation to detect programming errorsthat result in an attempt to use
a segment or gate in an incorrect or unintended manner.

The Sflag indicates whether a descriptor is a system type or acode or datatype. The typefield
provides 4 additional bitsfor usein defining varioustypes of code, data, and system descriptors.
Table 3-1 in Chapter 3, Protected-Mode Memory Management shows the encoding of the type
field for code and data descriptors; Table 3-2 in Chapter 3, Protected-Mode Memory Manage-
ment shows the encoding of the field for system descriptors.

The processor examines type information at various times while operating on segment selectors
and segment descriptors. The following list gives examples of typical operations where type
checking is performed. Thislist is not exhaustive.

®* When a segment selgctor is_Ioaded into a segment register. Certain segment registers
can contain only certain descriptor types, for example:

— The CS register only can be loaded with a selector for a code segment.

— Segment selectors for code segments that are not readable or for system segments
cannot be loaded into data-segment registers (DS, ES, FS, and GS).

— Only segment selectors of writable data segments can be loaded into the SS register.
®  When a segment selector isloaded into the LDTR or task register.

— The LDTR can only be loaded with a selector for an LDT.

— The task register can only be loaded with a segment selector for a TSS.

® When instructions access segments whose descriptors are already loaded into
segment registers. Certain segments can be used by instructions only in certain predefined
ways, for example:

— No instruction may write into an executable segment.
— No instruction may write into a data segment if it is not writable.
— No instruction may read an executable segment unless the readable flag is set.

® When an instruction operand contains a segment selector. Certain instructions can
access segment or gates of only a particular type, for example:

— A far CALL or far JMP instruction can only access a segment descriptor for a
conforming code segment, nonconforming code segment, call gate, task gate, or TSS.

— The LLDT instruction must reference a segment descriptor for an LDT.
— The LTR instruction must reference a segment descriptor for a TSS.
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— The LAR instruction must reference a segment or gate descriptor for an LDT, TSS,
call gate, task gate, code segment, or data segment.

— The LSL instruction must reference a segment descriptor for a LDT, TSS, code
segment, or data segment.

— IDT entries must be interrupt, trap, or task gates.
During certain internal operations. For example:

— On a far call or far jump (executed with a far CALL or far JMP instruction), the
processor determines the type of control transfer to be carried out (call or jump to
another code segment, a call or jump through a gate, or a task switch) by checking the
type field in the segment (or gate) descriptor pointed to by the segment (or gate)
selector given as an operand in the CALL or JMP instruction. If the descriptor type is
for a code segment or call gate, a call or jump to another code segment is indicated; if
the descriptor type is for a TSS or task gate, a task switch is indicated.

— On a call or jump through a call gate (or on an interrupt- or exception-handler call
through a trap or interrupt gate), the processor automatically checks that the segment
descriptor being pointed to by the gate is for a code segment.

— On a call or jump to a new task through a task gate (or on an interrupt- or exception-
handler call to a new task through a task gate), the processor automatically checks that
the segment descriptor being pointed to by the task gate is for a TSS.

— On acall or jump to a new task by a direct reference to a TSS, the processor automati-
cally checks that the segment descriptor being pointed to by the CALL or JMP
instruction is for a TSS.

— On return from a nested task (initiated by an IRET instruction), the processor checks
that the previous task link field in the current TSS points to a TSS.

4.4.1. Null Segment Selector Checking

Attempting to load a null segment selector (refer to Section 3.4.1. in ChapteteBfed-Mode
Memory Management) into the CS or SS segment register generates a general-protection excep-
tion (#GP). A null segment selector can be loaded into the DS, ES, FS, or GS register, but any

attempt to access a segment through one of these registers when it is loaded with a null segment
selector results in a #GP exception being generated. Loading unused data-segment registers with
a null segment selector is a useful method of detecting accesses to unused segment registers

and/or preventing unwanted accesses to data segments.

4-7



PROTECTION Intel®

4.5. PRIVILEGE LEVELS

The processor’s segment-protection mechanism recognizes 4 privilege levels, numbered from 0
to 3. The greater numbers mean lesser privileges. Figure 4-2 shows how these levels of privilege
can be interpreted as rings of protection. The center (reserved for the most privileged code, data,
and stacks) is used for the segments containing the critical software, usually the kernel of an
operating system. Outer rings are used for less critical software. (Systems that use only 2 of the
4 possible privilege levels should use levels 0 and 3.)

Protection Rings

Operating
System >
Kernel Level O

Operating System
Services Level 1

Level 2

Applications Level 3

Figure 4-2. Protection Rings

The processor uses privilege levels to prevent a program or task operating at a lesser privilege
level from accessing a segment with a greater privilege, except under controlled situations.
When the processor detects a privilege level violation, it generates a general-protection excep-
tion (#GP).

To carry out privilege-level checks between code segments and data segments, the processor
recognizes the following three types of privilege levels:

® Current privilege level (CPL). The CPL isthe privilege level of the currently executing
program or task. It is stored in bits 0 and 1 of the CS and SS segment registers. Normally,
the CPL is equal to the privilege level of the code segment from which instructions are
being fetched. The processor changes the CPL when program control is transferred to a
code segment with a different privilege level. The CPL istreated slightly differently when
accessing conforming code segments. Conforming code segments can be accessed from
any privilege level that is equal to or numerically greater (less privileged) than the DPL of
the conforming code segment. Also, the CPL is not changed when the processor accesses a
conforming code segment that has a different privilege level than the CPL.

® Descriptor privilegelevel (DPL). The DPL isthe privilege level of asegment or gate. Itis
stored in the DPL field of the segment or gate descriptor for the segment or gate. When the
currently executing code segment attempts to access a segment or gate, the DPL of the
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segment or gate is compared to the CPL and RPL of the segment or gate selector (as
described later in this section). The DPL isinterpreted differently, depending on the type of
segment or gate being accessed:

Data segment. The DPL indicates the numerically highest privilege level that a
program or task can have to be allowed to access the segment. For example, if the DPL
of a data segment is 1, only programs running at a CPL of 0 or 1 can access the
segment.

Nonconforming code segment (without using a call gate). The DPL indicates the
privilege level that a program or task must be at to access the segment. For example, if
the DPL of a honconforming code segment is 0, only programs running at a CPL of 0
can access the segment.

Call gate. The DPL indicates the numerically highest privilege level that the currently
executing program or task can be at and still be able to access the call gate. (This is the
same access rule as for a data segment.)

Conforming code segment and nonconfor ming code segment accessed through a

call gate. The DPL indicates the numerically lowest privilege level that a program or
task can have to be allowed to access the segment. For example, if the DPL of a
conforming code segment is 2, programs running at a CPL of 0 or 1 cannot access the
segment.

TSS. The DPL indicates the numerically highest privilege level that the currently
executing program or task can be at and still be able to access the TSS. (This is the
same access rule as for a data segment.)

Requested privilege level (RPL). The RPL is an override privilege level that is assigned

to segment selectors. It is stored in bits 0 and 1 of the segment selector. The processor
checks the RPL aong with the CPL to determine if accessto a segment is alowed. Even if

the program or task requesting access to a segment has sufficient privilege to access the
segment, accessisdenied if the RPL is not of sufficient privilege level. That is, if the RPL

of asegment selector is numerically greater than the CPL, the RPL overrides the CPL, and

vice versa. The RPL can be used to insure that privileged code does not access a segment

on behalf of an application program unless the program itself has access privileges for that
segment. Refer to Section 4.10.4., “Checking Caller Access Privileges (ARPL
Instruction)” for a detailed description of the purpose and typical use of the RPL.

Privilege levels are checked when the segment selector of a segment descriptor is loaded into a
segment register. The checks used for data access differ from those used for transfers of program
control among code segments; therefore, the two kinds of accesses are considered separately in
the following sections.

4.6.

PRIVILEGE LEVEL CHECKING WHEN ACCESSING
DATA SEGMENTS

To access operands in a data segment, the segment selector for the data segment must be loadec
into the data-segment registers (DS, ES, FS, or GS) or into the stack-segment register (SS).
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(Segment registers can be loaded with the MOV, POP, LDS, LES, LFS, LGS, and LSS instruc-

tions.) Before the processor |oads a segment selector into a segment register, it performs a priv-

ilege check (refer to Figure 4-3) by comparing the privilege levels of the currently running

program or task (the CPL), the RPL of the segment selector, and the DPL of the segment’s
segment descriptor. The processor loads the segment selector into the segment register if the
DPL is numerically greater than or equal to both the CPL and the RPL. Otherwise, a general-
protection fault is generated and the segment register is not loaded.

CS Register

CPL

Segment Selector
For Data Segment

RPL

Y

Privilege

Data-Segment Descriptor
Check

Yy

DPL

Figure 4-3. Privilege Check for Data Access

Figure 4-4 shows four procedures (located in codes segments A, B, C, and D), each running at
different privilege levels and each attempting to access the same data segment.

® The procedure in code segment A is able to access data segment E using segment selector
E1, because the CPL of code segment A and the RPL of segment selector E1 are equal to
the DPL of data segment E.

® The procedure in code segment B is able to access data segment E using segment selector
E2, because the CPL of code segment A and the RPL of segment selector E2 are both
numerically lower than (more privileged) than the DPL of data segment E. A code segment
B procedure can also access data segment E using segment selector E1.

® The procedure in code segment C is not able to access data segment E using segment
selector E3 (dotted line), because the CPL of code segment C and the RPL of segment
selector E3 are both numerically greater than (less privileged) than the DPL of data
segment E. Even if a code segment C procedure were to use segment selector E1 or E2,
such that the RPL would be acceptable, it still could not access data segment E because its
CPL is not privileged enough.

® The procedure in code segment D should be able to access data segment E because code
segment D’s CPL is numerically less than the DPL of data segment E. However, the RPL
of segment selector E3 (which the code segment D procedure is using to access data
segment E) is numerically greater than the DPL of data segment E, so access is not
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alowed. If the code segment D procedure were to use segment selector E1 or E2 to access
the data segment, access would be allowed.

Seqimont || Segment SelE3 '
egment egmentSel. E3 | _ _ _ _ . |
CPL=3 RPL=3 | |
Lowest Privilege L |
I
Code I
Segment Sel. E1 > Data
Segment A g 255 >| Segment E :
CPL=2 >|DPL=2 !
I
I
Code I
|| SegmentSel. E2 |
Segment B RPL=T |
CPL=1 I
1 :
I
Code
Segment D

m CPL=0

Highest Privilege

Figure 4-4. Examples of Accessing Data Segments From Various Privilege Levels

As demonstrated in the previous examples, the addressable domain of a program or task varies
asits CPL changes. Whenthe CPL is0, datasegmentsat all privilegelevelsare accessible; when
the CPL is 1, only data segments at privilege levels 1 through 3 are accessible; when the CPL is
3, only data segments at privilege level 3 are accessible.

The RPL of asegment selector can always override the addressable domain of aprogram or task.
When properly used, RPLs can prevent problems caused by accidental (or intensional) use of
segment selectors for privileged data segments by less privileged programs or procedures.

It is important to note that the RPL of a segment selector for a data segment is under software
control. For example, an application program running at a CPL of 3 can set the RPL for adata-
segment selector to 0. With the RPL set to O, only the CPL checks, not the RPL checks, will
provide protection against deliberate, direct attempts to violate privilege-level security for the
datasegment. To prevent these types of privilege-level-check violations, aprogram or procedure
can check access privileges whenever it receives a data-segment selector from another proce-
dure (refer to Section 4.10.4., “Checking Caller Access Privileges (ARPL Instruction)”).
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4.6.1. Accessing Datain Code Segments

In some instances it may be desirable to access data structures that are contained in a code
segment. The following methods of accessing data in code segments are possible;

® | oad adata-segment register with a segment selector for a nonconforming, readable, code
segment.

® Load a data-segment register with a segment selector for a conforming, readable, code
segment.

® Use acode-segment override prefix (CS) to read a readable, code segment whose selector
is aready loaded in the CS register.

Thesamerulesfor accessing datasegments apply to method 1. Method 2 isalwaysvalid because
the privilege level of a conforming code segment is effectively the same as the CPL, regardless
of its DPL. Method 3 is always valid because the DPL of the code segment selected by the CS
register isthe same as the CPL.

4.7. PRIVILEGE LEVEL CHECKING WHEN LOADING THE SS
REGISTER

Privilegelevel checking also occurs when the SSregister isloaded with the segment selector for
astack segment. Here all privilege levelsrelated to the stack segment must match the CPL ; that
is, the CPL, the RPL of the stack-segment selector, and the DPL of the stack-segment descriptor
must be the same. If the RPL and DPL are not equal to the CPL, a general-protection exception
(#GP) is generated.

4.8. PRIVILEGE LEVEL CHECKING WHEN TRANSFERRING
PROGRAM CONTROL BETWEEN CODE SEGMENTS

To transfer program control from one code segment to ancther, the segment selector for the
destination code segment must be loaded into the code-segment register (CS). As part of this
loading process, the processor examines the segment descriptor for the destination code segment
and performs various limit, type, and privilege checks. If these checks are successful, the CS
register isloaded, program control is transferred to the new code segment, and program execu-
tion begins at the instruction pointed to by the EIP register.

Program control transfers are carried out with the IMP, CALL, RET, INT n, and IRET instruc-
tions, as well as by the exception and interrupt mechanisms. Exceptions, interrupts, and the
IRET instruction are special cases discussed in Chapter 5, Interrupt and Exception Handling.
This chapter discusses only the IMP, CALL, and RET instructions.

A JMP or CALL instruction can reference another code segment in any of four ways:
® Thetarget operand contains the segment selector for the target code segment.

® Thetarget operand points to a call-gate descriptor, which contains the segment selector for
the target code segment.

4-12 I



Intel ® PROTECTION

® Thetarget operand pointsto a TSS, which contains the segment selector for the target code
segment.

® The target operand points to atask gate, which pointsto a TSS, which in turn contains the
segment selector for the target code segment.

The following sections describe first two types of references. Refer to Section 6.3., “Task
Switching” in Chapter 6Jask Management for information on transferring program control
through a task gate and/or TSS.

4.8.1. Direct Calls or Jumps to Code Segments

The near forms of the JMP, CALL, and RET instructions transfer program control within the
current code segment, so privilege-level checks are not performed. The far forms of the IMP,
CALL, and RET instructions transfer control to other code segments, so the processor does
perform privilege-level checks.

When transferring program control to another code segment without going through a call gate,
the processor examines four kinds of privilege level and type information (refer to Figure 4-5):

® TheCPL. (Here, the CPL isthe privilege level of the calling code segment; that is, the code
segment that contains the procedure that is making the call or jump.)

CS Register

CPL

Segment Selector
For Code Segment

RPL
Destination Code > Privilege
Segment Descriptor
g p »| Check

DPL| |C

Figure 4-5. Privilege Check for Control Transfer Without Using a Gate

® The DPL of the segment descriptor for the destination code segment that contains the
called procedure.

®* The RPL of the segment selector of the destination code segment.

® The conforming (C) flag in the segment descriptor for the destination code segment, which
determines whether the segment is a conforming (C flag is set) or nonconforming (C flag is
clear) code segment. (Refer to Section 3.4.3.1., “Code- and Data-Segment Descriptor
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Types” in Chapter 3Protected-Mode Memory Management for more information about
this flag.)

The rules that the processor uses to check the CPL, RPL, and DPL depends on the setting of the
C flag, as described in the following sections.

4.8.1.1. ACCESSING NONCONFORMING CODE SEGMENTS

When accessing honconforming code segments, the CPL of the calling procedure must be equal
to the DPL of the destination code segment; otherwise, the processor generates a general-protec-
tion exception (#GP).

For example, in Figure 4-6, code segment C is a nonconforming code segment. Therefore, a

procedure in code segment A can call a procedure in code segment C (using segment selector
C1), because they are at the same privilege level (the CPL of code segment A is equal to the DPL
of code segment C). However, a procedure in code segment B cannot call a procedure in code
segment C (using segment selector C2 or C1), because the two code segments are at different
privilege levels.

S t Sel. D2
Code egmen Ie‘\’PL

Segment B 3

— || SegmentSel.C2 |- - - - - A
CPL=3 RPL

1l
w

Lowest Privilege

| Segment Sel. C1 Code
ceode RPL=7 |SegmentC
egmen
CPL_|:2 || SegmentSel. D1 DPL=2
RPL=2 Nonconforming
Code Segment
Y
- Code
1 Segment D
DPL=3
Conforming
Code Segment

ml Highest Privilege

Figure 4-6. Examples of Accessing Conforming and Nonconforming Code Segments
From Various Privilege Levels
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The RPL of the segment selector that points to a nonconforming code segment has a limited
effect on the privilege check. The RPL must be numerically lessthan or equal to the CPL of the
calling procedure for a successful control transfer to occur. So, in the examplein Figure 4-6, the
RPL s of segment selectors C1 and C2 could legally be set to O, 1, or 2, but not to 3.

When the segment selector of a nonconforming code segment isloaded into the CS register, the
privilege leve field is not changed; that is, it remains at the CPL (which isthe privilegelevel of
the calling procedure). Thisistrue, even if the RPL of the segment selector is different from the
CPL.

4.8.1.2. ACCESSING CONFORMING CODE SEGMENTS

When accessing conforming code segments, the CPL of the calling procedure may be numeri-
cally equal to or greater than (less privileged) the DPL of the destination code segment; the
processor generates a general -protection exception (#GP) only if the CPL isless than the DPL.
(The segment selector RPL for the destination code segment is not checked if the segment isa
conforming code segment.)

In the example in Figure 4-6, code segment D is a conforming code segment. Therefore, calling
procedures in both code segment A and B can access code segment D (using either segment
selector D1 or D2, respectively), because they both have CPL s that are greater than or equal to
the DPL of the conforming code segment. For conforming code segments, the DPL repre-
sentsthe numerically lowest privilege level that a calling procedure may be at to success-
fully make a call to the code segment.

(Note that segments selectors D1 and D2 are identical except for their respective RPLs. But
since RPL s are not checked when accessing conforming code segments, the two segment selec-
tors are essentially interchangeable.)

When program control is transferred to a conforming code segment, the CPL does not change,
even if the DPL of the destination code segment is less than the CPL. This situation isthe only
one where the CPL may be different from the DPL of the current code segment. Also, since the
CPL does not change, no stack switch occurs.

Conforming segments are used for code modules such as math libraries and exception handlers,
which support applications but do not require access to protected system facilities. These
modules are part of the operating system or executive software, but they can be executed at
numerically higher privilege levels (less privileged levels). Keeping the CPL at the level of a
calling code segment when switching to a conforming code segment prevents an application
program from accessing nonconforming code segments while at the privilege level (DPL) of a
conforming code segment and thus prevents it from accessing more privileged data.

Most code segments are nonconforming. For these segments, program control can betransferred
only to code segments at the same level of privilege, unless the transfer is carried out through a
call gate, as described in the following sections.
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4.8.2. Gate Descriptors

To provide controlled access to code segments with different privilege levels, the processor
provides special set of descriptors called gate descriptors. There are four kinds of gate
descriptors:

® Cdl gates
® Trap gates
® Interrupt gates
® Task gates

Task gates are used for task switching and are discussed in Chapter 6, Task Management. Trap
and interrupt gates are specia kinds of call gates used for calling exception and interrupt
handlers. The are described in Chapter 5, Interrupt and Exception Handling. This chapter is
concerned only with call gates.

4.8.3. Call Gates

Call gates facilitate controlled transfers of program control between different privilege levels.

They are typically used only in operating systems or executives that use the privilege-level
protection mechanism. Call gates are also useful for transferring program control between 16-bit

and 32-bit code segments, as described in Section 17.4., “Transferring Control Among Mixed-
Size Code Segments” in Chapter Mixing 16-Bit and 32-Bit Code.

Figure 4-7 shows the format of a call-gate descriptor. A call-gate descriptor may reside in the
GDT orin an LDT, but not in the interrupt descriptor table (IDT). It performs six functions:

® |t specifies the code segment to be accessed.
* |t definesan entry point for a procedure in the specified code segment.
® |t specifiesthe privilege level required for a caller trying to access the procedure.

® |f a stack switch occurs, it specifies the number of optional parameters to be copied
between stacks.

® |t defines the size of values to be pushed onto the target stack: 16-bit gates force 16-bit
pushes and 32-hit gates force 32-bit pushes.

® |t specifies whether the call-gate descriptor is valid.
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Figure 4-7. Call-Gate Descriptor

The segment selector field in a call gate specifies the code segment to be accessed. The offset

field specifies the entry point in the code segment. This entry point is generally to the first
instruction of a specific procedure. The DPL field indicates the privilege level of the call gate,

which in turn is the privilege level required to access the selected procedure through the gate.

The Pflag indicates whether the call-gate descriptor is valid. (The presence of the code segment

to which the gate points is indicated by the P flag in the code segment’s descriptor.) The param-
eter count field indicates the number of parameters to copy from the calling procedures stack to
the new stack if a stack switch occurs (refer to Section 4.8.5., “Stack Switching”). The parameter
count specifies the number of words for 16-bit call gates and doublewords for 32-bit call gates.

Note that the P flag in a gate descriptor is normally always set to 1. If it is set to 0, a not present
(#NP) exception is generated when a program attempts to access the descriptor. The operating
system can use the P flag for special purposes. For example, it could be used to track the number
of times the gate is used. Here, the P flag is initially set to 0 causing a trap to the not-present
exception handler. The exception handler then increments a counter and sets the P flag to 1, so
that on returning from the handler, the gate descriptor will be valid.

4.8.4. Accessing a Code Segment Through a Call Gate

To access a call gate, a far pointer to the gate is provided as a target operand in a CALL or JMP
instruction. The segment selector from this pointer identifies the call gate (refer to Figure 4-8);
the offset from the pointer is required, but not used or checked by the processor. (The offset can
be set to any value.)

When the processor has accessed the call gate, it uses the segment selector from the call gate to
locate the segment descriptor for the destination code segment. (This segment descriptor can be
in the GDT or the LDT.) It then combines the base address from the code-segment descriptor
with the offset from the call gate to form the linear address of the procedure entry point in the
code segment.

As shown in Figure 4-9, four different privilege levels are used to check the validity of a
program control transfer through a call gate:
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® The CPL (current privilege level).

®* The RPL (requestor's privilege level) of the call gate’s selector.

® TheDPL (descriptor privilege level) of the call gate descriptor.

® The DPL of the segment descriptor of the destination code segment.
The C flag (conforming) in the segment descriptor for the destination code segment is also

checked.
Far Pointer to Call Gate
Segment Selector | | Offset
Required but not used by processor
Descriptor Table
> Offset Call-Gate
| Segment Selector Offset Descriptor
»| Base Base | code-Segment

@4 Base Descriptor
Procedure
Entry Point

Figure 4-8. Call-Gate Mechanism
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Call Gate (Descriptor) Privilege
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Y
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Y

Destination Code-
Segment Descriptor

DPL

Figure 4-9. Privilege Check for Control Transfer with Call Gate

The privilege checking rules are different depending on whether the control transfer was initi-
ated with a CALL or aJMP instruction, as shown in Table 4-1.
Table 4-1. Privilege Check Rules for Call Gates
Instruction Privilege Check Rules

CALL CPL < call gate DPL; RPL < call gate DPL

Destination conforming code segment DPL < CPL
Destination nonconforming code segment DPL < CPL

JMP CPL < call gate DPL; RPL < call gate DPL

Destination conforming code segment DPL < CPL

Destination nonconforming code segment DPL = CPL

The DPL field of the call-gate descriptor specifies the numerically highest privilege level from
which a calling procedure can access the call gate; that is, to access a call gate, the CPL of a
calling procedure must be equal to or less than the DPL of the call gate. For example, in Figure
4-12, call gate A hasaDPL of 3. So calling procedures at all CPLs (0 through 3) can access this
call gate, which includes calling procedures in code segments A, B, and C. Call gate B has a
DPL of 2, soonly calling proceduresat aCPL or 0, 1, or 2 can access call gate B, which includes
calling procedures in code segments B and C. The dotted line shows that a calling procedurein
code segment A cannot access call gate B.
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The RPL of the segment selector to acall gate must satisfy the sametest asthe CPL of thecalling
procedure; that is, the RPL must be less than or equal to the DPL of the call gate. In the example
in Figure 4-12, a calling procedure in code segment C can access call gate B using gate selector
B2 or B1, but it could not use gate selector B3 to access call gate B.

If the privilege checks between the calling procedure and call gate are successful, the processor
then checks the DPL of the code-segment descriptor against the CPL of the calling procedure.
Here, the privilege check rules vary between CALL and IMP instructions. Only CALL instruc-
tions can use call gates to transfer program control to more privileged (numerically lower priv-
ilege level) nonconforming code segments; that is, to nonconforming code segmentswith a DPL
less than the CPL. A IMP instruction can use a call gate only to transfer program control to a
nonconforming code segment withaDPL equal to the CPL. CALL and IMP instruction can both
transfer program control to amore privileged conforming code segment; that is, to aconforming
code segment with a DPL less than or equal to the CPL.

If acall ismade to amore privileged (numerically lower privilege level) nonconforming desti-

nation code segment, the CPL islowered to the DPL of the destination code segment and a stack

switch occurs (refer to Section 4.8.5., “Stack Switching”). If a call or jump is made to a more
privileged conforming destination code segment, the CPL is not changed and no stack switch
occurs.

Code || Gate Selector A > call
Segment A RPL=3 Gate A
CPL=3 | — Gate SelectorB3 | — — — — - DPL=3
RPL=3 |
- |
Lowest Privilege w
Code call
Segment B|_| Gate Selector B1
9 [RPL=g—>| GateB
CPL=2 »|DPL=2
S Code C Gate Selector B2
egment C | — |
—\CPLzl RPL=1]
No Stack Stack Switch
Switch Occurs Occurs
\ \
Code Code
Segment D Segment E
DPL=0 | DPL=0 |
Conforming Nonconforming
m‘ Highest Privilege Code Segment Code Segment

Figure 4-10. Example of Accessing Call Gates At Various Privilege Levels
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Call gatesallow asingle code segment to have procedures that can be accessed at different priv-
ilege levels. For example, an operating system located in a code segment may have some
services which are intended to be used by both the operating system and application software
(such as procedures for handling character 1/0). Call gates for these procedures can be set up
that allow access at al privilege levels (0 through 3). More privileged call gates (with DPLs of
0 or 1) can then be set up for other operating system services that are intended to be used only
by the operating system (such as procedures that initialize device drivers).

4.8.5. Stack Switching

Whenever a call gate is used to transfer program control to a more privileged nonconforming

code segment (that is, when the DPL of the nonconforming destination code segment islessthan

the CPL), the processor automatically switches to the stack for the destination code segment’s
privilege level. This stack switching is carried out to prevent more privileged procedures from
crashing due to insufficient stack space. It also prevents less privileged procedures from inter-
fering (by accident or intent) with more privileged procedures through a shared stack.

Each task must define up to 4 stacks: one for applications code (running at privilege level 3) and
one for each of the privilege levels 2, 1, and 0 that are used. (If only two privilege levels are used
[3 and 0], then only two stacks must be defined.) Each of these stacks is located in a separate
segment and is identified with a segment selector and an offset into the stack segment (a stack
pointer).

The segment selector and stack pointer for the privilege level 3 stack is located in the SS and
ESP registers, respectively, when privilege-level-3 code is being executed and is automatically
stored on the called procedure’s stack when a stack switch occurs.

Pointers to the privilege level 0, 1, and 2 stacks are stored in the TSS for the currently running
task (refer to Figure 6-2 in ChapterTask Management). Each of these pointers consists of a
segment selector and a stack pointer (loaded into the ESP register). These initial pointers are
strictly read-only values. The processor does not change them while the task is running. They
are used only to create new stacks when calls are made to more privileged levels (numerically
lower privilege levels). These stacks are disposed of when a return is made from the called
procedure. The next time the procedure is called, a new stack is created using the initial stack
pointer. (The TSS does not specify a stack for privilege level 3 because the processor does not
allow a transfer of program control from a procedure running at a CPL of 0, 1, or 2 to a procedure
running at a CPL of 3, except on a return.)

The operating system is responsible for creating stacks and stack-segment descriptors for all the
privilege levels to be used and for loading initial pointers for these stacks into the TSS. Each
stack must be read/write accessible (as specified in the type field of its segment descriptor) and
must contain enough space (as specified in the limit field) to hold the following items:

® The contents of the SS, ESP, CS, and EIP registers for the calling procedure.
® The parameters and temporary variables required by the called procedure.

® The EFLAGS register and error code, when implicit calls are made to an exception or
interrupt handler.
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The stack will need to require enough space to contain many frames of these items, because
procedures often call other procedures, and an operating system may support nesting of multiple
interrupts. Each stack should be large enough to alow for the worst case nesting scenario at its
privilege level.

(If the operating system does not use the processor’s multitasking mechanism, it still must create
at least one TSS for this stack-related purpose.)

When a procedure call through a call gate results in a change in privilege level, the processor
performs the following steps to switch stacks and begin execution of the called procedure at a
new privilege level:

1.

Uses the DPL of the destination code segment (the new CPL) to select a pointer to the new
stack (segment selector and stack pointer) from the TSS.

Reads the segment selector and stack pointer for the stack to be switched to from the
current TSS. Any limit violations detected while reading the stack-segment selector, stack
pointer, or stack-segment descriptor cause an invalid TSS (#TS) exception to be generated.

Checks the stack-segment descriptor for the proper privileges and type and generates an
invalid TSS (#TS) exception if violations are detected.

Temporarily saves the current values of the SS and ESP registers.
Loads the segment selector and stack pointer for the new stack in the SS and ESP registers.

Pushes the temporarily saved values for the SS and ESP registers (for the calling
procedure) onto the new stack (refer to Figure 4-11).

Copies the number of parameter specified in the parameter count field of the call gate from
the calling procedure’s stack to the new stack. If the count is 0, no parameters are copied.

Pushes the return instruction pointer (the current contents of the CS and EIP registers) onto
the new stack.

Loads the segment selector for the new code segment and the new instruction pointer from
the call gate into the CS and EIP registers, respectively, and begins execution of the called
procedure.

Refer to the description of the CALL instruction in Chaptdn&yuction Set Reference, in the
Intel Architecture Software Developer’s Manual, Volumf@®a detailed description of the priv-
ilege level checks and other protection checks that the processor performs on afar call through
acdl gate.
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Calling Procedure’s Stack Called Procedure’s Stack
Calling SS
Parameter 1 Calling ESP
Parameter 2 Parameter 1
Parameter 3 <— ESP Parameter 2
Parameter 3

Calling CS

Calling EIP <—ESP

Figure 4-11. Stack Switching During an Interprivilege-Level Call

The parameter count field in a call gate specifies the number of data items (up to 31) that the

processor should copy from the calling procedure’s stack to the stack of the called procedure. If
more than 31 data items need to be passed to the called procedure, one of the parameters can be
a pointer to a data structure, or the saved contents of the SS and ESP registers may be used to
access parameters in the old stack space. The size of the data items passed to the called proce-
dure depends on the call gate size, as described in Section 4.8.3., “Call Gates”

4.8.6. Returning from a Called Procedure

The RET instruction can be used to perform a near return, a far return at the same privilege level,
and a far return to a different privilege level. This instruction is intended to execute returns from
procedures that were called with a CALL instruction. It does not support returns from a JMP
instruction, because the JMP instruction does not save a return instruction pointer on the stack.

A near return only transfers program control within the current code segment; therefore, the
processor performs only a limit check. When the processor pops the return instruction pointer
from the stack into the EIP register, it checks that the pointer does not exceed the limit of the
current code segment.

On a far return at the same privilege level, the processor pops both a segment selector for the
code segment being returned to and a return instruction pointer from the stack. Under normal

conditions, these pointers should be valid, because they were pushed on the stack by the CALL
instruction. However, the processor performs privilege checks to detect situations where the

current procedure might have altered the pointer or failed to maintain the stack properly.
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A far return that requires a privilege-level changeis only allowed when returning to aless priv-
ileged level (that is, the DPL of the return code segment is numerically greater than the CPL).
The processor uses the RPL field from the CS register value saved for the calling procedure
(refer to Figure 4-11) to determineif areturn to anumerically higher privilegelevel isrequired.
If the RPL is numerically greater (less privileged) than the CPL, areturn across privilege levels
OCCurs.

The processor performs the following steps when performing afar return to acalling procedure
(refer to Figures 4-2 and 4-4 in the Intel Architecture Software Developer’s Manual, Volume 1
for anillustration of the stack contents prior to and after a return):

1. Checks the RPL field of the saved CS register value to determine if a privilege level
change is required on the return.

2. Loads the CS and EIP registers with the values on the called procedure’s stack. (Type and
privilege level checks are performed on the code-segment descriptor and RPL of the code-
segment selector.)

3. (If the RET instruction includes a parameter count operand and the return requires a
privilege level change.) Adds the parameter count (in bytes obtained from the RET
instruction) to the current ESP register value (after popping the CS and EIP values), to step
past the parameters on the called procedure’s stack. The resulting value in the ESP register
points to the saved SS and ESP values for the calling procedure’s stack. (Note that the byte
count in the RET instruction must be chosen to match the parameter count in the call gate
that the calling procedure referenced when it made the original call multiplied by the size
of the parameters.)

4. (If the return requires a privilege level change.) Loads the SS and ESP registers with the
saved SS and ESP values and switches back to the calling procedure’s stack. The SS and
ESP values for the called procedure’s stack are discarded. Any limit violations detected
while loading the stack-segment selector or stack pointer cause a general-protection
exception (#GP) to be generated. The new stack-segment descriptor is also checked for
type and privilege violations.

5. (If the RET instruction includes a parameter count operand.) Adds the parameter count (in
bytes obtained from the RET instruction) to the current ESP register value, to step past the
parameters on the calling procedure’s stack. The resulting ESP value is not checked against
the limit of the stack segment. If the ESP value is beyond the limit, that fact is not
recognized until the next stack operation.

6. (If the return requires a privilege level change.) Checks the contents of the DS, ES, FS, and
GS segment registers. If any of these registers refer to segments whose DPL is less than the
new CPL (excluding conforming code segments), the segment register is loaded with a null
segment selector.

Refer to the description of the RET instruction in Chapténsruction Set Reference, of the
Intel Architecture Software Developer’s Manual, Volumf@®a detailed description of the priv-
ilege level checks and other protection checks that the processor performs on afar return.
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4.9. PRIVILEGED INSTRUCTIONS

Some of the system instructions (called “privileged instructions” are protected from use by
application programs. The privileged instructions control system functions (such as the loading
of system registers). They can be executed only when the CPL is 0 (most privileged). If one of
these instructions is executed when the CPL is not 0, a general-protection exception (#GP) is
generated. The following system instructions are privileged instructions:

® | GDT—Load GDT register.

® LLDT—Load LDT register.

® | TR—Load task register.

® |LIDT—Load IDT register.

® MOV (control registers)—Load and store control registers.
® | MSW—Load machine status word.

® CLTS—Clear task-switched flag in register CRO.

® MOV (debug registers)—Load and store debug registers.
®* INVD—Invalidate cache, without writeback.

* WBINVD—Invalidate cache, with writeback.

® INVLPG—Invalidate TLB entry.

® HLT—Halt processor.

* RDMSR—Read Model-Specific Registers.

*  WRMSR—Write Model-Specific Registers.

* RDPMC—Read Performance-Monitoring Counter.

® RDTSC—Read Time-Stamp Counter.

Some of the privileged instructions are available only in the more recent families of Intel Archi-
tecture processors (refer to Section 18.7., “New Instructions In the Pentium® and Later Intel
Architecture Processors”, in Chapter 1&gl Architecture Compatibility).

The PCE and TSD flags in register CR4 (bits 4 and 2, respectively) enable the RDPMC and
RDTSC instructions, respectively, to be executed at any CPL.

4.10. POINTER VALIDATION

When operating in protected mode, the processor validates all pointers to enforce protection
between segments and maintain isolation between privilege levels. Pointer validation consists
of the following checks:

1. Checking access rights to determine if the segment type is compatible with its use.

2. Checking read/write rights
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3. Checking if the pointer offset exceeds the segment limit.
4. Checking if the supplier of the pointer is allowed to access the segment.
5. Checking the offset alignment.

The processor automatically performs first, second, and third checks during instruction execu-
tion. Software must explicitly request the fourth check by issuing an ARPL instruction. The fifth
check (offset alignment) is performed automatically at privilege level 3 if alignment checkingis
turned on. Offset alignment does not affect isolation of privilege levels.

4.10.1. Checking Access Rights (LAR Instruction)

When the processor accesses a segment using a far pointer, it performs an access rights check
on the segment descriptor pointed to by the far pointer. This check is performed to determine if
type and privilege level (DPL) of the segment descriptor are compatible with the operation to be
performed. For example, when making afar call in protected mode, the segment-descriptor type
must be for a conforming or nonconforming code segment, a call gate, a task gate, or a TSS.
Then, if the call isto anonconforming code segment, the DPL of the code segment must be equal

to the CPL, and the RPL of the code segment’'s segment selector must be less than or equal to

the DPL. If type or privilege level are found to be incompatible, the appropriate exception is
generated.

To prevent type incompatibility exceptions from being generated, software can check the access
rights of a segment descriptor using the LAR (load access rights) instruction. The LAR instruc-
tion specifies the segment selector for the segment descriptor whose access rights are to be
checked and a destination register. The instruction then performs the following operations:

1. Check that the segment selector is not null.

2. Checks that the segment selector points to a segment descriptor that is within the descriptor
table limit (GDT or LDT).

3. Checks that the segment descriptor is a code, data, LDT, call gate, task gate, or TSS
segment-descriptor type.

4. If the segment is not a conforming code segment, checks if the segment descriptor is
visible at the CPL (that is, if the CPL and the RPL of the segment selector are less than or
equal to the DPL).

5. If the privilege level and type checks pass, loads the second doubleword of the segment

descriptor into the destination register (masked by the value OOFXFFOOH, where X
indicates that the corresponding 4 bits are undefined) and sets the ZF flag in the EFLAGS
register. If the segment selector is not visible at the current privilege level or is an invalid
type for the LAR instruction, the instruction does not modify the destination register and
clears the ZF flag.

Once loaded in the destination register, software can preform additional checks on the access
rights information.
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4.10.2. Checking Read/Write Rights (VERR and VERW
Instructions)

When the processor accesses any code or data segment it checks the read/write privileges
assigned to the segment to verify that the intended read or write operation is allowed. Software
can check read/write rights using the VERR (verify for reading) and VERW (verify for writing)
instructions. Both these instructions specify the segment selector for the segment being checked.
The instructions then perform the following operations:

1. Check that the segment selector is not null.

2. Checksthat the segment selector pointsto a segment descriptor that iswithin the descriptor
table limit (GDT or LDT).

Checks that the segment descriptor is a code or data-segment descriptor type.

If the segment is not a conforming code segment, checks if the segment descriptor is
visible at the CPL (that is, if the CPL and the RPL of the segment selector are less than or
equal to the DPL).

5. Checks that the segment is readable (for the VERR instruction) or writable (for the
VERW) instruction.

The VERR instruction sets the ZF flag in the EFLAGS register if the segment is visible at the
CPL and readable; the VERW sets the ZF flag if the segment is visible and writable. (Code
segments are never writable.) The ZF flag is cleared if any of these checksfail.
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4.10.3. Checking That the Pointer Offset Is Within Limits (LSL
Instruction)

When the processor accesses any segment it performs a limit check to insure that the offset is
within the limit of the segment. Software can perform this limit check using the LSL (load
segment limit) instruction. Like the LAR instruction, the LSL instruction specifies the segment
selector for the segment descriptor whose limit is to be checked and a destination register. The
instruction then performs the following operations:

1. Check that the segment selector isnot null.

2. Checksthat the segment selector points to a segment descriptor that is within the descriptor
tablelimit (GDT or LDT).

Checks that the segment descriptor is a code, data, LDT, or TSS segment-descriptor type.

If the segment is not a conforming code segment, checks if the segment descriptor is
visible at the CPL (that is, if the CPL and the RPL of the segment selector less than or
equal to the DPL).

5. If the privilege level and type checks pass, loads the unscrambled limit (the limit scaled
according to the setting of the G flag in the segment descriptor) into the destination register
and sets the ZF flag in the EFLAGS register. If the segment selector is not visible at the
current privilege level or isan invalid type for the LSL instruction, the instruction does not
modify the destination register and clears the ZF flag.

Once loaded in the destination register, software can compare the segment limit with the offset
of apointer.

4.10.4. Checking Caller Access Privileges (ARPL Instruction)

The requestor’s privilege level (RPL) field of a segment selector is intended to carry the privi-
lege level of a calling procedure (the calling procedure’s CPL) to a called procedure. The called
procedure then uses the RPL to determine if access to a segment is allowed. The RPL is said to
“weaken” the privilege level of the called procedure to that of the RPL.

Operating-system procedures typically use the RPL to prevent less privileged application
programs from accessing data located in more privileged segments. When an operating-system
procedure (the called procedure) receives a segment selector from an application program (the
calling procedure), it sets the segment selector’s RPL to the privilege level of the calling proce-
dure. Then, when the operating system uses the segment selector to access its associatec
segment, the processor performs privilege checks using the calling procedure’s privilege level
(stored in the RPL) rather than the numerically lower privilege level (the CPL) of the operating-
system procedure. The RPL thus insures that the operating system does not access a segment o
behalf of an application program unless that program itself has access to the segment.

Figure 4-12 shows an example of how the processor uses the RPL field. In this example, an

application program (located in code segment A) possesses a segment selector (segment selecto
D1) that points to a privileged data structure (that is, a data structure located in a data segment
D at privilege level 0). The application program cannot access data segment D, because it does

4-28 I



Intel ® PROTECTION

not have sufficient privilege, but the operating system (located in code segment C) can. So, in

an attempt to access data segment D, the application program executes a call to the operating

system and passes segment selector D1 to the operating system as a parameter on the stack.

Before passing the segment selector, the (well behaved) application program setsthe RPL of the

segment selector to its current privilege level (which in this example is 3). If the operating

system attempts to access data segment D using segment selector D1, the processor compares

the CPL (which is now 0 following the call), the RPL of segment selector D1, and the DPL of

data segment D (which is 0). Since the RPL is greater than the DPL, access to data segment D

is denied. The processor’s protection mechanism thus protects data segment D from access by
the operating system, because application program’s privilege level (represented by the RPL of
segment selector B) is greater than the DPL of data segment D.

Passed as a

parameter on

the stack.

Application Program \
Segront A Gate Selector B Call s t Sel. D1
egment ate Selector egment Sel.
CPL=3 RPL=3 Gate B " RPL=3
= DPL=3 |
Lowest Privilege | |
!
|
l
: |
| |
Access !
| not |
| allowed |
| |
| AN
Operating | S Code C_ T — Data
egmentC| 4| Segment Sel. D2 | 4| Segment D
System RPL=0

DPL=0 =
Access DPL=0

ml Highest Privilege allowed

Figure 4-12. Use of RPL to Weaken Privilege Level of Called Procedure

Now assume that instead of setting the RPL of the segment selector to 3, the application program
sets the RPL to 0 (segment selector D2). The operating system can now access data segment D,
because its CPL and the RPL of segment selector D2 are both equal to the DPL of data segment
D. Because the application program is able to change the RPL of a segment selector to any value,
it can potentially use a procedure operating at a numerically lower privilege level to access a
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protected data structure. This ability to lower the RPL of a segment selector breaches the
processor’s protection mechanism.

Because a called procedure cannot rely on the calling procedure to set the RPL correctly, oper-
ating-system procedures (executing at numerically lower privilege-levels) that receive segment
selectors from numerically higher privilege-level procedures need to test the RPL of the segment
selector to determine if it is at the appropriate level. The ARPL (adjust requested privilege level)
instruction is provided for this purpose. This instruction adjusts the RPL of one segment selector
to match that of another segment selector.

The example in Figure 4-12 demonstrates how the ARPL instruction is intended to be used.
When the operating-system receives segment selector D2 from the application program, it uses
the ARPL instruction to compare the RPL of the segment selector with the privilege level of the
application program (represented by the code-segment selector pushed onto the stack). If the
RPL is less than application program’s privilege level, the ARPL instruction changes the RPL
of the segment selector to match the privilege level of the application program (segment
selector D1). Using this instruction thus prevents a procedure running at a numerically higher
privilege level from accessing numerically lower privilege-level (more privileged) segments by
lowering the RPL of a segment selector.

Note that the privilege level of the application program can be determined by reading the RPL
field of the segment selector for the application-program’s code segment. This segment selector
is stored on the stack as part of the call to the operating system. The operating system can copy
the segment selector from the stack into a register for use as an operand for the ARPL
instruction.

4.10.5. Checking Alignment

When the CPL is 3, alignment of memory references can be checked by setting the AM flag in
the CRO register and the AC flag in the EFLAGS register. Unaligned memory references
generate alignment exceptions (#AC). The processor does not generate alignment exceptions
when operating at privilege level 0, 1, or 2. Refer to Table 5-7 in ChapteerBupt and Excep-

tion Handling for a description of the alignment requirements when alignment checking is
enabled.

4.11. PAGE-LEVEL PROTECTION

Page-level protection can be used alone or applied to segments. When page-level protection is
used with the flat memory model, it allows supervisor code and data (the operating system or
executive) to be protected from user code and data (application programs). It also allows pages
containing code to be write protected. When the segment- and page-level protection are
combined, page-level read/write protection allows more protection granularity within segments.

With page-level protection (as with segment-level protection) each memory reference is
checked to verify that protection checks are satisfied. All checks are made before the memory
cycle is started, and any violation prevents the cycle from starting and results in a page-fault
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exception being generated. Because checks are performed in parallel with address translation,
there is no performance penalty.

The processor performs two page-level protection checks:
® Restriction of addressable domain (supervisor and user modes).
® Pagetype (read only or read/write).

Violations of either of these checks results in a page-fault exception being generated. Refer to
Chapter 5, Interrupt and Exception Handling for an explanation of the page-fault exception
mechanism. This chapter describes the protection violations which lead to page-fault excep-
tions.

4.11.1. Page-Protection Flags

Protection information for pagesis contained in two flagsin apage-directory or page-table entry
(refer to Figure 3-14 in Chapter 3, Protected-Mode Memory Management): the read/write flag
(bit 1) and the user/supervisor flag (bit 2). The protection checks are applied to both first- and
second-level page tables (that is, page directories and page tables).

4.11.2. Restricting Addressable Domain

The page-level protection mechanism allows restricting access to pages based on two privilege
levels:

® Supervisor mode (U/S flag is 0)—(Most privileged) For the operating system or executive,
other system software (such as device drivers), and protected system data (such as page
tables).

® User mode (U/S flag is 1)—(Least privileged) For application code and data.

The segment privilege levels map to the page privilege levels as follows. If the processor is
currently operating at a CPL of 0, 1, or 2, it is in supervisor mode,; if it is operating at a CPL of
3, itis in user mode. When the processor is in supervisor mode, it can access all pages; when in
user mode, it can access only user-level pages. (Note that the WP flag in control register CRO
modifies the supervisor permissions, as described in Section 4.11.3., “Page Type")

Note that to use the page-level protection mechanism, code and data segments must be set up
for at least two segment-based privilege levels: level O for supervisor code and data segments
and level 3 for user code and data segments. (In this model, the stacks are placed in the data
segments.) To minimize the use of segments, a flat memory model can be used (refer to Section
3.2.1., “Basic Flat Model” in Section 3, “Protected-Mode Memory Management”). Here, the
user and supervisor code and data segments all begin at address zero in the linear address space
and overlay each other. With this arrangement, operating-system code (running at the supervisor
level) and application code (running at the user level) can execute as if there are no segments.
Protection between operating-system and application code and data is provided by the
processor’s page-level protection mechanism.
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4.11.3. Page Type

The page-level protection mechanism recognizes two page types:
® Read-only access (R/W flagis0).
®* Read/write access (R/W flagis 1).

When the processor is in supervisor mode and the WP flag in register CRO is clear (its state
following reset initialization), al pages are both readable and writable (write-protection is
ignored). When the processor is in user mode, it can write only to user-mode pages that are
read/write accessible. User-mode pages which are read/write or read-only are readable; super-
visor-mode pages are neither readable nor writable from user mode. A page-fault exception is
generated on any attempt to violate the protection rules.

The P6 family, Pentium®, and Intel486™ processors allow user-mode pages to be write-
protected against supervisor-mode access. Setting the WP flag in register CRO to 1 enables
supervisor-mode sensitivity to user-mode, write-protected pages. This supervisor write-protect
feature is useful for implementing a “copy-on-write” strategy used by some operating systems,
such as UNIX*, for task creation (also called forking or spawning). When a new task is created,

it is possible to copy the entire address space of the parent task. This gives the child task a
complete, duplicate set of the parent's segments and pages. An alternative copy-on-write
strategy saves memory space and time by mapping the child's segments and pages to the sam
segments and pages used by the parent task. A private copy of a page gets created only wher
one of the tasks writes to the page. By using the WP flag and marking the shared pages as read-
only, the supervisor can detect an attempt to write to a user-level page, and can copy the page at
that time.

4.11.4. Combining Protection of Both Levels of Page Tables

For any one page, the protection attributes of its page-directory entry (first-level page table) may
differ from those of its page-table entry (second-level page table). The processor checks the
protection for a page in both its page-directory and the page-table entries. Table 4-2 shows the
protection provided by the possible combinations of protection attributes when the WP flag is
clear.

4.11.5. Overrides to Page Protection

The following types of memory accesses are checked as if they are privilege-level 0 accesses,
regardless of the CPL at which the processor is currently operating:

® Accessto segment descriptorsin the GDT, LDT, or IDT.

® Access to an inner-privilege-level stack during an inter-privilege-level call or acal to in
exception or interrupt handler, when a change of privilege level occurs.
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4.12. COMBINING PAGE AND SEGMENT PROTECTION

When paging is enabled, the processor evaluates segment protection first, then evaluates page
protection. If the processor detects a protection violation at either the segment level or the page
level, the memory access is not carried out and an exception is generated. If an exception is
generated by segmentation, no paging exception is generated.

Page-level protections cannot be used to override segment-level protection. For example, acode
segment is by definition not writable. If a code segment is paged, setting the R/W flag for the
pages to read-write does not make the pages writable. Attempts to write into the pages will be
blocked by segment-level protection checks.

Page-level protection can be used to enhance segment-level protection. For example, if alarge
read-write data segment is paged, the page-protection mechanism can be used to write-protect
individual pages.

Table 4-2. Combined Page-Directory and Page-Table Protection

Page-Directory Entry Page-Table Entry Combined Effect
Privilege Access Type Privilege Access Type Privilege Access Type
User Read-Only User Read-Only User Read-Only
User Read-Only User Read-Write User Read-Only
User Read-Write User Read-Only User Read-Only
User Read-Write User Read-Write User Read/Write
User Read-Only Supervisor Read-Only Supervisor Read/Write*
User Read-Only Supervisor Read-Write Supervisor Read/Write*
User Read-Write Supervisor Read-Only Supervisor Read/Write*
User Read-Write Supervisor Read-Write Supervisor Read/Write
Supervisor Read-Only User Read-Only Supervisor Read/Write*
Supervisor Read-Only User Read-Write Supervisor Read/Write*
Supervisor Read-Write User Read-Only Supervisor Read/Write*
Supervisor Read-Write User Read-Write Supervisor Read/Write
Supervisor Read-Only Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Only Supervisor Read-Write Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Only Supervisor Read/Write*
Supervisor Read-Write Supervisor Read-Write Supervisor Read/Write
NOTE:

* If the WP flag of CRO is set, the access type is determined by the R/W flags of the page-directory and
page-table entries.
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CHAPTER 5
INTERRUPT AND EXCEPTION HANDLING

This chapter describes the processor’s interrupt and exception-handling mechanism, when oper-
ating in protected mode. Most of the information provided here also applies to the interrupt and
exception mechanism used in real-address or virtual-8086 mode. Refer to Chagg616,
Emulation for a description of the differences in the interrupt and exception mechanism for real-
address and virtual-8086 mode.

5.1. INTERRUPT AND EXCEPTION OVERVIEW

Interrupts and exceptions are forced transfers of execution from the currently running program

or task to a special procedure or task calleanaller. Interrupts typically occur at random times

during the execution of a program, in response to signals from hardware. They are used to handle
events external to the processor, such as requests to service peripheral devices. Software can also
generate interrupts by executing the INThstruction. Exceptions occur when the processor
detects an error condition while executing an instruction, such as division by zero. The processor
detects a variety of error conditions including protection violations, page faults, and internal
machine faults. Thenachine-check architecture of the P6 family and Pentifirprocessors

also permits a machine-check exception to be generated when internal hardware errors and bus

errors are detected.

The processor’s interrupt and exception-handling mechanism allows interrupts and exceptions

to be handled transparently to application programs and the operating system or executive.

When an interrupt is received or an exception is detected, the currently running procedure or

task is automatically suspended while the processor executes an interrupt or exception handler.
When execution of the handler is complete, the processor resumes execution of the interrupted
procedure or task. The resumption of the interrupted procedure or task happens without loss of
program continuity, unless recovery from an exception was not possible or an interrupt caused

the currently running program to be terminated.

This chapter describes the processor’s interrupt and exception-handling mechanism, when oper-
ating in protected mode. A detailed description of the exceptions and the conditions that cause
them to be generated is given at the end of this chapter. Refer to Chap@&6IEmnulation for

a description of the interrupt and exception mechanism for real-address and virtual-8086 mode.

5.1.1. Sources of Interrupts

The processor receives interrupts from two sources:
® External (hardware generated) interrupts.

® Software-generated interrupts.

I 5-1



INTERRUPT AND EXCEPTION HANDLING Intel®

51.1.1. EXTERNAL INTERRUPTS

External interrupts are received through pins on the processor or through the local APIC seria

bus. The primary interrupt pins on a P6 family or Pentium® processor are the LINT[1:0] pins,

which are connected to the local APIC (refer to Section 7.5., “Advanced Programmable Inter-
rupt Controller (APIC)” in Chapter RMultiple-Processor Management). When the local APIC

is disabled, these pins are configured as INTR and NMI pins, respectively. Asserting the INTR
pin signals the processor that an external interrupt has occurred, and the processor reads from
the system bus the interrupt vector number provided by an external interrupt controller, such as
an 8259A (refer to Section 5.2., “Exception and Interrupt Vectors”). Asserting the NMI pin
signals a nonmaskable interrupt (NMI), which is assigned to interrupt vector 2.

When the local APIC is enabled, the LINT[1:0] pins can be programmed through the APIC'’s
vector table to be associated with any of the processor’s exception or interrupt vectors.

The processor’s local APIC can be connected to a system-based I1/0O APIC. Here, external inter-
rupts received at the 1/0 APIC’s pins can be directed to the local APIC through the APIC serial
bus (pins PICD[1:0]). The I/O APIC determines the vector number of the interrupt and sends
this number to the local APIC. When a system contains multiple processors, processors can also
send interrupts to one another by means of the APIC serial bus.

The LINT[1:0] pins are not available on the Intel486™ processor and the earlier Pentium
processors that do not contain an on-chip local APIC. Instead these processors have dedicated
NMI and INTR pins. With these processors, external interrupts are typically generated by a
system-based interrupt controller (8259A), with the interrupts being signaled through the INTR
pin.

Notethat several other pins on the processor cause aprocessor interrupt to occur; however, these
interrupts are not handled by the interrupt and exception mechanism described in this chapter.
These pins include the RESET#, FLUSH#, STPCLK#, SMI#, R/S#, and INIT# pins. Which of
these pinsareincluded on aparticular Intel Architecture processor isimplementation dependent.
The functions of these pins are described in the data books for the individual processors. The
SMI# pin is also described in Chapter 12, System Management Mode (SMM).

51.1.2. MASKABLE HARDWARE INTERRUPTS

Any external interrupt that is delivered to the processor by means of the INTR pin or through
the local APIC is called a maskable hardwar e interrupt. The maskable hardware interrupts
that can be delivered through the INTR pin include all Intel Architecture defined interrupt
vectorsfrom 0 through 255; those that can be delivered through thelocal APIC includeinterrupt
vectors 16 through 255.

All maskable hardware interrupts can be masked as a group. Use the single IF flag in the
EFLAGS register (refer to Section 5.6.1., “Masking Maskable Hardware Interrupts”) to mask
these maskable interrupts. Note that when interrupts 0 through 15 are delivered through the local
APIC, the APIC indicates the receipt of an illegal vector.
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51.1.3. SOFTWARE-GENERATED INTERRUPTS

The INT ninstruction permits interrupts to be generated from within software by supplying the
interrupt vector number as an operand. For example, the INT 35 instruction forces an implicit
call to the interrupt handler for interrupt 35.

Any of the interrupt vectors from 0 to 255 can be used as a parameter in thisinstruction. If the
processor’s predefined NMI vector is used, however, the response of the processor will not be
the same as it would be from an NMl interrupt generated in the normal manner. If vector number
2 (the NMI vector) is used in this instruction, the NMI interrupt handler is called, but the
processor’s NMI-handling hardware is not activated.

Note that interrupts generated in software with the iNfistruction cannot be masked by the
IF flag in the EFLAGS register.

5.1.2. Sources of Exceptions

The processor receives exceptions from three sources:
®  Processor-detected program-error exceptions.

® Software-generated exceptions.

®  Machine-check exceptions.

5.1.2.1. PROGRAM-ERROR EXCEPTIONS

The processor generates one or more exceptions when it detects program errors during the
execution in an application program or the operating system or executive. The Intel Architecture
defines a vector number for each processor-detectable exception. The exceptions are further
classified asfaults, traps, and aborts (refer to Section 5.3., “Exception Classifications”).

5.1.2.2. SOFTWARE-GENERATED EXCEPTIONS

The INTO, INT 3, and BOUND instructions permit exceptions to be generated in software.
These instructions allow checks for specific exception conditions to be performed at specific
points in the instruction stream. For example, the INT 3 instruction causes a breakpoint excep-
tion to be generated.

The INT n instruction can be used to emulate a specific exception in software, with one limita-
tion. If then operand in the INTi instruction contains a vector for one of the Intel Architecture
exceptions, the processor will generate an interrupt to that vector, which will in turn invoke the
exception handler associated with that vector. Because this is actually an interrupt, however, the
processor does not push an error code onto the stack, even if a hardware-generated exception for
that vector normally produces one. For those exceptions that produce an error code, the excep-
tion handler will attempt to pop an error code from the stack while handling the exception. If the
INT ninstruction was used to emulate the generation of an exception, the handler will pop off
and discard the EIP (in place of the missing error code), sending the return to the wrong location.
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5.1.2.3. MACHINE-CHECK EXCEPTIONS

The P6 family and Pentium® processors provide both internal and external machine-check
mechanisms for checking the operation of the internal chip hardware and bus transactions.

These mechanisms constitute extended (implementation dependent) exception mechanisms.

When a machine-check error is detected, the processor signals a machine-check exception
(vector 18) and returns an error code. Refer to “Interrupt 18—Machine Check Exception
(#MC)” at the end of this chapter and ChapterNachine-Check Architecture, for a detailed
description of the machine-check mechanism.

5.2. EXCEPTION AND INTERRUPT VECTORS

The processor associates an identification number, calledtar, with each exception and
interrupt. Table 5-1 shows the assignment of exception and interrupt vectors. This table also
gives the exception type for each vector, indicates whether an error code is saved on the stack
for an exception, and gives the source of the exception or interrupt.

The vectors in the range 0 through 31 are assigned to the exceptions and the NMI interrupt. Not
all of these vectors are currently used by the processor. Unassigned vectors in this range are
reserved for possible future usBs not use the reserved vectors.

The vectors in the range 32 to 255 are designated as user-defined interrupts. These interrupts are
not reserved by the Intel Architecture and are generally assigned to external 1/0O devices and to
permit them to signal the processor through one of the external hardware interrupt mechanisms
described in Section 5.1.1., “Sources of Interrupts”

5.3. EXCEPTION CLASSIFICATIONS

Exceptions are classified gmilts, traps, orabortsdepending on the way they are reported and
whether the instruction that caused the exception can be restarted with no loss of program or task
continuity.

Faults A fault is an exception that can generally be corrected and that, once corrected,
allows the program to be restarted with no loss of continuity. When a fault is
reported, the processor restores the machine state to the state prior to the begin-
ning of execution of the faulting instruction. The return address (saved contents
of the CS and EIP registers) for the fault handler points to the faulting instruc-
tion, rather than the instruction following the faulting instruction.

Note: There are a small subset of exceptions that are normally reported as

faults, but under architectural corner cases, they are not restartable and some
processor context will be lost. An example of these cases is the execution of the
POPAD instruction where the stack frame crosses over the the end of the stack
segment. The exception handler will see that the CS:EIP has been restored as
if the POPAD instruction had not executed however internal processor state

(general purpose registers) will have been modified. These corner cases are
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considered programming errors and an application causeing this class of
exceptions will likely be terminated by the operating system.

Traps A trap isan exception that is reported immediately following the execution of
the trapping instruction. Traps allow execution of a program or task to be
continued without loss of program continuity. The return address for the trap
handler points to the instruction to be executed after the trapping instruction.

Aborts An abort is an exception that does not always report the precise location of the
instruction causing the exception and does not allow restart of the program or
task that caused the exception. Aborts are used to report severe errors, such as
hardware errors and inconsistent or illegal valuesin system tables.
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Table 5-1. Protected-Mode Exceptions and Interrupts

Vector | Mne- Error
No. monic Description Type Code Source
0 #DE Divide Error Fault No DIV and IDIV instructions.
1 #DB Debug Fault/ No Any code or data reference or the
Trap INT 1 instruction.
2 — NMI Interrupt Interrupt No Nonmaskable external interrupt.
3 #BP Breakpoint Trap No INT 3 instruction.
4 #OF Overflow Trap No INTO instruction.
5 #BR BOUND Range Exceeded Fault No BOUND instruction.
6 #UD Invalid Opcode (Undefined Fault No ubD2 insiruction or reserved
Opcode) opcode.
7 #NM Device Not Available (No Fault No Floating-point or WAIT/FWAIT
Math Coprocessor) instruction.
8 #DF Double Fault Abort Yes Any instruction that can generate
(Zero) | an’exception, an NMI, or an INTR.
9 Coprocessor Segment Fault No Floating-point instruction.?
Overrun (reserved)
10 #TS Invalid TSS Fault Yes Task switch or TSS access.
11 #NP Segment Not Present Fault Yes Loading segment registers or
accessing system segments.
12 #SS Stack-Segment Fault Fault Yes |Staé:k operations and SS register
oads.
13 #GP General Protection Fault Yes Any memory reference and other
protection checks.
14 #PF Page Fault Fault Yes Any memory reference.
15 — (Intel reserved. Do not use.) No
16 #MF Floating-Point Error (Math Fault No Floating-point or WAIT/FWAIT
Fault) instruction.
17 #AC Alignment Check Fault Yes Any data reference in memory.®
(Zero)
18 #MC Machine Check Abort No Error codes (if any) and source
are model dependent.
19 #XF Streaming SIMD Extensions | Fault No SIMD floating-point instructions®
20-31 | — Intel reserved. Do not use.
32- — User Defined (Nonreserved) | Interrupt External interrupt or INT n
255 Interrupts instruction.
NOTES:

1. The UD2 instruction was introduced in the Pentium® Pro processor.

2. Intel Architecture processors after the Intel386™ processor do not generate this exception.

3. This exception was introduced in the Intel486™ processor.

4. This exception was introduced in the Pentium® processor and enhanced in the P6 family processors.
5. This exception was introduced in the Pentium® Il processor.
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5.4. PROGRAM OR TASK RESTART

To alow restarting of program or task following the handling of an exception or an interrupt, all
exceptions except aborts are guaranteed to report the exception on a precise instruction
boundary, and al interrupts are guaranteed to be taken on an instruction boundary.

For fault-class exceptions, the return instruction pointer that the processor saves when it gener-
ates the exception points to the faulting instruction. So, when a program or task is restarted
following the handling of afault, the faulting instruction is restarted (re-executed). Restarting
the faulting instruction is commonly used to handle exceptions that are generated when access
to an operand is blocked. The most common example of afault is a page-fault exception (#PF)
that occurs when a program or task references an operand in a page that is not in memory. When
a page-fault exception occurs, the exception handler can load the page into memory and resume
execution of the program or task by restarting the faulting instruction. To insure that thisinstruc-
tion restart is handled transparently to the currently executing program or task, the processor
saves the necessary registers and stack pointersto allow it to restoreitself to its state prior to the
execution of the faulting instruction.

For trap-class exceptions, the return instruction pointer points to the instruction following the
trapping instruction. If atrap is detected during an instruction which transfers execution, the
return instruction pointer reflects the transfer. For example, if atrap is detected while executing
aJMP instruction, the return instruction pointer points to the destination of the IMP instruction,
not to the next address past the IMP instruction. All trap exceptionsallow program or task restart
with no loss of continuity. For example, the overflow exception is a trapping exception. Here,
the return instruction pointer points to the instruction following the INTO instruction that tested
the OF (overflow) flag in the EFLAGS register. The trap handler for this exception resolves the
overflow condition. Upon return from the trap handler, program or task execution continues at
the next instruction following the INTO instruction.

The abort-class exceptions do not support reliable restarting of the program or task. Abort
handlers generally are designed to collect diagnostic information about the state of the processor
when the abort exception occurred and then shut down the application and system as gracefully
as possible.

Interrupts rigorously support restarting of interrupted programs and tasks without loss of conti-
nuity. The return instruction pointer saved for an interrupt points to the next instruction to be
executed at the instruction boundary where the processor took the interrupt. If the instruction
just executed has arepeat prefix, theinterrupt istaken at the end of the current iteration with the
registers set to execute the next iteration.

The ability of a P6 family processor to speculatively execute instructions does not affect the

taking of interrupts by the processor. Interrupts are taken at instruction boundaries located

during the retirement phase of instruction execution; so they are always taken in the “in-order”
instruction stream. Refer to Chaptet@roduction to the Intel Architecture, in thelntel Archi-

tecture Software Developer’s Manual, Volumed more information about the P6 family
processors’ microarchitecture and its support for out-of-order instruction execution.

Note that the Pentiufrprocessor and earlier Intel Architecture processors also perform varying
amounts of prefetching and preliminary decoding of instructions; however, here also exceptions
and interrupts are not signaled until actual “in-order” execution of the instructions. For a given
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code sample, the signaling of exceptionswill occur uniformly when the code is executed on any
family of Intel Architecture processors (except where new exceptions or new opcodes have been
defined).

5.5. NONMASKABLE INTERRUPT (NMI)
The nonmaskable interrupt (NM1) can be generated in either of two ways:

® Externa hardware asserts the NMI pin.
® The processor receives a message on the APIC serial bus of delivery mode NMI.

When the processor receives aNMI from either of these sources, the processor handlesit imme-

diately by calling the NMI handler pointed to by interrupt vector number 2. The processor also
invokes certain hardware conditions to insure that no other interrupts, including NMI interrupts,

are received until the NMI handler has completed executing (refer to Section 5.5.1., “Handling
Multiple NMIs”).

Also, when an NMI is received from either of the above sources, it cannot be masked by the IF
flag in the EFLAGS register.

Itis possible to issue a maskable hardware interrupt (through the INTR pin) to vector 2 to invoke
the NMl interrupt handler; however, this interrupt will not truly be an NMl interrupt. A true NMI
interrupt that activates the processor’s NMI-handling hardware can only be delivered through
one of the mechanisms listed above.

5.5.1. Handling Multiple NMlIs

While an NMl interrupt handler is executing, the processor disables additional calls to the NMI
handler until the next IRET instruction is executed. This blocking of subsequent NMIs prevents
stacking up calls to the NMI handler. It is recommended that the NMI interrupt handler be
accessed through an interrupt gate to disable maskable hardware interrupts (refer to Section
5.6.1., “Masking Maskable Hardware Interrupts”).

5.6. ENABLING AND DISABLING INTERRUPTS

The processor inhibits the generation of some interrupts, depending on the state of the processor
and of the IF and RF flags in the EFLAGS register, as described in the following sections.

5.6.1. Masking Maskable Hardware Interrupts

The IF flag can disable the servicing of maskable hardware interrupts received on the
processor’s INTR pin or through the local APIC (refer to Section 5.1.1.2., “Maskable Hardware
Interrupts”). When the IF flag is clear, the processor inhibits interrupts delivered to the INTR
pin or through the local APIC from generating an internal interrupt request; when the IF flag is
set, interrupts delivered to the INTR or through the local APIC pin are processed as normal
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external interrupts. The IF flag does not affect nonmaskabl e interrupts (NMIs) delivered to the
NMI pin or delivery mode NMI messages delivered through the APIC seria bus, nor does it
affect processor generated exceptions. As with the other flags in the EFLAGS register, the
processor clearsthe IF flag in response to a hardware reset.

The fact that the group of maskable hardware interrupts includes the reserved interrupt and
exception vectors 0 through 32 can potentially cause confusion. Architecturally, when the IF

flag is set, aninterrupt for any of the vectors from 0 through 32 can be delivered to the processor

through the INTR pin and any of the vectors from 16 through 32 can be delivered through the

local APIC. The processor will then generate an interrupt and call the interrupt or exception

handler pointed to by the vector number. So for example, it is possible to invoke the page-fault

handler through the INTR pin (by means of vector 14); however, this is not a true page-fault
exception. It isan interrupt. Aswith the INT n instruction (refer to Section 5.1.2.2., “Software-
Generated Exceptions”), when an interrupt is generated through the INTR pin to an exception
vector, the processor does not push an error code on the stack, so the exception handler may not
operate correctly.

The IF flag can be set or cleared with the STI (set interrupt-enable flag) and CLI (clear interrupt-
enable flag) instructions, respectively. These instructions may be executed only if the CPL is
equal to or less than the IOPL. A general-protection exception (#GP) is generated if they are
executed when the CPL is greater than the IOPL. (The effect of the IOPL on these instructions
is modified slightly when the virtual mode extension is enabled by setting the VME flag in
control register CR4, refer to Section 16.3., “Interrupt and Exception Handling in Virtual-8086
Mode” in Chapter 163086 Emulation.)

The IF flag is also affected by the following operations:

® The PUSHF instruction stores al flags on the stack, where they can be examined and
modified. The POPF instruction can be used to load the modified flags back into the
EFLAGS register.

® Task switches and the POPF and IRET instructions load the EFLAGS register; therefore,
they can be used to modify the setting of the IF flag.

®* When aninterrupt is handled through an interrupt gate, the IF flag is automatically cleared,
which disables maskable hardware interrupts. (If an interrupt is handled through a trap
gate, the IF flag is not cleared.)

Refer to the descriptions of the CLI, STI, PUSHF, POPF, and IRET instructions in Chapter 3,
Instruction Set Reference, of the Intel Architecture Software Developer’s Manual, Volumi2
adetailed description of the operations these instructions are allowed to perform on the I flag.

5.6.2. Masking Instruction Breakpoints

The RF (resume) flag in the EFLAGS register controls the response of the processor to instruc-
tion-breakpoint conditions (refer to the description of the RF flag in Section 2.3., “System Flags
and Fields in the EFLAGS Register” in ChapteBtem Architecture Overview). When set, it
prevents an instruction breakpoint from generating a debug exception (#DB); when clear,
instruction breakpoints will generate debug exceptions. The primary function of the RF flag is
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to prevent the processor from going into a debug exception loop on an instruction-breakpoint.
Refer to Section 15.3.1.1., “Instruction-Breakpoint Exception Condition”, in Chapter 15,
Debugging and Performance Monitoring, for more information on the use of this flag.

5.6.3. Masking Exceptions and Interrupts When Switching
Stacks

To switch to a different stack segment, software often uses a pair of instructions, for example:

MOV SS, AX
MOV ESP, StackTop

If an interrupt or exception occurs after the segment selector has been loaded into the SS register
but before the ESP register has been loaded, these two parts of the logical address into the stack
space are inconsistent for the duration of the interrupt or exception handler.

To prevent this situation, the processor inhibits interrupts, debug exceptions, and single-step trap
exceptions after either a MOV to SS instruction or a POP to SS instruction, until the instruction
boundary following the next instruction is reached. All other faults may still be generated. If the
LSS instruction is used to modify the contents of the SS register (which is the recommended
method of modifying this register), this problem does not occur.

5.7. PRIORITY AMONG SIMULTANEOUS EXCEPTIONS AND
INTERRUPTS

If more than one exception or interrupt is pending at an instruction boundary, the processor
services them in a predictable order. Table 5-3 shows the priority among classes of exception
and interrupt sources. While priority among these classes is consistent throughout the architec-
ture, exceptions within each class are implementation-dependent and may vary from processor
to processor. The processor first services a pending exception or interrupt from the class which
has the highest priority, transferring execution to the first instruction of the handler. Lower
priority exceptions are discarded; lower priority interrupts are held pending. Discarded excep-
tions are re-generated when the interrupt handler returns execution to the point in the program
or task where the exceptions and/or interrupts occurred.

The Pentiurfi l11 processor added the SIMD floating-point execution unit. The SIMD floating-
point execution unit can generate exceptions as well. Since the SIMD floating-point execution
unit utilizes a4-wide register set an exception may result from more than one operand within a
SIMD floating-point register. Hence the Pentium® |Il processor handles these exceptions
according to a predetermined precedence. When asub-operand of apacked instruction generates
two or more exception conditions, the exception precedence sometimes results in the higher
priority exception being handled and the lower priority exceptions being ignored. Prioritization
of exceptions is performed only on a sub-operand basis, and not between suboperands. For
example, an invalid exception generated by one sub-operand will not prevent the reporting of a
divide-by-zero exception generated by another sub-operand. Table 5-2 shows the precedencefor
Streaming SIMD Extensions numeric exceptions. Thetablereflectsthe order in which interrupts
are handled upon simultaneous recognition by the processor (for example, when multiple inter-
ruptsare pending at an instruction boundary). However, the table does not necessarily reflect the

5-10 I



Intel® INTERRUPT AND EXCEPTION HANDLING

order in which interrupts will be recognized by the processor if received simultaneously at the
processor pins.

Table 5-2. SIMD Floating-Point Exceptions Priority

Priority Description

1(Highest) Invalid operation exception due to SNaN
operand (or any NaN operand for max, min, or
certain compare and convert operations)

2 QNaN operand?

3 Any other invalid operation exception not
mentioned above or a divide-by-zero
exception?

4 Denormal operand exception?

5 Numeric overflow and underflow exceptions
possibly in conjunction with the inexact result
exception?

6(Lowest) Inexact result exception

1. Though this is not an exception, the handling of a QNaN operand has precedence over lower priority
exceptions. For example, a QNaN divided by zero results in a QNaN, not a zero-divide exception.

2. If masked, then instruction execution continues, and a lower priority exception can occur as well.

5.8. INTERRUPT DESCRIPTOR TABLE (IDT)

The interrupt descriptor table (IDT) associates each exception or interrupt vector with a gate
descriptor for the procedure or task used to service the associated exception or interrupt. Like
the GDT and LDTs, the IDT is an array of 8-byte descriptors (in protected mode). Unlike the
GDT, the first entry of the IDT may contain a descriptor. To form an index into the IDT, the
processor scales the exception or interrupt vector by eight (the number of bytes in a gate
descriptor). Because there are only 256 interrupt or exception vectors, the IDT need not contain
more than 256 descriptors. It can contain fewer than 256 descriptors, because descriptors are
required only for the interrupt and exception vectors that may occur. All empty descriptor slots
inthe IDT should have the present flag for the descriptor set to 0.
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Table 5-3. Priority Among Simultaneous Exceptions and Interrupts

N

tel.

Priority

Descriptions

1 (Highest)

Hardware Reset and Machine Checks
- RESET
- Machine Check

Trap on Task Switch
- Tflagin TSS is set

External Hardware Interventions
- FLUSH

- STOPCLK

- SMI

- INIT

Traps on the Previous Instruction
- Breakpoints
- Debug Trap Exceptions (TF flag set or data/l-O breakpoint)

External Interrupts
- NMI Interrupts
- Maskable Hardware Interrupts

Faults from Fetching Next Instruction
- Code Breakpoint Fault

- Code-Segment Limit Violation®

- Code Page Fault*

Faults from Decoding the Next Instruction
- Instruction length > 15 bytes

- llegal Opcode

- Coprocessor Not Available

8 (Lowest)

Faults on Executing an Instruction
- Floating-point exception

- Overflow

- Bound error

- Invalid TSS

- Segment Not Present

- Stack fault

- General Protection

- Data Page Fault

- Alignment Check

- SIMD floating-point exception

NOTE:

1. For the Pentium® and Intel486™ processors, the Code Segment Limit Violation and the Code Page Fault
exceptions are assigned to the priority 7.

The base addresses of the IDT should be aligned on an 8-byte boundary to maximize perfor-
mance of cachelinefills. The limit value is expressed in bytes and is added to the base address
to get the address of thelast valid byte. A limit value of O resultsin exactly 1 valid byte. Because
IDT entries are always eight bytes long, the limit should always be one less than an integral
multiple of eight (that is, 8N — 1).
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ThelDT may reside anywherein the linear address space. Asshown in Figure 5-1, the processor
locatesthe IDT using the IDTR register. Thisregister holds both a 32-bit base address and 16-bit
limit for the IDT.

IDTR Register
47 16 15 0

IDT Base Address | IDT Limit

i Interrupt

C Descriptor Table (IDT)
Gate for

Interrupt #n (n-1)8
Gate for

Interrupt #3 16
Gate for

Interrupt #2 8
Gate for

B — S Interrupt #1 0
31 0

Figure 5-1. Relationship of the IDTR and IDT

The LIDT (load IDT register) and SIDT (store IDT register) instructions load and store the
contents of the IDTR register, respectively. The LIDT instruction loads the IDTR register with
the base address and limit held in a memory operand. This instruction can be executed only
when the CPL is 0. It normally is used by the initialization code of an operating system when
creating an IDT. An operating system also may use it to change from one IDT to another. The
SIDT instruction copiesthe base and limit value stored in IDTR to memory. Thisinstruction can
be executed at any privilege level.

If avector references a descriptor beyond the limit of the IDT, a general-protection exception
(#GP) is generated.

5.9. IDT DESCRIPTORS

The IDT may contain any of three kinds of gate descriptors:
® Task-gate descriptor

® Interrupt-gate descriptor

® Trap-gate descriptor
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Figure 5-2 shows the formats for the task-gate, interrupt-gate, and trap-gate descriptors. The
format of atask gateusedinan IDT isthe same asthat of atask gate used inthe GDT oran LDT
(refer to Section 6.2.4., “Task-Gate Descriptor” in Chaptdagk Management). The task gate
contains the segment selector for a TSS for an exception and/or interrupt handler task.

Task Gate
31 16 15 14 13 12 8 7 0
D
P[P |00101 4
L
31 16 15 0
TSS Segment Selector 0
Interrupt Gate
31 16 15 14 13 12 8 7 5 4 0
D
Offset 31..16 Pl P |0OD110|0O0O0 4
L
31 16 15 0
Segment Selector Offset 15..0 0
Trap Gate
31 16 15 14 13 12 8 7 5 4 0
D
Offset 31..16 PlpP|0OD111|/0O0O0 4
L
31 16 15 0
Segment Selector Offset 15..0 0
DPL Descriptor Privilege Level
Offset Offset to procedure entry point
P Segment Present flag
Selector Segment Selector for destination code segment
D Size of gate: 1 = 32 bits; 0 = 16 bits
:| Reserved

Figure 5-2. IDT Gate Descriptors

Interrupt and trap gates are very similar to call gates (refer to Section 4.8.3., “Call Gates” in
Chapter 4,Protection). They contain a far pointer (segment selector and offset) that the
processor uses to transfer execution to a handler procedure in an exception- or interrupt-handler
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code segment. These gates differ in the way the processor handles the IF flag in the EFLAGS
register (refer to Section 5.10.1.2., “Flag Usage By Exception- or Interrupt-Handler Proce-
dure”).

5.10. EXCEPTION AND INTERRUPT HANDLING

The processor handles calls to exception- and interrupt-handlers similar to the way it handles
calls with a CALL instruction to a procedure or a task. When responding to an exception or inter-
rupt, the processor uses the exception or interrupt vector as an index to a descriptor in the IDT.
If the index points to an interrupt gate or trap gate, the processor calls the exception or interrupt
handler in a manner similar to a CALL to a call gate (refer to Section 4.8.2., “Gate Descriptors”
through Section 4.8.6., “Returning from a Called Procedure” in Chapgeotéction). If index

points to a task gate, the processor executes a task switch to the exception- or interrupt-handler
task in a manner similar to a CALL to a task gate (refer to Section 6.3., “Task Switching” in
Chapter 6Task Management).

5.10.1. Exception- or Interrupt-Handler Procedures

An interrupt gate or trap gate references an exception- or interrupt-handler procedure that runs
in the context of the currently executing task (refer to Figure 5-3). The segment selector for the
gate points to a segment descriptor for an executable code segment in either the GDT or the
current LDT. The offset field of the gate descriptor points to the beginning of the exception- or
interrupt-handling procedure.

When the processor performs a call to the exception- or interrupt-handler procedure, it saves the
current states of the EFLAGS register, CS register, and EIP register on the stack (refer to Figure
5-4). (The CS and EIP registers provide a return instruction pointer for the handler.) If an excep-
tion causes an error code to be saved, it is pushed on the stack after the EIP value.

If the handler procedure is going to be executed at the same privilege level as the interrupted
procedure, the handler uses the current stack.

If the handler procedure is going to be executed at a numerically lower privilege level, a stack
switch occurs. When a stack switch occurs, a stack pointer for the stack to be returned to is also
saved on the stack. (The SS and ESP registers provide a return stack pointer for the handler.)
The segment selector and stack pointer for the stack to be used by the handler is obtained from
the TSS for the currently executing task. The processor copies the EFLAGS, SS, ESP, CS, EIP,
and error code information from the interrupted procedure’s stack to the handler’s stack.

To return from an exception- or interrupt-handler procedure, the handler must use the IRET (or
IRETD) instruction. The IRET instruction is similar to the RET instruction except that it restores
the saved flags into the EFLAGS register. The IOPL field of the EFLAGS register is restored
only if the CPL is 0. The IF flag is changed only if the CPL is less than or equal to the IOPL.
Refer to “IRET/IRETD—Interrupt Return” in Chapter 3 of thatel Architecture Software
Developer’s Manual, Volume for the compl ete operation performed by the IRET instruction.

If a stack switch occurred when calling the handler procedure, the IRET instruction switches
back to the interrupted procedure’s stack on the return.
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IDT
Interrupt > Interrupt or
Vector Trap Gate

Offset Procedure
— (>

Destination
Code Segment

Interrupt

Segment Selector

GDT or LDT

Segment
Descriptor

\

Base
Address

Figure 5-3. Interrupt Procedure Call
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Stack Usage with No
Privilege-Level Change
Interrupted Procedure’s
and Handler’s Stack

<— ESP Before

EFLAGS Transfer to Handler
CS
EIP

Error Code |[<«——ESP After
Transfer to Handler

Stack Usage with
Privilege-Level Change

Interrupted Procedure’s Handler's Stack
Stack

<«——ESP Before

Transfer to Handler sS
ESP

EFLAGS
CS
EIP

ESP After—>» Error Code
Transfer to Handler

Figure 5-4. Stack Usage on Transfers to Interrupt and Exception-Handling Routines

5.10.1.1. PROTECTION OF EXCEPTION- AND INTERRUPT-HANDLER
PROCEDURES

The privilege-level protection for exception- and interrupt-handler proceduresis similar to that

used for ordinary procedure calls when called through a call gate (refer to Section 4.8.4.,
“Accessing a Code Segment Through a Call Gate” in Chap®eotéction). The processor does

not permit transfer of execution to an exception- or interrupt-handler procedure in a less privi-
leged code segment (numerically greater privilege level) than the CPL. An attempt to violate this
rule results in a general-protection exception (#GP). The protection mechanism for exception-
and interrupt-handler procedures is different in the following ways:

® Because interrupt and exception vectors have no RPL, the RPL is not checked on implicit
callsto exception and interrupt handlers.

® The processor checksthe DPL of the interrupt or trap gate only if an exception or interrupt
isgenerated with an INT n, INT 3, or INTO instruction. Here, the CPL must be less than or
equal to the DPL of the gate. This restriction prevents application programs or procedures
running at privilege level 3 from using a software interrupt to access critical exception
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handlers, such as the page-fault handler, providing that those handlers are placed in more
privileged code segments (numerically lower privilege level). For hardware-generated
interrupts and processor-detected exceptions, the processor ignores the DPL of interrupt
and trap gates.

Because exceptions and interrupts generally do not occur at predictable times, these privilege
rules effectively impose restrictions on the privilege levels at which exception and interrupt-
handling procedures can run. Either of the following techniques can be used to avoid privilege-
level violations.

® The exception or interrupt handler can be placed in a conforming code segment. This
technique can be used for handlers that only need to access data available on the stack (for
example, divide error exceptions). If the handler needs data from a data segment, the data
segment needs to be accessible from privilege level 3, which would make it unprotected.

® The handler can be placed in a nonconforming code segment with privilege level 0. This
handler would always run, regardiess of the CPL that the interrupted program or task is
running at.

5.10.1.2. FLAG USAGE BY EXCEPTION- OR INTERRUPT-HANDLER
PROCEDURE

When accessing an exception or interrupt handler through either an interrupt gate or atrap gate,
the processor clears the TF flag in the EFLAGS register after it saves the contents of the
EFLAGS register on the stack. (On calls to exception and interrupt handlers, the processor also
clears the VM, RF, and NT flags in the EFLAGS register, after they are saved on the stack.)
Clearing the TF flag preventsinstruction tracing from affecting interrupt response. A subsequent
IRET instruction restoresthe TF (and VM, RF, and NT) flagsto the valuesin the saved contents
of the EFLAGS register on the stack.

The only difference between an interrupt gate and a trap gate is the way the processor handles
the IF flag in the EFLAGS register. When accessing an exception- or interrupt-handling proce-
dure through an interrupt gate, the processor clears the IF flag to prevent other interrupts from
interfering with the current interrupt handler. A subsequent IRET instruction restores the | F flag
to its value in the saved contents of the EFLAGS register on the stack. Accessing a handler
procedure through atrap gate does not affect the IF flag.

5.10.2. Interrupt Tasks

When an exception or interrupt handler is accessed through atask gateinthe IDT, atask switch
results. Handling an exception or interrupt with a separate task offers several advantages:

® Theentire context of the interrupted program or task is saved automatically.

®* A new TSS permits the handler to use a new privilege level 0 stack when handling the
exception or interrupt. If an exception or interrupt occurs when the current privilege level 0
stack is corrupted, accessing the handler through atask gate can prevent a system crash by
providing the handler with anew privilege level 0 stack.
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® The handler can be further isolated from other tasks by giving it a separate address space.
Thisisdone by giving it a separate LDT.

The disadvantage of handling an interrupt with a separate task is that the amount of machine
state that must be saved on atask switch makes it slower than using an interrupt gate, resulting
in increased interrupt latency.

A task gatein the IDT references a TSS descriptor in the GDT (refer to Figure 5-5). A switch to

the handler task is handled in the same manner as an ordinary task switch (refer to Section 6.3.,

“Task Switching” in Chapter 6Jask Management). The link back to the interrupted task is
stored in the previous task link field of the handler task’s TSS. If an exception caused an error
code to be generated, this error code is copied to the stack of the new task.

TSS for Interrupt-

IDT Handling Task
Interrupt
Vector Task Gate
TSS Selector 7SS
Base
GDT Address

—> TSS Descriptor

Figure 5-5. Interrupt Task Switch
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When exception- or interrupt-handler tasks are used in an operating system, there are actually
two mechanismsthat can be used to dispatch tasks: the software scheduler (part of the operating
system) and the hardware scheduler (part of the processor’s interrupt mechanism). The software
scheduler needs to accommodate interrupt tasks that may be dispatched when interrupts are
enabled.

5.11. ERROR CODE

When an exception condition isrelated to a specific segment, the processor pushes an error code
onto the stack of the exception handler (whether it is a procedure or task). The error code has
the format shown in Figure 5-6. The error code resembles a segment selector; however, instead
of aTl flag and RPL field, the error code contains 3 flags:

EXT External event (bit 0). When set, indicates that an event externa to the
program caused the exception, such as a hardware interrupt.
IDT Descriptor location (bit 1). When set, indicates that the index portion of the

error code refers to a gate descriptor in the IDT; when clear, indicates that the
index refersto a descriptor inthe GDT or the current LDT.

TI GDT/LDT (bit 2). Only used whenthe IDT flag is clear. When set, the Tl flag
indicates that the index portion of the error code refers to a segment or gate
descriptor in the LDT; when clear, it indicates that the index refers to a
descriptor in the current GDT.

31 3

Reserved Segment Selector Index

—XxXm|Oo

—o—|r

Figure 5-6. Error Code

The segment selector index field provides an index into the IDT, GDT, or current LDT to the
segment or gate selector being referenced by the error code. In some cases the error code is null
(that is, al bitsin the lower word are clear). A null error code indicates that the error was not
caused by a reference to a specific segment or that a null segment descriptor was referenced in
an operation.

The format of the error code is different for page-fault exceptions (#PF), refer to “Interrupt
14—Page-Fault Exception (#PF)” in this chapter.

The error code is pushed on the stack as a doubleword or word (depending on the default inter-
rupt, trap, or task gate size). To keep the stack aligned for doubleword pushes, the upper half of
the error code is reserved. Note that the error code is not popped when the IRET instruction is
executed to return from an exception handler, so the handler must remove the error code before
executing a return.
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Error codes are not pushed on the stack for exceptions that are generated externally (with the
INTR or LINT[1:0] pins) or the INT n instruction, even if an error code is normally produced

for those exceptions.

5.12. EXCEPTION AND INTERRUPT REFERENCE

The following sections describe conditions which generate exceptions and interrupts. They are
arranged in the order of vector numbers. The information contained in these sections are as

follows:

Exception Class

Description

Exception Error Code

Saved Instruction Pointer

Program State Change

Indicates whether the exception class is a fault, trap, or abort type.
Some exceptions can be either a fault or trap type, depending on
when the error condition is detected. (This section is not applicable
tointerrupts.)

Gives a general description of the purpose of the exception or inter-
rupt type. It also describes how the processor handles the exception
or interrupt.

Indicates whether an error code is saved for the exception. If oneis
saved, the contents of the error code are described. (This section is
not applicable to interrupts.)

Describes which instruction the saved (or return) instruction pointer
points to. It also indicates whether the pointer can be used to restart
afaulting instruction.

Describes the effects of the exception or interrupt on the state of the
currently running program or task and the possibilities of restarting
the program or task without loss of continuity.
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Interrupt 0—Divide Error Exception (#DE)
Exception Class  Fault.

Description

Indicatesthe divisor operand for aDIV or IDIV instructionisO or that the result cannot be repre-
sented in the number of bits specified for the destination operand.

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany the divide error, because the exception occurs
before the faulting instruction is executed.
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Interrupt 1—Debug Exception (#DB)

Exception Class  Trap or Fault. The exception handler can distinguish between traps or
faults by examining the contents of DR6 and the other debug registers.

Description

Indicatesthat one or more of several debug-exception conditions has been detected. Whether the
exception is afault or atrap depends on the condition, as shown below:

Exception Condition Exception Class
Instruction fetch breakpoint Fault
Data read or write breakpoint Trap
I/O read or write breakpoint Trap
General detect condition (in conjunction with in-circuit emulation) Fault
Single-step Trap
Task-switch Trap
Execution of INT 1 instruction Trap

Refer to Chapter 15, Debugging and Performance Monitoring, for detailed information about
the debug exceptions.

Exception Error Code

None. An exception handler can examine the debug registers to determine which condition
caused the exception.

Saved Instruction Pointer

Fault—Saved contents of CS and EIP registers point to the instruction that generated the
exception.

Trap—Saved contents of CS and EIP registers point to the instruction following the instruction
that generated the exception.

Program State Change

Fault—A program-state change does not accompany the debug exception, because the excep-
tion occurs before the faulting instruction is executed. The program can resume normal execu-
tion upon returning from the debug exception handler

Trap—A program-state change does accompany the debug exception, because the instruction or
task switch being executed is allowed to complete before the exception is generated. However,
the new state of the program is not corrupted and execution of the program can continue reliably.
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Interrupt 2—NMI Interrupt
Exception Class  Not applicable.

Description

The nonmaskable interrupt (NMI) is generated externally by asserting the processor’s NMI pin
or through an NMI request set by the I/O APIC to the local APIC on the APIC serial bus. This
interrupt causes the NMI interrupt handler to be called.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The processor always takes an NMI interrupt on an instruction boundary. The saved contents of
CS and EIP registers point to the next instruction to be executed at the point the interrupt is
taken. Refer to Section 5.4., “Program or Task Restart” for more information about when the

processor takes NMI interrupts.

Program State Change

The instruction executing when an NMI interrupt is received is completed before the NMI is
generated. A program or task can thus be restarted upon returning from an interrupt handler
without loss of continuity, provided the interrupt handler saves the state of the processor before
handling the interrupt and restores the processor’s state prior to a return.

5-24 I



Intel® INTERRUPT AND EXCEPTION HANDLING

Interrupt 3—Breakpoint Exception (#BP)
Exception Class  Trap.

Description

Indicates that a breakpoint instruction (INT 3) was executed, causing a breakpoint trap to be
generated. Typically, a debugger sets a breakpoint by replacing the first opcode byte of an
instruction with the opcode for the INT 3 instruction. (The INT 3 instruction is one byte long,
which makes it easy to replace an opcode in a code segment in RAM with the breakpoint
opcode.) The operating system or a debugging tool can use a data segment mapped to the same
physical address space as the code segment to place an INT 3 instruction in places where it is
desired to call the debugger.

With the P6 family, Pentium®, Intel486™, and Intel386™ processors, it is more convenient to

set breakpoints with the debug registers. (Refer to Section 15.3.2., “Breakpoint Exception
(#BP)—Interrupt Vector 3", in Chapter 1Bgbugging and Performance Monitoring, for infor-

mation about the breakpoint exception.) If more breakpoints are needed beyond what the debug
registers allow, the INT 3 instruction can be used.

The breakpoint (#BP) exception can also be generated by executing thendtiiuction with

an operand of 3. The action of this instruction (INT 3) is slightly different than that of the INT
3instruction (refer to “INTn/INTO/INT3—Call to Interrupt Procedure” in Chapter 3 ofritet
Architecture Software Developer's Manual, Volune 2

Exception Error Code

None.

Saved Instruction Pointer

Saved contents of CS and EIP registers point to the instruction following the INT 3 instruction.

Program State Change

Even though the EIP points to the instruction following the breakpoint instruction, the state of
the program is essentially unchanged because the INT 3 instruction does not affect any register
or memory locations. The debugger can thus resume the suspended program by replacing the
INT 3 instruction that caused the breakpoint with the original opcode and decrementing the
saved contents of the EIP register. Upon returning from the debugger, program execution
resumes with the replaced instruction.
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Interrupt 4—Overflow Exception (#OF)
Exception Class  Trap.

Description

Indicates that an overflow trap occurred when an INTO instruction was executed. The INTO
instruction checks the state of the OF flag in the EFLAGS register. If the OF flag is set, an over-
flow trap is generated.

Some arithmetic instructions (such as the ADD and SUB) perform both signed and unsigned
arithmetic. Theseinstructions set the OF and CF flagsin the EFL AGS register to indicate signed
overflow and unsigned overflow, respectively. When performing arithmetic on signed operands,
the OF flag can be tested directly or the INTO instruction can be used. The benefit of using the
INTO instructionisthat if the overflow exception is detected, an exception handler can be called
automatically to handle the overflow condition.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction following the INTO
instruction.

Program State Change

Even though the EIP points to the instruction following the INTO instruction, the state of the
program is essentially unchanged because the INTO instruction does not affect any register or
memory locations. The program can thus resume normal execution upon returning from the
overflow exception handler.
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Interrupt 5—BOUND Range Exceeded Exception (#BR)
Exception Class  Fault.

Description

Indicates that a BOUND-range-exceeded fault occurred when a BOUND instruction was
executed. The BOUND instruction checks that a signed array index is within the upper and
lower bounds of an array located in memory. If the array index is not within the bounds of the
array, a BOUND-range-exceeded fault is generated.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the BOUND instruction that generated the
exception.

Program State Change

A program-state change does not accompany the bounds-check fault, because the operands for
the BOUND instruction are not modified. Returning from the BOUND-range-exceeded excep-
tion handler causes the BOUND instruction to be restarted.
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Interrupt 6—Invalid Opcode Exception (#UD)
Exception Class  Fault.

Description
Indicates that the processor did one of the following things:

* Attempted to execute a Streaming SIMD Extensions instruction in an Intel Architecture
processor that does not support the Streaming SIMD Extensions.

* Attempted to execute a Streaming SIMD Extensions instruction when the OSFXSR bit is
not set (0) in CR4. Note this does not include the following Streaming SIMD Extensions:
PAVGB, PAVGW, PEXTRW, PINSRW, PMAXSW, PMAXUB, PMINSW, PMINUB,
PMOVMSKB, PMULHUW, PSADBW, PSHUFW, MASKMOVQ, MOVNTQ,
PREFETCH and SFENCE.

* Attempted to execute a Streaming SIMD Extensions instruction in an Intel Architecture
processor which causes a numeric exception when the OSXMMEXCPT bit isnot set (0) in
CRA4.

* Attempted to execute an invalid or reserved opcode, including any MMX™ instruction in
an Intel Architecture processor that does not support the MMX™ architecture.

* Attempted to execute an MMX™ instruction or SIMD floating-point instruction when the
EM flag in register CRO is set. Note this does not include the following Streaming SIMD
Extensions: SFENCE and PREFETCH.

* Attempted to execute an instruction with an operand type that is invalid for its accompa-
nying opcode; for example, the source operand for a LES instruction is not a memory
location.

® Executed aUD2 instruction.

® Detected a LOCK prefix that precedes an instruction that may not be locked or one that
may be locked but the destination operand is not a memory location.

® Attempted to execute an LLDT, SLDT, LTR, STR, LSL, LAR, VERR, VERW, or ARPL
instruction while in real-address or virtual-8086 mode.

® Attempted to execute the RSM instruction when not in SMM mode.

In the P6 family processors, this exception is not generated until an attempt is made to retire the

result of executing an invalid instruction; that is, decoding and speculatively attempting to
execute an invalid opcode does not generate this exception. Likewise, in the Pentium® processor

and earlier Intel Architecture processors, this exception is not generated as the result of
prefetching and preliminary decoding of an invalid instruction. (Refer to Section 5.4., “Program
or Task Restart” for general rules for taking of interrupts and exceptions.)

The opcodes D6 and F1 are undefined opcodes that are reserved by Intel. These opcodes, evel
though undefined, do not generate an invalid opcode exception.
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The UD2 instruction is guaranteed to generate an invalid opcode exception.

Exception Error Code

None.

Saved Instruction Pointer
The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an invalid-opcode fault, because the invalid
instruction is not executed.
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Interrupt 7—Device Not Available Exception (#NM)
Exception Class  Fault.

Description
Indicates one of the following things:
The device-not-available fault is generated by either of three conditions:

®* The processor executed afloating-point instruction while the EM flag of register CRO was
Set.

® The processor executed a floating-point, MMX™ or SIMD floating-point (excluding
prefetch, sfence or streaming store instructions) instruction while the TS flag of register
CRO was set.

® The processor executed a WAIT or FWAIT instruction while the MP and TS flags of
register CRO were set.

The EM flag is set when the processor does not have an internal floating-point unit. An excep-
tion is then generated each time a floating-point instruction is encountered, allowing an excep-
tion handler to call floating-point instruction emulation routines.

The TS flag indicates that a context switch (task switch) has occurred since the last time a
floating-point, MMX™ or SIMD floating-point (excluding prefetch, sfence or streaming store
instructions) instruction was executed, but that the context of the FPU was not saved. When the
TS flag is set, the processor generates a device-not-available exception each time a floating-
point, MMX™ or SIMD floating-point (excluding prefetch, sfence or streaming store instruc-
tions) instruction is encountered. The exception handler can then save the context of the FPU
before it executes the instruction. Refer to Section 2.5., “Control Registers”, in Chapter 2,
System Architecture Overview, for more information about the TS flag.

The MP flag in control register CRO is used along with the TS flag to determine if WAIT or
FWAIT instructions should generate a device-not-available exception. It extends the function of
the TS flag to the WAIT and FWAIT instructions, giving the exception handler an opportunity
to save the context of the FPU before the WAIT or FWAIT instruction is executed. The MP flag
is provided primarily for use with the Intel286 and Intel386™ DX processors. For programs
running on the P6 family, Pentidpor Intel486™ DX processors, or the Intel 487 SX coproces-
sors, the MP flag should always be set; for programs running on the Intel486™ SX processor,
the MP flag should be clear.

Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point instruction or the
WAIT/FWAIT instruction that generated the exception.
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Program State Change

A program-state change does not accompany a device-not-available fault, because the instruc-
tion that generated the exception is not executed.

If the EM flag is set, the exception handler can then read the floating-point instruction pointed
to by the EIP and call the appropriate emulation routine.

If the MP and TS flags are set or the TS flag alone is set, the exception handler can save the
context of the FPU, clear the TS flag, and continue execution at the interrupted floating-point or
WAIT/FWAIT instruction.
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Interrupt 8—Double Fault Exception (#DF)
Exception Class  Abort.

Description

Indicates that the processor detected a second exception while calling an exception handler for
aprior exception. Normally, when the processor detects another exception while trying to call
an exception handler, the two exceptions can be handled serialy. If, however, the processor
cannot handle them serialy, it signals the double-fault exception. To determine when two faults
need to be signaled as a double fault, the processor divides the exceptions into three classes:
benign exceptions, contributory exceptions, and page faults (refer to Table 5-4).

Table 5-4. Interrupt and Exception Classes

Class Vector Number Description
Benign Exceptions and Interrupts 1 Debug Exception
2 NMI Interrupt
3 Breakpoint
4 Overflow
5 BOUND Range Exceeded
6 Invalid Opcode
7 Device Not Available
9 Coprocessor Segment Overrun
16 Floating-Point Error
17 Alignment Check
18 Machine Check
19 SIMD floating-point extensions
All INT n
All INTR
Contributory Exceptions 0 Divide Error
10 Invalid TSS
11 Segment Not Present
12 Stack Fault
13 General Protection
Page Faults 14 Page Fault

Table 5-5 shows the various combinations of exception classes that cause a double fault to be
generated. A double-fault exception falls in the abort class of exceptions. The program or task
cannot be restarted or resumed. The double-fault handler can be used to collect diagnosticinfor-
mation about the state of the machine and/or, when possible, to shut the application and/or
system down gracefully or restart the system.

A segment or page fault may be encountered while prefetching instructions; however, this
behavior is outside the domain of Table 5-5. Any further faults generated while the processor is
attempting to transfer control to the appropriate fault handler could still lead to a double-fault
sequence.
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Table 5-5. Conditions for Generating a Double Fault

Second Exception
First Exception Benign Contributory Page Fault

Benign Handle Exceptions Handle Exceptions Handle Exceptions
Serially Serially Serially

Contributory Handle Exceptions Generate a Double Fault | Handle Exceptions
Serially Serially

Page Fault Handle Exceptions Generate a Double Fault | Generate a Double Fault
Serially

If another exception occurs while attempting to call the double-fault handler, the processor
enters shutdown mode. This mode is similar to the state following execution of an HLT instruc-
tion. In this mode, the processor stops executing instructions until an NMI interrupt, SMI inter-
rupt, hardware reset, or INIT# is received. The processor generates a special bus cycle to
indicate that it has entered shutdown mode. Software designers may need to be aware of the
response of hardware to receiving this signal. For example, hardware may turn on an indicator
light on the front panel, generate an NMI interrupt to record diagnostic information, invoke reset
initialization, generate an INIT initialization, or generate an SMI.

If the shutdown occurs while the processor is executing an NMI interrupt handler, then only a
hardware reset can restart the processor.

Exception Error Code

Zero. The processor always pushes an error code of 0 onto the stack of the double-fault handler.

Saved Instruction Pointer

The saved contents of CS and EIP registers are undefined.

Program State Change

A program-state following a double-fault exception is undefined. The program or task cannot
be resumed or restarted. The only available action of the double-fault exception handler isto
collect al possible context information for use in diagnostics and then close the application
and/or shut down or reset the processor.
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Interrupt 9—Coprocessor Segment Overrun

Exception Class  Abort. (Intel reserved; do not use. Recent Intel Architecture proces-
sorsdo not generate this exception.)

Description

Indicates that an Intel386™ CPU-based systems with an Intel 387 math coprocessor detected a
page or segment violation while transferring the middle portion of an Intel 387 math copro-
cessor operand. The P6 family, Penfiuamd Intel486™ processors do not generate this excep-
tion; instead, this condition is detected with a general protection exception (#GP), interrupt 13.
Exception Error Code

None.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state following a coprocessor segment-overrun exception is undefined. The program
or task cannot be resumed or restarted. The only available action of the exception handler is to
save the instruction pointer and reinitialize the FPU using the FNINIT instruction.
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Interrupt 10—Invalid TSS Exception (#TS)
Exception Class  Fault.

Description

Indicates that atask switch was attempted and that invalid information was detected in the TSS
for the target task. Table 5-6 shows the conditions that will cause an invalid-TSS exception to
be generated. In general, these invalid conditions result from protection violations for the TSS
descriptor; the LDT pointed to by the TSS; or the stack, code, or data segments referenced by
the TSS.

Table 5-6. Invalid TSS Conditions

Error Code Index Invalid Condition
TSS segment selector index TSS segment limit less than 67H for 32-bit TSS or less than 2CH for 16-
bit TSS.
LDT segment selector index Invalid LDT or LDT not present

Stack-segment selector index Stack-segment selector exceeds descriptor table limit
Stack-segment selector index | Stack segment is not writable

Stack-segment selector index Stack segment DPL # CPL

Stack-segment selector index | Stack-segment selector RPL # CPL

Code-segment selector index Code-segment selector exceeds descriptor table limit
Code-segment selector index Code segment is not executable

Code-segment selector index Nonconforming code segment DPL # CPL
Code-segment selector index Conforming code segment DPL greater than CPL

Data-segment selector index Data-segment selector exceeds descriptor table limit

Data-segment selector index Data segment not readable

This exception can generated either in the context of the original task or in the context of the

new task (refer to Section 6.3., “Task Switching” in Chaptéfafik Management). Until the
processor has completely verified the presence of the new TSS, the exception is generated in the
context of the original task. Once the existence of the new TSS is verified, the task switch is
considered complete. Any invalid-TSS conditions detected after this point are handled in the
context of the new task. (A task switch is considered complete when the task register is loaded
with the segment selector for the new TSS and, if the switch is due to a procedure call or inter-
rupt, the previous task link field of the new TSS references the old TSS.)

To insure that a valid TSS is available to process the exception, the invalid-TSS exception
handler must be a task called using a task gate.
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Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the
violation is pushed onto the stack of the exception handler. If the EXT flag isset, it indicatesthat
the exception was caused by an event external to the currently running program (for example, if
an external interrupt handler using atask gate attempted atask switch to an invalid TSS).

Saved Instruction Pointer

If the exception condition was detected before the task switch was carried out, the saved
contents of CS and EIP registers point to the instruction that invoked the task switch. If the
exception condition was detected after the task switch was carried out, the saved contents of CS
and EIP registers point to the first instruction of the new task.

Program State Change

The ability of the invalid-TSS handler to recover from the fault depends on the error condition

than causes the fault. Refer to Section 6.3., “Task Switching” in Chaplaskdylanagement

for more information on the task switch process and the possible recovery actions that can be
taken.

If an invalid TSS exception occurs during a task switch, it can occur before or after the commit-
to-new-task point. If it occurs before the commit point, no program state change occurs. If it
occurs after the commit point (when the segment descriptor information for the new segment
selectors have been loaded in the segment registers), the processor will load all the state infor-
mation from the new TSS before it generates the exception. During a task switch, the processor
first loads all the segment registers with segment selectors from the TSS, then checks their
contents for validity. If an invalid TSS exception is discovered, the remaining segment registers
are loaded but not checked for validity and therefore may not be usable for referencing memory.
The invalid TSS handler should not rely on being able to use the segment selectors found in the
CS, SS, DS, ES, FS, and GS registers without causing another exception. The exception handler
should load all segment registers before trying to resume the new task; otherwise, general-
protection exceptions (#GP) may result later under conditions that make diagnosis more diffi-
cult. The Intel recommended way of dealing situation is to use a task for the invalid TSS excep-
tion handler. The task switch back to the interrupted task from the invalid-TSS exception-
handler task will then cause the processor to check the registers as it loads them from the TSS.
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Interrupt 11—Segment Not Present (#NP)
Exception Class  Fault.

Description

Indicatesthat the present flag of asegment or gate descriptor isclear. The processor can generate
this exception during any of the following operations:

®* While attempting to load CS, DS, ES, FS, or GS registers. [Detection of a not-present
segment while loading the SS register causes a stack fault exception (#SS) to be
generated.] This situation can occur while performing atask switch.

® Whileattempting to load the LDTR using an LLDT instruction. Detection of a not-present
LDT while loading the LDTR during a task switch operation causes an invalid-TSS
exception (#TS) to be generated.

® When executing the LTR instruction and the TSS is marked not present.

* Whileattempting to use a gate descriptor or TSS that is marked segment-not-present, but is
otherwise valid.

An operating system typically uses the segment-not-present exception to implement virtual
memory at the segment level. If the exception handler |oads the segment and returns, the inter-
rupted program or task resumes execution.

A not-present indication in a gate descriptor, however, does not indicate that a segment is not
present (because gates do not correspond to segments). The operating system may use the
present flag for gate descriptors to trigger exceptions of special significance to the operating
system.

Exception Error Code

An error code containing the segment selector index for the segment descriptor that caused the
violation is pushed onto the stack of the exception handler. If the EXT flagis set, it indicates that
the exception resulted from an external event (NMI or INTR) that caused an interrupt, which
subsequently referenced a not-present segment. The IDT flag is set if the error code refersto an
IDT entry (e.g., an INT instruction referencing a not-present gate).

Saved Instruction Pointer

The saved contents of CS and EIP registers normally point to the instruction that generated the
exception. If the exception occurred while loading segment descriptors for the segment selectors
inanew TSS, the CSand EIP registers point to thefirst instruction in the new task. If the excep-
tion occurred while accessing a gate descriptor, the CS and EIP registers point to the instruction
that invoked the access (for example a CALL instruction that references a call gate).
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Program State Change

If the segment-not-present exception occurs as the result of loading aregister (CS, DS, SS, ES,
FS, GS, or LDTR), aprogram-state change does accompany the exception, because the register
is not loaded. Recovery from this exception is possible by simply loading the missing segment
into memory and setting the present flag in the segment descriptor.

If the segment-not-present exception occurs while accessing a gate descriptor, a program-state
change does not accompany the exception. Recovery from this exception is possible merely by
setting the present flag in the gate descriptor.

If a segment-not-present exception occurs during atask switch, it can occur before or after the
commit-to-new-task point (refer to Section 6.3., “Task Switching” in Chapf&st,Manage-

ment). If it occurs before the commit point, no program state change occurs. If it occurs after the
commit point, the processor will load all the state information from the new TSS (without
performing any additional limit, present, or type checks) before it generates the exception. The
segment-not-present exception handler should thus not rely on being able to use the segment
selectors found in the CS, SS, DS, ES, FS, and GS registers without causing another exception.
(Refer to the Program State Change description for “Interrupt 10—Invalid TSS Exception

(#TS)” in this chapter for additional information on how to handle this situation.)
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Interrupt 12—Stack Fault Exception (#SS)
Exception Class  Fault.

Description
Indicates that one of the following stack related conditions was detected:

®* A limit violation is detected during an operation that refers to the SS register. Operations
that can cause a limit violation include stack-oriented instructions such as POP, PUSH,
CALL, RET, IRET, ENTER, and LEAVE, as well as other memory references which
implicitly or explicitly use the SS register (for example, MOV AX, [BP+6] or MOV AX,
SS:[EAX+6]). The ENTER instruction generates this exception when there is not enough
stack space for allocating local variables.

® A not-present stack segment is detected when attempting to load the SS register. This
violation can occur during the execution of atask switch, a CALL instruction to a different
privilege level, areturn to a different privilege level, an LSS instruction, or aMOV or POP
instruction to the SS register.

Recovery from this fault is possible by either extending the limit of the stack segment (in the
case of alimit violation) or loading the missing stack segment into memory (in the case of anot-
present violation.

Exception Error Code

If the exception is caused by anot-present stack segment or by overflow of the new stack during
an inter-privilege-level call, the error code contains a segment selector for the segment that
caused the exception. Here, the exception handler can test the present flag in the segment
descriptor pointed to by the segment selector to determine the cause of the exception. For a
normal limit violation (on a stack segment already in use) the error code is set to 0.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the
exception. However, when the exception results from attempting to load a not-present stack
segment during atask switch, the CS and EIP registers point to the first instruction of the new
task.

Program State Change

A program-state change does not generally accompany a stack-fault exception, because the
instruction that generated the fault is not executed. Here, the instruction can be restarted after
the exception handler has corrected the stack fault condition.

If a stack fault occurs during a task switch, it occurs after the commit-to-new-task point (refer
to Section 6.3., “Task Switching” ChapterTask Management). Here, the processor loads all
the state information from the new TSS (without performing any additional limit, present, or
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type checks) before it generates the exception. The stack fault handler should thus not rely on
being able to use the segment selectors found in the CS, SS, DS, ES, FS, and GS registers
without causing another exception. The exception handler should check all segment registers
before trying to resume the new task; otherwise, general protection faults may result later under
conditions that are more difficult to diagnose. (Refer to the Program State Change description

for “Interrupt 10—Invalid TSS Exception (#TS)” in this chapter for additional information on
how to handle this situation.)
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Interrupt 13—General Protection Exception (#GP)
Exception Class  Fault.

Description

Indicates that the processor detected one of a class of protection violations called “general-
protection violations.” The conditions that cause this exception to be generated comprise all the
protection violations that do not cause other exceptions to be generated (such as, invalid-TSS,
segment-not-present, stack-fault, or page-fault exceptions). The following conditions cause

general-protection exceptions to be generated:

® Exceeding the segment limit when accessing the CS, DS, ES, FS, or GS segments.

® Exceeding the segment limit when referencing a descriptor table (except during a task
switch or a stack switch).

®* Transferring execution to a segment that is not executable.
® Writing to a code segment or aread-only data segment.
® Reading from an execute-only code segment.

® |Loading the SS register with a segment selector for a read-only segment (unless the
selector comes from a TSS during a task switch, in which case an invalid-TSS exception
oceurs).

®* | oadingtheSS, DS, ES, FS, or GS register with a segment selector for a system segment.

® | oading the DS, ES, FS, or GS register with a segment selector for an execute-only code
segment.

® | oading the SS register with the segment selector of an executable segment or a null
segment selector.

® | oading the CS register with a segment selector for a data segment or a null segment
selector.

® Accessing memory using the DS, ES, FS, or GS register when it contains a null segment
selector.

® Switching to abusy task during acall or jumptoaTSS.
® Switching to an available (nonbusy) task during the execution of an IRET instruction.

® Using asegment selector on task switch that pointsto a TSS descriptor in the current LDT.
TSS descriptors can only reside in the GDT.

® Violating any of the privilege rules described in Chapter 4, Protection.

® Exceeding the instruction length limit of 15 bytes (this only can occur when redundant
prefixes are placed before an instruction).
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® |Loading the CRO register with a set PG flag (paging enabled) and a clear PE flag
(protection disabled).

® | oading the CRO register with aset NW flag and a clear CD flag.

® Referencing an entry in the IDT (following an interrupt or exception) that is not an
interrupt, trap, or task gate.

® Attempting to access an interrupt or exception handler through an interrupt or trap gate
from virtual-8086 mode when the handler’s code segment DPL is greater than 0.

* Attempting to writeal into areserved bit of CRA4.

® Attempting to execute a privileged instruction when the CPL is not equal to O (refer to
Section 4.9., “Privileged Instructions” in ChapterPfptection for a list of privileged
instructions).

® Writing to areserved bitin an MSR.
® Accessing agate that contains a null segment selector.

® Executing the INT n instruction when the CPL is greater than the DPL of the referenced
interrupt, trap, or task gate.

® The segment selector in acall, interrupt, or trap gate does not point to a code segment.

® The segment selector operand in the LLDT instruction is a local type (Tl flag is set) or
does not point to a segment descriptor of the LDT type.

® The segment selector operand in the LTR instruction islocal or pointsto a TSS that is not
available.

® Thetarget code-segment selector for acall, jump, or returnis null.

® |If the PAE and/or PSE flag in control register CR4 is set and the processor detects any
reserved bitsin a page-directory-pointer-table entry set to 1. These bits are checked during
a write to control registers CRO, CR3, or CR4 that causes a reloading of the page-
directory-pointer-table entry.

A program or task can be restarted following any general-protection exception. If the exception
occurs while attempting to call an interrupt handler, the interrupted program can be restartable,
but the interrupt may be lost.

Exception Error Code

The processor pushes an error code onto the exception handler’s stack. If the fault condition was
detected whileloading a segment descriptor, the error code contains a segment selector toor IDT
vector number for the descriptor; otherwise, the error code is 0. The source of the selector in an
error code may be any of the following:

® Anoperand of the instruction.
* A sdlector from a gate which isthe operand of the instruction.
® A selector fromaTSSinvolved in atask switch.
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® |DT vector number.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

In general, a program-state change does not accompany a general -protection exception, because
the invalid instruction or operation is not executed. An exception handler can be designed to
correct all of the conditions that cause general-protection exceptions and restart the program or
task without any loss of program continuity.

If a general-protection exception occurs during a task switch, it can occur before or after the
commit-to-new-task point (refer to Section 6.3., “Task Switching” in ChapfeEs Manage-

ment). If it occurs before the commit point, no program state change occurs. If it occurs after the
commit point, the processor will load all the state information from the new TSS (without
performing any additional limit, present, or type checks) before it generates the exception. The
general-protection exception handler should thus not rely on being able to use the segment selec-
tors found inthe CS, SS, DS, ES, FS, and GS registers without causing another exception. (Refer
to the Program State Change description for “Interrupt 10—Invalid TSS Exception (#TS)” in
this chapter for additional information on how to handle this situation.)
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Interrupt 14—Page-Fault Exception (#PF)
Exception Class  Fault.

Description

Indicatesthat, with paging enabled (the PG flag in the CRO register is set), the processor detected
one of the following conditions while using the page-translation mechanism to trandate alinear
address to a physical address:

® The P (present) flag in a page-directory or page-table entry needed for the address
translation is clear, indicating that a page table or the page containing the operand is not
present in physical memory.

®* The procedure does not have sufficient privilege to access the indicated page (that is, a
procedure running in user mode attempts to access a supervisor-mode page).

® Code running in user mode attempts to write to a read-only page. In the Intel486™ and
later processors, if the WP flag is set in CRO, the page fault will also be triggered by code
running in supervisor mode that tries to write to a read-only user-mode page.

The exception handler can recover from page-not-present conditions and restart the program or
task without any loss of program continuity. It can also restart the program or task after a privi-
lege violation, but the problem that caused the privilege violation may be uncorrectable.

Exception Error Code

Yes (special format). The processor provides the page-fault handler with two items of informa-
tion to aid in diagnosing the exception and recovering from it:

® Anerror code on the stack. The error code for a page fault has aformat different from that
for other exceptions (refer to Figure 5-7). The error code tells the exception handler four
things:

— The P flag indicates whether the exception was due to a not-present page (0) or to
either an access rights violation or the use of a reserved bit (1).

— The WIR flag indicates whether the memory access that caused the exception was a
read (0) or write (1).

— The U/S flag indicates whether the processor was executing at user mode (1) or
supervisor mode (0) at the time of the exception.

— The RSVD flag indicates that the processor detected 1s in reserved bits of the page
directory, when the PSE or PAE flags in control register CR4 are set to 1. (The PSE
flag is only available in the P6 family and Pentfupnocessors, and the PAE flag is
only available on the P6 family processors. In earlier Intel Architecture processor
families, the bit position of the RSVD flag is reserved.)
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31 43210
R |UIR
Reserved VIL|I|P
D |S|W
P 0 The fault was caused by a nonpresent page.
1 The fault was caused by a page-level protection violation.
W/R 0 The access causing the fault was a read.
1 The access causing the fault was a write.
u/s 0 The access causing the fault originated when the processor

was executing in supervisor mode.

1 The access causing the fault originated when the processor
was executing in user mode.

RSVD 0 The fault was not caused by a reserved bit violation.
1 The page fault occured because a 1 was detected in one of the
reserved bit positions of a page table entry or directory entry
that was marked present.

Figure 5-7. Page-Fault Error Code

® The contents of the CR2 register. The processor loads the CR2 register with the 32-hit
linear address that generated the exception. The page-fault handler can use this address to
locate the corresponding page directory and page-table entries. If another page fault can
potentially occur during execution of the page-fault handler, the handler must push the
contents of the CR2 register onto the stack before the second page fault occurs.

If apagefault is caused by a page-level protection violation, the accessflag in the page-directory
entry is set when the fault occurs. The behavior of Intel Architecture processors regarding the
access flag in the corresponding page-table entry is model specific and not architecturally
defined.

Saved Instruction Pointer

The saved contents of CS and EIP registers generally point to the instruction that generated the
exception. If the page-fault exception occurred during a task switch, the CS and EIP registers

may point to the first instruction of the new task (as described in the following “Program State
Change” section).

Program State Change

A program-state change does not normally accompany a page-fault exception, because the
instruction that causes the exception to be generated is not executed. After the page-fault excep-
tion handler has corrected the violation (for example, loaded the missing page into memory),
execution of the program or task can be resumed.
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When a page-fault exception is generated during a task switch, the program-state may change,
as follows. During a task switch, a page-fault exception can occur during any of following
operations:

®  Whilewriting the state of the original task into the TSS of that task.

® Whilereading the GDT to locate the TSS descriptor of the new task.

® Whilereading the TSS of the new task.

®  Whilereading segment descriptors associated with segment selectors from the new task.

®  While reading the LDT of the new task to verify the segment registers stored in the new
TSS.

In the last two cases the exception occursin the context of the new task. The instruction pointer
refersto thefirst instruction of the new task, not to the instruction which caused the task switch
(or the last instruction to be executed, in the case of an interrupt). If the design of the operating
system permits page faultsto occur during task-switches, the page-fault handler should be called
through atask gate.

If apage fault occurs during atask switch, the processor will load all the state information from

the new TSS (without performing any additional limit, present, or type checks) before it gener-

ates the exception. The page-fault handler should thus not rely on being able to use the segment
selectorsfound in the CS, SS, DS, ES, FS, and GS registers without causing another exception.

(Refer to the Program State Change description for “Interrupt 10—Invalid TSS Exception
(#TS)” in this chapter for additional information on how to handle this situation.)

Additional Exception-Handling Information

Special care should be taken to ensure that an exception that occurs during an explicit stack
switch does not cause the processor to use an invalid stack pointer (SS:ESP). Software written
for 16-bit Intel Architecture processors often use a pair of instructions to change to a new stack,
for example:

MOV SS, AX
MOV SP, StackTop

When executing this code on one of the 32-bit Intel Architecture processors, it is possible to get
a page fault, general-protection fault (#GP), or alignment check fault (#AC) after the segment
selector has been loaded into the SS register but before the ESP register has been loaded. At thic
point, the two parts of the stack pointer (SS and ESP) are inconsistent. The new stack segment
is being used with the old stack pointer.

The processor does not use the inconsistent stack pointer if the exception handler switches to a
well defined stack (that is, the handler is a task or a more privileged procedure). However, if the
exception handler is called at the same privilege level and from the same task, the processor will
attempt to use the inconsistent stack pointer.

In systems that handle page-fault, general-protection, or alignment check exceptions within the
faulting task (with trap or interrupt gates), software executing at the same privilege level as the
exception handler should initialize a new stack by using the LSS instruction rather than a pair
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of MOV instructions, as described earlier in this note. When the exception handler is running at
privilege level 0 (the normal case), the problem islimited to procedures or tasks that run at priv-
ilege level O, typically the kernel of the operating system.
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Interrupt 16—Floating-Point Error Exception (#MF)
Exception Class  Fault.

Description

Indicates that the FPU has detected a floating-point-error exception. The NE flag in the register
CRO must be set and the appropriate exception must be unmasked (clear mask bit in the control
register) for an interrupt 16, floating-point-error exception to be generated. (Refer to Section
2.5., “Control Registers” in Chapter System Architecture Overview for a detailed description
of the NE flag.)

While executing floating-point instructions, the FPU detects and reports six types of floating-
point errors:

® |nvalid operation (#)
— Stack overflow or underflow (#1S)
— Invalid arithmetic operation (#IA)

® Divide-by-zero (#2)

® Denormalized operand (#D)

® Numeric overflow (#O)

®  Numeric underflow (#U)

® |nexact result (precision) (#P)

For each of these error types, the FPU provides aflag in the FPU status register and a mask bit
inthe FPU control register. If the FPU detects afl oating-point error and the mask bit for the error
is set, the FPU handlesthe error automatically by generating a predefined (default) response and
continuing program execution. The default responses have been designed to provide a reason-
able result for most floating-point applications.

If the mask for the error is clear and the NE flag in register CRO is set, the FPU does the
following:

1. Setsthe necessary flag in the FPU status register.

2. Waits until the next “waiting” floating-point instruction or WAIT/FWAIT instruction is
encountered in the program’s instruction stream. (The FPU checks for pending floating-
point exceptions on “waiting” instructions prior to executing them. All the floating-point
instructions except the FNINIT, FNCLEX, FNSTSW, FNSTSW AX, FNSTCW,
FNSTENV, and FNSAVE instructions are “waiting” instructions.)

3. Generates an internal error signal that causes the processor to generate a floating-point-
error exception.
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All of the floating-point-error conditions can be recovered from. The floating-point-error excep-
tion handler can determine the error condition that caused the exception from the settings of the
flags in the FPU status word. Refer to “Software Exception Handling” in Chapter 7lafdéhe
Architecture Software Developer's Manual, Volumefdr more information on handling
floating-point-error exceptions.

Exception Error Code

None. The FPU providesits own error information.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the floating-point or WAIT/FWAIT instruc-

tion that was about to be executed when the floating-point-error exception was generated. This

is not the faulting instruction in which the error condition was detected. The address of the
faulting instruction is contained in the FPU instruction pointer register. Refer to “The FPU
Instruction and Operand (Data) Pointers” in Chapter 7 dintieeArchitecture Software Devel-
oper’s Manual, Volume,for more information about information the FPU saves for use in
handling floating-point-error exceptions.

Program State Change

A program-state change generally accompanies a floating-point-error exception because the
handling of the exception is delayed until the next waiting floating-point or WAIT/FWAIT
instruction following the faulting instruction. The FPU, however, saves sufficient information
about the error condition to allow recovery from the error and re-execution of the faulting
instruction if needed.

In situations where nonfloating-point instructions depend on the results of a floating-point
instruction, aWAIT or FWAIT instruction can be inserted in front of a dependent instruction to
force a pending floating-point-error exception to be handled before the dependent instruction is
executed. Refer to “Floating-Point Exception Synchronization” in Chapter 7 bitéhérchi-
tecture Software Developer’s Manual, Volum&ot more information about synchronization of
floating-point-error exceptions.
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Interrupt 17—Alignment Check Exception (#AC)
Exception Class  Fault.

Description

Indicates that the processor detected an unaligned memory operand when alignment checking
was enabled. Alignment checks are only carried out in data (or stack) segments (not in code or
system segments). An example of an alignment-check violation is aword stored at an odd byte
address, or adoubleword stored at an address that is not an integer multiple of 4. Table 5-7 lists

the alignment requirements various data types recognized by the processor.
Table 5-7. Alignment Requirements by Data Type

Data Type Address Must Be Divisible By

Word

Doubleword
Single Real
Double Real
Extended Real
Segment Selector
32-bit Far Pointer
48-bit Far Pointer

A A D N OO 0O M BN

32-bit Pointer
GDTR, IDTR, LDTR, or Task Register Contents 4

FSTENV/FLDENV Save Area 4 or 2, depending on operand size
FSAVE/FRSTOR Save Area 4 or 2, depending on operand size

Bit String 2 or 4 depending on the operand-size attribute.

128-bit* 16

1. 128-bit datatype introduced with the Pentium® Il processor. This type of alignment check is done for
operands less than 128-bits in size: 32-bit scalar single and 16-bit/32-bit/64-bit integer MMX™ technol-
ogy; 2, 4, or 8 byte alignments checks are possible when #AC is enabled. Some exceptional cases are:

®  The MOVUPS instruction, which performs a 128-bit unaligned load or store. In this case, 2/4/8-byte
misalignments will be detected, but detection of 16-byte misalignment is not guaranteed and may
vary with implementation.

® The FXSAVE/FXRSTOR instructions - refer to instruction descriptions
To enable alignment checking, the following conditions must be true:

* AM flagin CRO register is set.
® ACflaginthe EFLAGS register is set.
® TheCPL is 3 (protected mode or virtual-8086 mode).
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Alignment-check faults are generated only when operating at privilege level 3 (user mode).
Memory references that default to privilege level 0, such as segment descriptor loads, do not
generate alignment-check faults, even when caused by a memory reference made from privilege
level 3.

Storing the contents of the GDTR, IDTR, LDTR, or task register in memory while at privilege
level 3 can generate an alignment-check fault. Although application programs do not normally
store these registers, the fault can be avoided by aligning the information stored on an even
word-address.

FSAVE and FRSTOR instructions generate unaligned references which can cause alignment-
check faults. These instructions are rarely needed by application programs.

Exception Error Code

Yes (always zero).

Saved Instruction Pointer
The saved contents of CS and EIP registers point to the instruction that generated the exception.

Program State Change

A program-state change does not accompany an alignment-check fault, because the instruction
is not executed.
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Interrupt 18—Machine-Check Exception (#MC)
Exception Class  Abort.

Description

Indicates that the processor detected an internal machine error or abus error, or that an external
agent detected a bus error. The machine-check exception is model-specific, available only on
the P6 family and Pentium® processors. The implementation of the machine-check exceptionis
different between the P6 family and Pentium® processors, and these implementations may not
be compatible with future Intel Architecture processors. (Use the CPUID instruction to deter-
mine whether this feature is present.)

Bus errors detected by external agents are signaled to the processor on dedicated pins: the
BINIT# pin on the P6 family processors and the BUSCHK# pin on the Pentium® processor.
When one of these pins is enabled, asserting the pin causes error information to be loaded into
machine-check registers and a machine-check exception is generated.

The machine-check exception and machine-check architecture are discussed in detail in Chapter
13, Machine-Check Architecture. Also, refer to the data books for the individual processors for
processor-specific hardware information.

Exception Error Code

None. Error information is provide by machine-check M SRs.

Saved Instruction Pointer

For the P6 family processors, if the EIPV flag in the MCG_STATUS MSR is set, the saved
contents of CS and EIP registers are directly associated with the error that caused the machine-

check exception to be generated; if the flag is clear, the saved instruction pointer may not be
associated with the error (refer to Section 13.3.1.2., “MCG_STATUS MSR”, in Chapter 13,
Machine-Check Architecture).

For the Pentiufmprocessor, contents of the CS and EIP registers may not be associated with the
error.

Program State Change

A program-state change always accompanies a machine-check exception. If the machine-check
mechanism is enabled (the M CE flag in control register CR4 is set), amachine-check exception
resultsin an abort; that is, information about the exception can be collected from the machine-
check MSRs, but the program cannot be restarted. If the machine-check mechanism is not
enabled, a machine-check exception causes the processor to enter the shutdown state.
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Interrupt 19—SIMD Floating-Point Exception (#XF)
Exception Class  Fault.

Description

Indicates the processor has detected a SIMD floating-point execution unit exception. The appro-
priate status flag in the MXCSR register must be set and the particular exception unmasked for
thisinterrupt to be generated.

There are six classes of numeric exception conditions that can occur while executing Streaming
SIMD Extensions:;

Invalid operation (#l)
Divide-by-zero (#2)
Denormalized operand (#D)
Numeric overflow (#O)

o~ 0D

Numeric underflow (#U)
6. Inexact result (Precision) (#P)

Invalid, Divide-by-zero, and Denormal exceptions are pre-computation exceptions, i.e., they are
detected before any arithmetic operation occurs. Underflow, Overflow, and Precision exceptions
are post-computational exceptions.

When numeric exceptions occur, a processor supporting Streaming SIMD Extensions takes one
of two possible courses of action:

« The processor can handle the exception by itself, producing the most reasonable result and
allowing numeric program execution to continue undisturbed (i.e., masked exception
response).

« A software exception handler can be invoked to handle the exception (i.e., unmasked
exception response).

Each of the six exception conditions described above has corresponding flag and mask bits in
the MXCSR. If an exception is masked (the corresponding mask bit in MXCSR = 1), the
processor takes an appropriate default action and continues with the computation. If the excep-
tion is unmasked (mask bit = 0) and the OS supports SIMD floating-point exceptions (i.e.
CR4.0SXMMEXCPT = 1), a software exception handler is invoked immediately through
SIMD floating-point exception interrupt vector 19. If the exception is unmasked (mask bit = 0)
and the OS does not support SIMD floating-point exceptions (i.e. CR4.0SXMMEXCPT = 0),
an invalid opcode exception is signaled instead of a SIMD floating-point exception.

Note that because SIMD floating-point exceptions are precise and occur immediately, the situ-
ation does not arise where an x87-FP instruction, an FWAIT instruction, or another Streaming
SIMD Extensions instruction will catch a pending unmasked SIMD floating-point exception.
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Exception Error Code

None. The Streaming SIMD Extensions provide their own error information.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the Streaming SIMD Extensions instruction
that was executed when the SIMD floating-point exception was generated. Thisis the faulting
instruction in which the error condition was detected.

Program State Change

A program-state change generally accompanies a SIMD floating-point exception because the
handling of the exception isimmediate unless the particular exception is masked. The Pentium®
I11 processor contains sufficient information about the error condition to allow recovery from
the error and re-execution of the faulting instruction if needed.

In situations where a SIMD floating-point exception occurred while the SIMD floating-point
exceptions were masked, SIM D floating-point exceptions were then unmasked, and a Streaming
SIMD Extensions instruction was executed, then no exception is raised.
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Interrupts 32 to 255—User Defined Interrupts

Exception Class  Not applicable.

Description
Indicates that the processor did one of the following things:

® Executed an INT ninstruction where the instruction operand is one of the vector numbers
from 32 through 255.

® Responded to an interrupt request at the INTR pin or from the loca APIC when the
interrupt vector number associated with the request is from 32 through 255.

Exception Error Code

Not applicable.

Saved Instruction Pointer

The saved contents of CS and EIP registers point to the instruction that follows the INT n
instruction or instruction following the instruction on which the INTR signal occurred.

Program State Change

A program-state change does not accompany interrupts generated by the INT n instruction or
the INTR signal. The INT n instruction generates the interrupt within the instruction stream.
When the processor receives an INTR signal, it commits all state changes for al previous
instructions before it respondsto theinterrupt; so, program execution can resume upon returning
from the interrupt handler.
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CHAPTER 6
TASK MANAGEMENT

This chapter describes the Intel Architecture’s task management facilities. These facilities are
only available when the processor is running in protected mode.

6.1. TASK MANAGEMENT OVERVIEW

A task is a unit of work that a processor can dispatch, execute, and suspend. It can be used to
execute a program, a task or process, an operating-system service utility, an interrupt or excep-
tion handler, or a kernel or executive utility.

The Intel Architecture provides a mechanism for saving the state of a task, for dispatching tasks
for execution, and for switching from one task to another. When operating in protected mode,
all processor execution takes place from within a task. Even simple systems must define at least
one task. More complex systems can use the processor’s task management facilities to support
multitasking applications.

6.1.1. Task Structure

A task is made up of two parts: a task execution space and a task-state segment (TSS). The task
execution space consists of a code segment, a stack segment, and one or more data segments
(refer to Figure 6-1). If an operating system or executive uses the processor’s privilege-level
protection mechanism, the task execution space also provides a separate stack for each privilege
level.

The TSS specifies the segments that make up the task execution space and provides a storage
place for task state information. In multitasking systems, the TSS also provides a mechanism for
linking tasks.

NOTE

This chapter describes primarily 32-bit tasks and the 32-bit TSS structure.
For information on 16-bit tasks and the 16-bit TSS structure, refer to Section
6.6., “16-Bit Task-State Segment (TSS)".

A task is identified by the segment selector for its TSS. When a task is loaded into the processor
for execution, the segment selector, base address, limit, and segment descriptor attributes for the
TSS are loaded into the task register (refer to Section 2.4.4., “Task Register (TR)” in Chapter 2,
System Architecture Overview).

If paging is implemented for the task, the base address of the page directory used by the task is
loaded into control register CR3.
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Code
4,_, Segment
Task-State Data
Segment —\_> Segment
(TSS) Stack
»| Segment
“~| (Current Priv.
Level)
Stack Seg.
» Priv. Level 0
Stack Seg.
_|:| > Priv. Level 1
Task Register Stack
— > pSeament
CR3 (Priv. Level 2)

Figure 6-1. Structure of a Task

6.1.2. Task State

The following items define the state of the currently executing task:

® The task’s current execution space, defined by the segment selectors in the segment
registers (CS, DS, SS, ES, FS, and GS).

® The state of the general-purpose registers.

® The state of the EFLAGS register.

® The state of the EIP register.

®* The state of control register CR3.

® The state of the task register.

® The state of the LDTR register.

® Thel/O map base address and I/O map (contained in the TSS).

® Stack pointersto the privilege O, 1, and 2 stacks (contained in the TSS).
® Link to previously executed task (contained in the TSS).

Prior to dispatching a task, all of these items are contained in the task’s TSS, except the state of
the task register. Also, the complete contents of the LDTR register are not contained in the TSS,
only the segment selector for the LDT.
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6.1.3. Executing a Task

Software or the processor can dispatch atask for execution in one of the following ways:
®* A explicit call to atask with the CALL instruction.

® A explicit jump to atask with the IMP instruction.

* Animplicit cal (by the processor) to an interrupt-handler task.

® Animplicit call to an exception-handler task.

® A return (initiated with an IRET instruction) when the NT flag in the EFLAGS register is
Set.

All of these methods of dispatching a task identify the task to be dispatched with a segment
selector that points either to atask gate or the TSS for the task. When dispatching atask with a
CALL or IMP instruction, the selector in the instruction may select either the TSS directly or a
task gate that holds the selector for the TSS. When dispatching a task to handle an interrupt or
exception, the IDT entry for the interrupt or exception must contain a task gate that holds the
selector for the interrupt- or exception-handler TSS.

When a task is dispatched for execution, a task switch automatically occurs between the

currently running task and the dispatched task. During atask switch, the execution environment

of the currently executing task (called the task’s staterttiext) is saved in its TSS and execu-

tion of the task is suspended. The context for the dispatched task is then loaded into the processor
and execution of that task begins with the instruction pointed to by the newly loaded EIP
register. If the task has not been run since the system was last initialized, the EIP will point to
the first instruction of the task’s code; otherwise, it will point to the next instruction after the last
instruction that the task executed when it was last active.

If the currently executing task (the calling task) called the task being dispatched (the called task),
the TSS segment selector for the calling task is stored in the TSS of the called task to provide a
link back to the calling task.

For all Intel Architecture processors, tasks are not recursive. A task cannot call or jump to itself.

Interrupts and exceptions can be handled with a task switch to a handler task. Here, the processor
not only can perform a task switch to handle the interrupt or exception, but it can automatically
switch back to the interrupted task upon returning from the interrupt- or exception-handler task.
This mechanism can handle interrupts that occur during interrupt tasks.

As part of a task switch, the processor can also switch to another LDT, allowing each task to have
a different logical-to-physical address mapping for LDT-based segments. The page-directory base
register (CR3) also is reloaded on a task switch, allowing each task to have its own set of page
tables. These protection facilities help isolate tasks and prevent them from interfering with one
another. If one or both of these protection mechanisms are not used, the processor provides no
protection between tasks. This is true even with operating systems that use multiple privilege
levels for protection. Here, a task running at privilege level 3 that uses the same LDT and page
tables as other privilege-level-3 tasks can access code and corrupt data and the stack of other
tasks.
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Use of task management facilities for handling multitasking applications is optional. Multi-
tasking can be handled in software, with each software defined task executed in the context of
asingle Intel Architecture task.

6.2. TASK MANAGEMENT DATA STRUCTURES

The processor defines five data structures for handling task-related activities:
® Task-state segment (TSS).

® Task-gate descriptor.

® TSSdescriptor.

® Task register.

® NT flag in the EFLAGS register.

When operating in protected mode, a TSS and TSS descriptor must be created for at |east one
task, and the segment selector for the TSS must be loaded into the task register (using the LTR
instruction).

6.2.1. Task-State Segment (TSS)

The processor state information needed to restore atask is saved in a system segment called the
task-state segment (TSS). Figure 6-2 shows the format of a TSS for tasks designed for 32-bit
CPUs. (Compatibility with 16-bit Intel 286 processor tasks is provided by a different kind of
TSS, refer to Figure 6-9.) The fields of a TSS are divided into two main categories. dynamic
fields and static fields.

The processor updates the dynamic fields when atask is suspended during a task switch. The
following are dynamic fields:

General-purposeregister fields
State of the EAX, ECX, EDX, EBX, ESP, EBP, ESl, and EDI registers prior to
the task switch.

Segment selector fields
Segment selectors stored in the ES, CS, SS, DS, FS, and GS registers prior to
the task switch.

EFLAGSTregister field
State of the EFAGS register prior to the task switch.

EIP (instruction pointer) field
State of the EIP register prior to the task switch.

Previoustask link field
Contains the segment selector for the TSS of the previous task (updated on a
task switch that was initiated by a call, interrupt, or exception). This field
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(which is sometimes called the back link field) permits a task switch back to
the previous task to be initiated with an IRET instruction.

The processor reads the static fields, but does not normally change them. Thesefields are set up
when atask is created. The following are static fields:

LDT segment selector field
Contains the segment selector for thetask’'s LDT.

31 15 0
1/0 Map Base Address T]100
LDT Segment Selector 96
GS 92
FS 88
DS 84
SS 80
CS 76
ES 72
EDI 68
ESI 64
EBP 60
ESP 56
EBX 52
EDX 48
ECX 44
EAX 40
EFLAGS 36
EIP 32
CR3 (PDBR) 28
| sS2 24
ESP2 20
| ss1 16
ESP1 12
| SS0 8
ESPO
‘ Previous Task Link
E Reserved bits. Set to 0.

Figure 6-2. 32-Bit Task-State Segment (TSS)

I 6-5



TASK MANAGEMENT Intel®

CR3controal register field
Contains the base physical address of the page directory to be used by the task.
Control register CR3 isalso known asthe page-directory baseregister (PDBR).

Privilegelevel-0, -1, and -2 stack pointer fields
These stack pointers consist of a logical address made up of the segment
selector for the stack segment (SSO, SS1, and SS2) and an offset into the stack
(ESPO, ESP1, and ESP2). Note that the values in these fields are static for a
particular task; whereas, the SS and ESP vaues will changeif stack switching
occurs within the task.

T (debug trap) flag (byte 100, bit 0)
When set, the T flag causes the processor to raise a debug exception when a
task switch to thistask occurs (refer to Section 15.3.1.5., “Task-Switch Excep-
tion Condition”, in Chapter 13)ebugging and Performance Monitoring).

I/0O map base addressfield
Contains a 16-bit offset from the base of the TSS to the 1/O permission bit map
and interrupt redirection bitmap. When present, these maps are stored in the
TSS at higher addresses. The 1/O map base address points to the beginning of
the 1/0 permission bit map and the end of the interrupt redirection bit map.
Refer to Chapter 9nput/Output, in thelntel Architecture Software Devel-
oper’s Manual, Volume,Xor more information about the I/O permission bit
map. Refer to Section 16.3., “Interrupt and Exception Handling in Virtual-
8086 Mode” in Chapter 16086 Emulation for a detailed description of the
interrupt redirection bit map.

If paging is used, care should be taken to avoid placing a page boundary within the part of the
TSS that the processor reads during a task switch (the first 104 bytes). If a page boundary is
placed within this part of the TSS, the pages on either side of the boundary must be present at
the same time and contiguous in physical memory. The reason for this restriction is that when
accessing a TSS during a task switch, the processor reads and writes into the first 104 bytes of
each TSS from contiguous physical addresses beginning with the physical address of the first
byte of the TSS. It may not perform address translations at a page boundary if one occurs within
this area. So, after the TSS access begins, if a part of the 104 bytes is not both present and phys-
ically contiguous, the processor will access incorrect TSS information, without generating a
page-fault exception. The reading of this incorrect information will generally lead to an unre-
coverable exception later in the task switch process.

Also, if paging is used, the pages corresponding to the previous task’s TSS, the current task’s
TSS, and the descriptor table entries for each should be marked as read/write. The task switch
will be carried out faster if the pages containing these structures are also present in memory
before the task switch is initiated.

6.2.2. TSS Descriptor

The TSS, like all other segments, is defined by a segment descriptor. Figure 6-3 shows the
format of a TSS descriptor. TSS descriptors may only be placed in the GDT; they cannot be
placed in an LDT or the IDT. An attempt to access a TSS using a segment selector with its Tl
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flag set (which indicates the current LDT) causes a general-protection exception (#GP) to be
generated. A general-protection exception is also generated if an attempt is made to load a
segment selector for a TSS into a segment register.

The busy flag (B) in the type field indicates whether the task is busy. A busy task is currently
running or is suspended. A type field with a value of 1001B indicates an inactive task; avalue
of 1011B indicates a busy task. Tasks are not recursive. The processor uses the busy flag to
detect an attempt to call atask whose execution has been interrupted. To insurethat thereisonly
onebusy flag isassociated with atask, each TSS should have only one TSS descriptor that points
toit.

TSS Descriptor

31 242322 212019 1615141312 11 8 7 0
Base31:24  [c|ojolv| LML lp| p P Base 23:16 |4
L : L |o|1 ‘ 0 ‘ B ‘ 1
31 16 15 0
Base Address 15:00 Segment Limit 15:00 0

AVL Available for use by system software
B Busy flag

BASE Segment Base Address

DPL Descriptor Privilege Level

G Granularity
LIMIT Segment Limit
P Segment Present

TYPE Segment Type

Figure 6-3. TSS Descriptor

The base, limit, and DPL fields and the granularity and present flags have functions similar to

their use in data-segment descriptors (refer to Section 3.4.3., “Segment Descriptors” in Chapter

3, Protected-Mode Memory Management). The limit field must have a value equal to or greater
than 67H (for a 32-bit TSS), one byte less than the minimum size of a TSS. Attempting to switch
to a task whose TSS descriptor has a limit less than 67H generates an invalid-TSS exception
(#TS). A larger limit is required if an 1/0 permission bit map is included in the TSS. An even
larger limit would be required if the operating system stores additional data in the TSS. The
processor does not check for a limit greater than 67H on a task switch; however, it does when
accessing the 1/O permission bit map or interrupt redirection bit map.

Any program or procedure with access to a TSS descriptor (that is, whose CPL is numerically
equal to or less than the DPL of the TSS descriptor) can dispatch the task with a call or a jump.
In most systems, the DPLs of TSS descriptors should be set to values less than 3, so that only
privileged software can perform task switching. However, in multitasking applications, DPLs
for some TSS descriptors can be set to 3 to allow task switching at the application (or user) priv-
ilege level.
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6.2.3. Task Register

Thetask register holdsthe 16-bit segment sel ector and the entire segment descriptor (32-bit base
address, 16-bit segment limit, and descriptor attributes) for the TSS of the current task (refer to
Figure 2-4 in Chapter 2, System Architecture Overview). This information is copied from the
TSS descriptor in the GDT for the current task. Figure 6-4 shows the path the processor usesto
accesses the TSS, using the information in the task register.

Thetask register has both avisible part (that can be read and changed by software) and an invis-
ible part (that is maintained by the processor and is inaccessible by software). The segment
selector in the visible portion points to a TSS descriptor in the GDT. The processor uses the
invisible portion of the task register to cache the segment descriptor for the TSS. Caching these
values in aregister makes execution of the task more efficient, because the processor does not
need to fetch these values from memory to reference the TSS of the current task.

The LTR (load task register) and STR (store task register) instructions load and read the visible
portion of the task register. The LTR instruction loads a segment selector (source operand) into
the task register that pointsto a TSS descriptor in the GDT, and then loads the invisible portion
of the task register with information from the TSS descriptor. This instruction is a privileged
instruction that may be executed only when the CPL is0. The LTR instruction generally is used
during system initialization to put an initial value in the task register. Afterwards, the contents
of the task register are changed implicitly when atask switch occurs.

The STR (store task register) instruction stores the visible portion of the task register in a
general-purpose register or memory. This instruction can be executed by code running at any
privilegelevel, to identify the currently running task; however, it is normally used only by oper-
ating system software.

On power up or reset of the processor, the segment sel ector and base address are set to the default
value of 0 and the limit is set to FFFFH.

6.2.4. Task-Gate Descriptor

A task-gate descriptor provides an indirect, protected reference to atask. Figure 6-5 shows the
format of atask-gate descriptor. A task-gate descriptor can be placed inthe GDT, an LDT, or the
IDT.

The TSS segment selector field in a task-gate descriptor pointsto a TSS descriptor in the GDT.
The RPL in this segment selector is not used.

The DPL of atask-gate descriptor controls access to the TSS descriptor during a task switch.
When a program or procedure makes a call or jump to atask through atask gate, the CPL and
the RPL field of the gate selector pointing to the task gate must be less than or equal to the DPL
of the task-gate descriptor. (Note that when atask gate is used, the DPL of the destination TSS
descriptor is not used.)
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TSS
~— (P~
A
Visible Part Invisible Part
Task | —
Register Selector Base Address Segment Limit
A
GDT
» TSS Descriptor
0
Figure 6-4. Task Register
31 1615 141312 11 8 7 0
D T
Pl P ype 4
L |ofo | 1 ‘ 0 | 1
31 16 15 0
TSS Segment Selector 0
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A task can be accessed either through a task-gate descriptor or a TSS descriptor. Both of these
structures are provided to satisfy the following needs:

® The need for atask to have only one busy flag. Because the busy flag for atask isstored in
the TSS descriptor, each task should have only one TSS descriptor. There may, however,
be several task gates that reference the same TSS descriptor.

®* The need to provide selective access to tasks. Task gates fill this need, because they can
residein an LDT and can have a DPL that is different from the TSS descriptor's DPL. A
program or procedure that does not have sufficient privilege to access the TSS descriptor
for atask in the GDT (which usually has a DPL of 0) may be alowed access to the task
through a task gate with a higher DPL. Task gates give the operating system greater
latitude for limiting access to specific tasks.

®* The need for an interrupt or exception to be handled by an independent task. Task gates
may also reside in the IDT, which alows interrupts and exceptions to be handled by
handler tasks. When an interrupt or exception vector points to a task gate, the processor
switches to the specified task.

Figure 6-6 illustrates how atask gatein an LDT, atask gate in the GDT, and a task gate in the
IDT can al point to the same task.

6.3. TASK SWITCHING

The processor transfers execution to another task in any of four cases:

® The current program, task, or procedure executes a JIMP or CALL instruction to a TSS
descriptor in the GDT.

® The current program, task, or procedure executes a JMP or CALL instruction to atask-gate
descriptor inthe GDT or the current LDT.

® Aninterrupt or exception vector points to atask-gate descriptor in the IDT.
® The current task executes an IRET when the NT flag in the EFLAGS register is set.

TheJMP, CALL, and IRET instructions, aswell asinterrupts and exceptions, are all generalized
mechanisms for redirecting aprogram. The referencing of a TSS descriptor or atask gate (when
calling or jumping to atask) or the state of the NT flag (when executing an IRET instruction)
determines whether atask switch occurs.

The processor performs the following operations when switching to a new task:

1. Obtains the TSS segment selector for the new task as the operand of the IMP or CALL
instruction, from atask gate, or from the previous task link field (for atask switch initiated
with an IRET instruction).
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Task Gate
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IDT

Task Gate

Figure 6-6. Task Gates Referencing the Same Task

2. Checks that the current (old) task is allowed to switch to the new task. Data-access
privilege rules apply to IMP and CALL instructions. The CPL of the current (old) task and
the RPL of the segment selector for the new task must be less than or equal to the DPL of
the TSS descriptor or task gate being referenced. Exceptions, interrupts (except for
interrupts generated by the INT n instruction), and the IRET instruction are permitted to
switch tasks regardless of the DPL of the destination task-gate or TSS descriptor. For
interrupts generated by the INT n instruction, the DPL is checked.

3. Checks that the TSS descriptor of the new task is marked present and has a valid limit
(greater than or equal to 67H).

4. Checks that the new task is available (call, jump, exception, or interrupt) or busy (IRET
return).
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5. Checks that the current (old) TSS, new TSS, and all segment descriptors used in the task
switch are paged into system memory.

6. If the task switch was initiated with a JIMP or IRET instruction, the processor clears the
busy (B) flag in the current (old) task’s TSS descriptor; if initiated with a CALL
instruction, an exception, or an interrupt, the busy (B) flag is left set. (Refer to Table 6-2.)

7. If the task switch was initiated with an IRET instruction, the processor clears the NT flag
in a temporarily saved image of the EFLAGS register; if initiated with a CALL or JMP
instruction, an exception, or an interrupt, the NT flag is left unchanged in the saved
EFLAGS image.

8. Saves the state of the current (old) task in the current task’s TSS. The processor finds the
base address of the current TSS in the task register and then copies the states of the
following registers into the current TSS: all the general-purpose registers, segment
selectors from the segment registers, the temporarily saved image of the EFLAGS register,
and the instruction pointer register (EIP).

NOTE

At this point, if all checks and saves have been carried out successfully, the
processor commits to the task switch. If an unrecoverable error occurs in
steps 1 through 8, the processor does not complete the task switch and insures
that the processor is returned to its state prior to the execution of the
instruction that initiated the task switch. If an unrecoverable error occurs after
the commit point (in steps 9 through 14), the processor completes the task
switch (without performing additional access and segment availability
checks) and generates the appropriate exception prior to beginning execution
of the new task. If exceptions occur after the commit point, the exception
handler must finish the task switch itself before allowing the processor to
begin executing the task. Refer to Chapterlrfierrupt and Exception
Handling for more information about the affect of exceptions on a task when
they occur after the commit point of a task switch.

9. If the task switch was initiated with a CALL instruction, an exception, or an interrupt, the
processor sets the NT flag in the EFLAGS image stored in the new task’s TSS; if initiated
with an IRET instruction, the processor restores the NT flag from the EFLAGS image
stored on the stack. If initiated with a JMP instruction, the NT flag is left unchanged.
(Refer to Table 6-2.)

10. If the task switch was initiated with a CALL instruction, JMP instruction, an exception, or
an interrupt, the processor sets the busy (B) flag in the new task's TSS descriptor; if
initiated with an IRET instruction, the busy (B) flag is left set.

11. Sets the TS flag in the control register CRO image stored in the new task’s TSS.

12. Loads the task register with the segment selector and descriptor for the new task's TSS.
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13. Loads the new task’s state from its TSS into processor. Any errors associated with the
loading and qualification of segment descriptorsin this step occur in the context of the new
task. The task state information that is loaded here includes the LDTR register, the PDBR
(control register CR3), the EFLAGS register, the EIP register, the general-purpose
registers, and the segment descriptor parts of the segment registers.

14. Begins executing the new task. (To an exception handler, the first instruction of the new
task appears not to have been executed.)

The state of the currently executing task is always saved when a successful task switch occurs.
If the task is resumed, execution starts with the instruction pointed to by the saved EIP value,
and the registers are restored to the values they held when the task was suspended.

When switching tasks, the privilege level of the new task does not inherit its privilegelevel from
the suspended task. The new task begins executing at the privilege level specified in the CPL
field of the CSregister, which isloaded from the TSS. Because tasks are isolated by their sepa-
rate address spaces and TSSs and because privilege rules control accessto a TSS, software does
not need to perform explicit privilege checks on atask switch.

Table 6-1 shows the exception conditions that the processor checks for when switching tasks. It
also shows the exception that is generated for each check if an error is detected and the segment
that the error code references. (The order of the checks in the table is the order used in the P6
family processors. The exact order is model specific and may be different for other Intel Archi-
tecture processors.) Exception handlers designed to handle these exceptions may be subject to
recursive calls if they attempt to reload the segment selector that generated the exception. The
cause of the exception (or the first of multiple causes) should be fixed before reloading the
selector.

Table 6-1. Exception Conditions Checked During a Task Switch

Error Code

Condition Checked Exception? Reference?
Segment selector for a TSS descriptor references #GP New Task’s TSS
the GDT and is within the limits of the table.
TSS descriptor is present in memory. #NP New Task’s TSS
TSS descriptor is not busy (for task switch initiated by a | #GP (for IMP, CALL, | Task’s back-link TSS
call, interrupt, or exception). INT)
TSS descriptor is not busy (for task switch initiated by #TS (for IRET) New Task’s TSS

an IRET instruction).

TSS segment limit greater than or equal to 108 (for 32- #TS New Task’s TSS
bit TSS) or 44 (for 16-bit TSS).

Registers are loaded from the values in the TSS.

LDT segment selector of new task is valid . #TS New Task’s LDT

Code segment DPL matches segment selector RPL. #TS New Code Segment
SS segment selector is valid 2. #TS New Stack Segment
Stack segment is present in memory. #SF New Stack Segment
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Table 6-1. Exception Conditions Checked During a Task Switch (Contd.)

Stack segment DPL matches CPL. #TS New stack segment
LDT of new task is present in memory. #TS New Task’s LDT

CS segment selector is valid 3. #TS New Code Segment
Code segment is present in memory. #NP New Code Segment
Stack segment DPL matches selector RPL. #TS New Stack Segment
DS, ES, FS, and GS segment selectors are valid 2. #TS New Data Segment
DS, ES, FS, and GS segments are readable. #TS New Data Segment
DS, ES, FS, and GS segments are present in memory. #NP New Data Segment
DS, ES, FS, and GS segment DPL greater than or #TS New Data Segment
equal to CPL (unless these are conforming segments).

NOTES:

1. #NP is segment-not-present exception, #GP is general-protection exception, #TS is invalid-TSS excep-
tion, and #SF is stack-fault exception.

2. The error code contains an index to the segment descriptor referenced in this column.

3. A segment selector is valid if it is in a compatible type of table (GDT or LDT), occupies an address within
the table’s segment limit, and refers to a compatible type of descriptor (for example, a segment selector in
the CS register only is valid when it points to a code-segment descriptor).

The TS (task switched) flag in the control register CRO is set every time atask switch occurs.
System software uses the TS flag to coordinate the actions of floating-point unit when gener-
ating floating-point exceptions with the rest of the processor. The TS flag indicates that the
context of the floating-point unit may be different from that of the current task. Refer to Section
2.5., “Control Registers” in Chapter System Architecture Overview for a detailed description
of the function and use of the TS flag.

6.4. TASK LINKING

The previous task link field of the TSS (sometimes called the “backlink”) and the NT flag in the
EFLAGS register are used to return execution to the previous task. The NT flag indicates
whether the currently executing task is nested within the execution of another task, and the
previous task link field of the current task's TSS holds the TSS selector for the higher-level task
in the nesting hierarchy, if there is one (refer to Figure 6-7).

When a CALL instruction, an interrupt, or an exception causes a task switch, the processor
copies the segment selector for the current TSS into the previous task link field of the TSS for
the new task, and then sets the NT flag in the EFLAGS register. The NT flag indicates that the
previous task link field of the TSS has been loaded with a saved TSS segment selector. If soft-
ware uses an IRET instruction to suspend the new task, the processor uses the value in the
previous task link field and the NT flag to return to the previous task; that is, if the NT flag is
set, the processor performs a task switch to the task specified in the previous task link field.
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NOTE

When a IMP instruction causes a task switch, the new task is not nested; that
is, the NT flag is set to 0 and the previous task link field is not used. A IMP
instruction is used to dispatch a new task when nesting is not desired.

TASK MANAGEMENT
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|Prev. Task Link

| Task Register |

N

Figure 6-7. Nested Tasks

Table 6-2 summarizes the uses of the busy flag (in the TSS segment descriptor), the NT flag, the
previoustask link field, and TS flag (in control register CR0) during atask switch. Note that the
NT flag may be modified by software executing at any privilege level. It is possible for a
program to set its NT flag and execute an IRET instruction, which would have the effect of
invoking the task specified in the previous link field of the current task’'s TSS. To keep spurious
task switches from succeeding, the operating system should initialize the previoustask link field
for every TSSiit createsto O.

Table 6-2. Effect of a Task Switch on Busy Flag, NT Flag, Previous Task Link Field,
and TS Flag

Flag or Field

Effect of IMP
instruction

Effect of CALL
Instruction or
Interrupt

Effect of IRET
Instruction

Busy (B) flag of new
task.

Busy flag of old task.

NT flag of new task.

NT flag of old task.

Previous task link field of
new task.

Previous task link field of
old task.

TS flag in control
register CRO.

Flag is set. Must have
been clear before.
Flag is cleared.

No change.

No change.

No change.

No change.

Flag is set.

Flag is set. Must have
been clear before.

No change. Flag is
currently set.

Flag is set.

No change.

Loaded with selector
for old task’s TSS.

No change.

Flag is set.

No change. Must have
been set.

Flag is cleared.
Restored to value from
TSS of new task.

Flag is cleared.

No change.

No change.

Flag is set.
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6.4.1. Use of Busy Flag To Prevent Recursive Task Switching

A TSS allows only one context to be saved for a task; therefore, once a task is called
(dispatched), arecursive (or re-entrant) call to the task would cause the current state of the task
to be lost. The busy flag in the TSS segment descriptor is provided to prevent re-entrant task
switching and subsequent loss of task state information. The processor manages the busy flag as
follows:

1. When dispatching atask, the processor sets the busy flag of the new task.

2. If during atask switch, the current task is placed in a nested chain (the task switch is being
generated by a CALL instruction, an interrupt, or an exception), the busy flag for the
current task remains set.

3. When switching to the new task (initiated by a CALL instruction, interrupt, or exception),
the processor generates a general -protection exception (#GP) if the busy flag of the new
task is already set. (If thetask switch isinitiated with an IRET instruction, the exceptionis
not raised because the processor expects the busy flag to be set.)

4. When atask isterminated by ajump to a new task (initiated with a IMP instruction in the
task code) or by an IRET instruction in the task code, the processor clears the busy flag,
returning the task to the “not busy” state.

In this manner the processor prevents recursive task switching by preventing a task from
switching to itself or to any task in a nested chain of tasks. The chain of nested suspended tasks
may grow to any length, due to multiple calls, interrupts, or exceptions. The busy flag prevents
a task from being invoked if it is in this chain.

The busy flag may be used in multiprocessor configurations, because the processor follows a
LOCK protocol (on the bus or in the cache) when it sets or clears the busy flag. This lock keeps
two processors from invoking the same task at the same time. (Refer to Section 7.1.2.1., “Auto-
matic Locking” in Chapter 7Multiple-Processor Management for more information about
setting the busy flag in a multiprocessor applications.)

6.4.2. Modifying Task Linkages

In a uniprocessor system, in situations where it is necessary to remove a task from a chain of
linked tasks, use the following procedure to remove the task:

1. Disable interrupts.

2. Change the previous task link field in the TSS of the pre-empting task (the task that
suspended the task to be removed). It is assumed that the pre-empting task is the next task
(newer task) in the chain from the task to be removed. Change the previous task link field
should to point to the TSS of the next oldest or to an even older task in the chain.

3. Clear the busy (B) flag in the TSS segment descriptor for the task being removed from the
chain. If more than one task is being removed from the chain, the busy flag for each task
being remove must be cleared.

4. Enable interrupts.

6-16 I



Intel® TASK MANAGEMENT

In a multiprocessing system, additional synchronization and serialization operations must be
added to this procedure to insure that the TSS and its segment descriptor are both locked when
the previous task link field is changed and the busy flag is cleared.

6.5. TASK ADDRESS SPACE

The address space for atask consists of the segments that the task can access. These segments

includethe code, data, stack, and system segmentsreferenced in the TSS and any other segments

accessed by the task code. These segments are mapped into the processor’s linear address space
which is in turn mapped into the processor’s physical address space (either directly or through

paging).
The LDT segment field in the TSS can be used to give each task its own LDT. Giving a task its

own LDT allows the task address space to be isolated from other tasks by placing the segment
descriptors for all the segments associated with the task in the task’s LDT.

It also is possible for several tasks to use the same LDT. This is a simple and memaory-efficient
way to allow some tasks to communicate with or control each other, without dropping the
protection barriers for the entire system.

Because all tasks have access to the GDT, it also is possible to create shared segments accesse
through segment descriptors in this table.

If paging is enabled, the CR3 register (PDBR) field in the TSS allows each task can also have
its own set of page tables for mapping linear addresses to physical addresses. Or, several tasks
can share the same set of page tables.

6.5.1. Mapping Tasks to the Linear and Physical Address
Spaces

Tasks can be mapped to the linear address space and physical address space in either of two
ways:

® One linear-to-physical address space mapping is shared among all tasks. When paging is
not enabled, thisis the only choice. Without paging, all linear addresses map to the same
physical addresses. When paging is enabled, this form of linear-to-physical address space
mapping is obtained by using one page directory for all tasks. The linear address space
may exceed the available physical space if demand-paged virtual memory is supported.

® Each task has its own linear address space that is mapped to the physical address space.
This form of mapping is accomplished by using a different page directory for each task.
Because the PDBR (control register CR3) is loaded on each task switch, each task may
have a different page directory.

The linear address spaces of different tasks may map to completely distinct physical addresses.
If the entries of different page directories point to different page tables and the page tables point
to different pages of physical memory, then the tasks do not share any physical addresses.
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With either method of mapping task linear address spaces, the TSSs for all tasks must liein a
shared area of the physical space, which is accessible to all tasks. This mapping is required so
that the mapping of TSS addresses does not change while the processor is reading and updating
the TSSs during a task switch. The linear address space mapped by the GDT also should be
mapped to a shared area of the physical space; otherwise, the purpose of the GDT is defeated.
Figure 6-8 shows how the linear address spaces of two tasks can overlap in the physical space
by sharing page tables.

TSS Page Directories Page Tables Page Frames
Task A
Task A TSS »  Page
Task A
PTE = Page
PTE >
PDBR > PDE > PTE ] Task A
PDE . Page
Shared PT >
Shared
. Page
PTE T
- PTE Shared
Task B TSS 7 Page
Task B
o Page
PDBR > PDE — PTE —
PDE > PTE Task B
7 = Page

Figure 6-8. Overlapping Linear-to-Physical Mappings

6.5.2. Task Logical Address Space

To alow the sharing of data among tasks, use any of the following techniques to create shared
logical-to-physical address-space mappings for data segments:

®*  Through the segment descriptors in the GDT. All tasks must have access to the segment
descriptors in the GDT. If some segment descriptors in the GDT point to segments in the
linear-address space that are mapped into an area of the physical-address space common to
all tasks, then all tasks can share the data and code in those segments.

® Through ashared LDT. Two or more tasks can use the same LDT if the LDT fieldsin their
TSSs point to the same LDT. If some segment descriptors in a shared LDT point to
segments that are mapped to a common area of the physical address space, the data and
code in those segments can be shared among the tasks that share the LDT. This method of
sharing is more selective than sharing through the GDT, because the sharing can be limited
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to specific tasks. Other tasks in the system may have different LDTs that do not give them
access to the shared segments.

Through segment descriptorsin distinct LDTsthat are mapped to common addressesin the
linear address space. If this common area of the linear address space is mapped to the same
area of the physical address space for each task, these segment descriptors permit the tasks
to share segments. Such segment descriptors are commonly called aliases. This method of
sharing is even more selective than those listed above, because, other segment descriptors
in the LDTs may point to independent linear addresses which are not shared.

6.6. 16-BIT TASK-STATE SEGMENT (TSS)

The 32-bit Intel Architecture processors also recognize a 16-bit TSS format like the one used in
Intel 286 processors (refer to Figure 6-9). It is supported for compatibility with software written
to run on these earlier Intel Architecture processors.

The following additional information isimportant to know about the 16-bit TSS.

Do not use a 16-bit TSS to implement a virtual-8086 task.
The valid segment limit for a 16-bit TSSis 2CH.

The 16-bit TSS does not contain afield for the base address of the page directory, which is
loaded into control register CR3. Therefore, a separate set of page tables for each task is
not supported for 16-bit tasks. If a 16-bit task is dispatched, the page-table structure for the
previous task is used.

The 1/O base address is not included in the 16-bit TSS, so none of the functions of the /O
map are supported.

When task state is saved in a 16-bit TSS, the upper 16 bits of the EFLAGS register and the
EIP register arelost.

When the general-purpose registers are loaded or saved from a 16-bit TSS, the upper 16
bits of the registers are modified and not maintained.
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CHAPTER 7
MULTIPLE-PROCESSOR MANAGEMENT

The Intel Architecture provides several mechanisms for managing and improving the perfor-
mance of multiple processors connected to the same system bus. These mechanisms include:

Bus locking and/or cache coherency management for performing atomic operations on
system memory.

Serializing instructions. (These instructions apply only to the Pentium® and P6 family
processors.)

Advance programmable interrupt controller (APIC) located on the processor chip. (The
APIC architecture was introduced into the Intel Architecture with the Pentium® processor.)

A secondary (level 2, L2) cache. For the P6 family processors, the L2 cacheisincluded in
the processor package and is tightly coupled to the processor. For the Pentium® and
Intel486™ processors, pins are provided to support an external L2 cache.

These mechanisms are particularly useful in symmetric-multiprocessing systems; however, they
can also be used in applications where a Intel Architecture processor and a special-purpose
processor (such as a communications, graphics, or video processor) share the system bus.

The main goals of these multiprocessing mechanisms are as follows:

To maintain system memory coherency—When two or more processors are attempting
simultaneously to access the same address in system memory, some communication
mechanism or memory access protocol must be available to promote data coherency and,
in some instances, to allow one processor to temporarily lock a memory location.

To maintain cache consistency—When one processor accesses data cached in another
processor, it must not receive incorrect data. If it modifies data, all other processors that
access that data must receive the modified data

To allow predictable ordering of writesto memory— n some circumstances, it isimportant
that memory writes be observed externally in precisely the same order as programmed.

To distribute interrupt handling among a group of processors—When several processors
are operating in a system in parallel, it is useful to have a centralized mechanism for
receiving interrupts and distributing them to available processors for servicing.

The Intel Architecture’s caching mechanism and cache consistency are discussed in Chapter 9,
Memory Cache Control. Bus and memory locking, serializing instructions, memory ordering,
and the processor’s internal APIC are discussed in the following sections.
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7.1. LOCKED ATOMIC OPERATIONS

The 32-bit Intel Architecture processors support locked atomic operations on locations in
system memory. These operations are typically used to manage shared data structures (such as
semaphores, segment descriptors, system segments, or page tables) in which two or more
processors may try simultaneously to modify the same field or flag. The processor uses three
interdependent mechanisms for carrying out locked atomic operations:

® Guaranteed atomic operations.
® Buslocking, using the LOCK# signal and the LOCK instruction prefix.

® Cache coherency protocols that insure that atomic operations can be carried out on cached
data structures (cache lock). This mechanism is present in the P6 family processors.

These mechanisms areinterdependent in the following ways. Certain basic memory transactions

(such asreading or writing abyte in system memory) are always guaranteed to be handled atom-

ically. That is, once started, the processor guarantees that the operation will be completed before

another processor or bus agent is allowed access to the memory location. The processor also

supports bus locking for performing selected memory operations (such as a read-modify-write

operation in a shared area of memory) that typically need to be handled atomically, but are not
automatically handled this way. Because frequently used memory locations are often cached in

a processor’s L1 or L2 caches, atomic operations can often be carried out inside a processor’s
caches without asserting the bus lock. Here the processor’s cache coherency protocols insure
that other processors that are caching the same memory locations are managed properly while
atomic operations are performed on cached memory locations.

Note that the mechanisms for handling locked atomic operations have evolved as the complexity
of Intel Architecture processors has evolved. As such, more recent Intel Architecture processors
(such as the P6 family processors) provide a more refined locking mechanism than earlier Intel
Architecture processors, as is described in the following sections.

7.1.1. Guaranteed Atomic Operations

The Intel386™, Intel486™, Pentittmand P6 family processors guarantee that the following
basic memory operations will always be carried out atomically:

® Reading or writing a byte.
® Reading or writing aword aligned on a 16-bit boundary.
® Reading or writing a doubleword aligned on a 32-bit boundary.

The P6 family processors guarantee that the following additional memory operations will
always be carried out atomically:

® Reading or writing a quadword aligned on a 64-bit boundary. (This operation is aso
guaranteed on the Pentium® processor.)

® 16-bit accesses to uncached memory locations that fit within a 32-bit data bus.
® 16-, 32-, and 64-hit accesses to cached memory that fit within a 32-Byte cache line.
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Accessesto cacheable memory that are split across bus widths, cache lines, and page boundaries
are not guaranteed to be atomic by the Intel486™, Pentiuni, or P6 family processors. The P6
family processors provide bus control signals that permit external memory subsystemsto make
split accesses atomic; however, nonaligned data accesses will seriously impact the performance
of the processor and should be avoided where possible.

7.1.2. Bus Locking

Intel Architecture processors provide a LOCK# signal that is asserted automatically during
certain critical memory operations to lock the system bus. While this output signal is asserted,
reguests from other processors or bus agents for control of the bus are blocked. Software can
specify other occasions when the LOCK semantics are to be followed by prepending the LOCK
prefix to an instruction.

In the case of the Intel386™, Intel486™, and Pentiuhprocessors, explicitly locked instruc-
tions will result in the assertion of the LOCK# signal. It is the responsibility of the hardware
designer to make the LOCK# signal available in system hardware to control memory accesses
among processors.

For the P6 family processors, if the memory area being accessed is cached internally in the
processor, the LOCK# signal is generally not asserted; instead, locking is only applied to the
processor’s caches (refer to Section 7.1.4., “Effects of a LOCK Operation on Internal Processor
Caches”).

7.1.2.1. AUTOMATIC LOCKING

The operations on which the processor automatically follows the LOCK semantics are as
follows:

®  When executing an XCHG instruction that references memory:.

®*  When setting the B (busy) flag of a TSS descriptor. The processor tests and sets the busy
flag in the type field of the TSS descriptor when switching to a task. To insure that two
processors do not switch to the same task simultaneously, the processor follows the LOCK
semantics while testing and setting this flag.

® When updating segment descriptors. When loading a segment descriptor, the processor
will set the accessed flag in the segment descriptor if the flag is clear. During this
operation, the processor follows the LOCK semantics so that the descriptor will not be
modified by another processor while it is being updated. For this action to be effective,
operating-system procedures that update descriptors should use the following steps:

— Use a locked operation to modify the access-rights byte to indicate that the segment
descriptor is not-present, and specify a value for the type field that indicates that the
descriptor is being updated.

— Update the fields of the segment descriptor. (This operation may require several
memory accesses; therefore, locked operations cannot be used.)
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— Use a locked operation to modify the access-rights byte to indicate that the segment
descriptor is valid and present.

Note that the Intel386™ processor always updates the accessed flag in the segment
descriptor, whether it is clear or not. The P6 family, Perftjiand Intel486™ processors
only update this flag if it is not already set.

®  When updating page-directory and page-table entries. When updating page-directory
and page-tabl e entries, the processor uses |ocked cycles to set the accessed and dirty flagin
the page-directory and page-table entries.

®* Acknowledging interrupts. After an interrupt request, an interrupt controller may use the
data bus to send the interrupt vector for the interrupt to the processor. The processor
follows the LOCK semantics during this time to ensure that no other data appears on the
data bus when the interrupt vector is being transmitted.

7.1.2.2. SOFTWARE CONTROLLED BUS LOCKING

To explicitly force the LOCK semantics, software can use the LOCK prefix with the following
instructions when they are used to modify a memory location. An invalid-opcode exception
(#UD) is generated when the LOCK prefix is used with any other instruction or when no write
operation is made to memory (that is, when the destination operand isin aregister).

® Thehit test and modify instructions (BTS, BTR, and BTC).
® The exchangeinstructions (XADD, CMPXCHG, and CMPXCHGS8B).
® TheLOCK prefix isautomatically assumed for XCHG instruction.

® The following single-operand arithmetic and logical instructions: INC, DEC, NOT, and
NEG.

®* The following two-operand arithmetic and logical instructions: ADD, ADC, SUB, SBB,
AND, OR, and XOR.

A locked instruction is guaranteed to lock only the area of memory defined by the destination
operand, but may be interpreted by the system as alock for alarger memory area.

Software should access semaphores (shared memory used for signaling between multiple
processors) using identical addresses and operand lengths. For example, if one processor
accesses a semaphore using a word access, other processors should not access the semaphore
using a byte access.

The integrity of a bus lock is not affected by the alignment of the memory field. The LOCK
semantics are followed for as many bus cycles as necessary to update the entire operand.
However, it isrecommend that |ocked accesses be aligned on their natural boundaries for better
system performance:
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®  64-bit boundary for locked quadword access.

Locked operations are atomic with respect to all other memory operations and all externally
visible events. Only instruction fetch and page table accesses can pass locked instructions.
Locked instructions can be used to synchronize data written by one processor and read by
another processor.

For the P6 family processors, locked operations serialize al outstanding load and store opera-
tions (that is, wait for them to complete).

L ocked instructions should not be used to insure that datawritten can be fetched asinstructions.

NOTE

The locked instructions for the current versions of the Intel486™, Pentiung,
and P6 family processors will allow data written to be fetched as instructions.
However, Intel recommends that developers who require the use of self-
modifying code use a different synchronizing mechanism, described in the
following sections.

7.1.3. Handling Self- and Cross-Modifying Code

The act of a processor writing data into a currently executing code segment with the intent of
executing that data as code is called self-modifying code. Intel Architecture processors exhibit
model -specific behavior when executing self-modified code, depending upon how far ahead of
the current execution pointer the code has been modified. As processor architectures become
more complex and start to speculatively execute code ahead of the retirement point (asin the P6
family processors), the rules regarding which code should execute, pre- or post-modification,
become blurred. To write self-modifying code and ensure that it is compliant with current and
future Intel Architectures one of the following two coding options should be chosen.

(* OPTION 1 %)

Store modified code (as data) into code segment;
Jump to new code or an intermediate location;
Execute new code;

(* OPTION 2 *)

Store modified code (as data) into code segment;

Execute a serializing instruction; (* For example, CPUID instruction *)
Execute new code;

(The use of one of these optionsisnot required for programsintended to run on the Pentium® or
Intel486™ processors, but are recommended to insure compatibility with the P6 family proces-
sors.)

It should be noted that self-modifying code will execute at a lower level of performance than
nonself-modifying or normal code. The degree of the performance deterioration will depend
upon the frequency of modification and specific characteristics of the code.
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The act of one processor writing data into the currently executing code segment of a second
processor with the intent of having the second processor execute that data as code is called
cross-modifying code. As with self-modifying code, Intel Architecture processors exhibit
model -specific behavior when executing cross-modifying code, depending upon how far ahead
of the executing processors current execution pointer the code has been modified. To write
cross-modifying code and insure that it is compliant with current and future Intel Architectures,
the following processor synchronization algorithm should be implemented.

; Action of Modifying Processor
Store modified code (as data) into code segment;
Memory_Flag ~ 1;

; Action of Executing Processor
WHILE (Memory_Flag # 1)
Wait for code to update;
ELIHW;
Execute serializing instruction; (* For example, CPUID instruction *)
Begin executing modified code;

(The use of thisoption is not required for programs intended to run on the Intel486™ processor,
but is recommended to insure compatibility with the Perftjamd P6 family processors.)

Like self-modifying code, cross-modifying code will execute at a lower level of performance
than noncross-modifying (normal) code, depending upon the frequency of modification and
specific characteristics of the code.

7.1.4. Effects of a LOCK Operation on Internal Processor
Caches

For the Intel486™ and Pentiurm processors, the LOCK# signal is always asserted on the bus
during aLOCK operation, even if the area of memory being locked is cached in the processor.

For the P6 family processors, if the area of memory being locked during a LOCK operation is

cached in the processor that is performing the LOCK operation as write-back memory and is
completely contained in acacheline, the processor may not assert the LOCK# signal on the bus.

Instead, it will modify the memory location internally and allow it's cache coherency mecha-
nism to insure that the operation is carried out atomically. This operation is called “cache
locking.” The cache coherency mechanism automatically prevents two or more processors that
have cached the same area of memory from simultaneously modifying data in that area.

7.2. MEMORY ORDERING

The termmemory ordering refers to the order in which the processor issues reads (loads) and
writes (stores) out onto the bus to system memory. The Intel Architecture supports several
memory ordering models depending on the implementation of the architecture. For example, the
Intel386™ processor enforcpsogram ordering (generally referred to abrong ordering),
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where reads and writes are issued on the system bus in the order they occur in the instruction
stream under al circumstances.

To alow optimizing of instruction execution, the Intel Architecture allows departures from
strong-ordering model called processor ordering in P6-family processors. These processor-
ordering variationsallow performance enhancing operations such as allowing readsto go ahead
of writes by buffering writes. The goal of any of these variationsisto increaseinstruction execu-
tion speeds, while maintaining memory coherency, even in multiple-processor systems.

Thefollowing sections describe the memory ordering models used by the Intel486™, Pentiur,
and P6 family processors.

7.2.1. Memory Ordering in the Pentium® and Intel486™
Processors

The Pentium® and Intel486™ processors follow the processor-ordered memory model;
however, they operate as strongly-ordered processors under most circumstances. Reads and
writes always appear in programmed order at the system bus—except for the following situation
where processor ordering is exhibited. Read misses are permitted to go ahead of buffered writes
on the system bus when all the buffered writes are cache hits and, therefore, are not directed to
the same address being accessed by the read miss.

In the case of I/O operations, both reads and writes always appear in programmed order.

Software intended to operate correctly in processor-ordered processors (such as the P6 family
processors) should not depend on the relatively strong ordering of the Pemtiuntel 436™
processors. Instead, it should insure that accesses to shared variables that are intended to control
concurrent execution among processors are explicitly required to obey program ordering
through the use of appropriate locking or serializing operations (refer to Section 7.2.4.,
“Strengthening or Weakening the Memory Ordering Model”).

7.2.2. Memory Ordering in the P6 Family Processors

The P6 family processors also use a processor-ordered memory ordering model that can be
further refined defined as “write ordered with store-buffer forwarding.” This model can be char-
acterized as follows.

In a single-processor system for memory regions defined as write-back cacheable, the following
ordering rules apply:

1. Reads can be carried out speculatively and in any order.

Reads can pass buffered writes, but the processor is self-consistent.
Writes to memory are always carried out in program order.

Writes can be buffered.

a M oD

Writes are not performed speculatively; they are only performed for instructions that have
actually been retired.
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6. Datafrom buffered writes can be forwarded to waiting reads within the processor.

7. Reads or writes cannot pass (be carried out ahead of) 1/0 instructions, locked instructions,
or serializing instructions.

The second rule allows aread to pass awrite. However, if the write isto the same memory loca-
tion as the read, the processor’s internal “snooping” mechanism will detect the conflict and
update the already cached read before the processor executes the instruction that uses the value

The sixth rule constitutes an exception to an otherwise write ordered model.
In a multiple-processor system, the following ordering rules apply:

® |Individual processors use the same ordering rules as in a single-processor system.
® Writesby asingle processor are observed in the same order by all processors.

® Writes from the individual processors on the system bus are globally observed and are
NOT ordered with respect to each other.

The latter rule can be clarified by the example in Figure 7-1. Consider three processors in a
system and each processor performs three writes, one to each of three defined locations (A, B,
and C). Individually, the processors perform the writes in the same program order, but because
of bus arbitration and other memory access mechanisms, the order that the three processorswrite
theindividual memory locations can differ each time the respective code sequences are executed
on the processors. The final valuesin location A, B, and C would possibly vary on each execu-
tion of the write sequence.

Order of Writes From Individual Processors

Each Processor #1 Processor #2 Processor #3
_=ach processor Write A.1 Write A.2 Write A.3
is guaranteed to . . .
perform writes Write B.1 Write B.2 Write B.3
Write C.1 Write C.2 Write C.3

in program order.

Example of Order of Actual Writes
From All Processors to Memory

Writes are in order Write A.1 —

o with respect to Write B.1

individual processors. Write A.2 Writes from all
Write A.3 processors are
Write C.1 > not guaranteed
Write B.2 to occurin a
Write C.2 particular order.
Write B.3
Write C.3 —

Figure 7-1. Example of Write Ordering in Multiple-Processor Systems
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The processor-ordering model described in this section is virtually identical to that used by the
Pentium® and Intel486™ processors. The only enhancements in the P6 family processors are:

® Added support for speculative reads.
® Store-buffer forwarding, when aread passes a write to the same memory location.

® Out of order store from long string store and string move operations (refer to Section
7.2.3., “Out of Order Stores From String Operations in P6 Family Processors” below).

7.2.3. Out of Order Stores From String Operations in P6 Family
Processors
The P6 family processors modify the processors operation during the string store operations
(initiated with the MOVS and STOS instructions) to maximize performance. Once the “fast
string” operations initial conditions are met (as described below), the processor will essentially
operate on, from an external perspective, the string in a cache line by cache line mode. This
results in the processor looping on issuing a cache-line read for the source address and an inval-
idation on the external bus for the destination address, knowing that all bytes in the destination
cache line will be modified, for the length of the string. In this mode interrupts will only be
accepted by the processor on cache line boundaries. It is possible in this mode that the destina-
tion line invalidations, and therefore stores, will be issued on the external bus out of order.

Code dependent upon sequential store ordering should not use the string operations for the entire
data structure to be stored. Data and semaphores should be separated. Order dependent code
should use a discrete semaphore uniquely stored to after any string operations to allow correctly
ordered data to be seen by all processors.

Initial conditions for “fast string” operations:

® Source and destination addresses must be 8-byte aligned.

®  String operation must be performed in ascending address order.

® Theinitial operation counter (ECX) must be equal to or greater than 64.

®  Source and destination must not overlap by less than a cache line (32 bytes).

® The memory type for both source and destination addresses must be either WB or WC.

7.2.4. Strengthening or Weakening the Memory Ordering Model

The Intel Architecture provides several mechanisms for strengthening or weakening the
memory ordering model to handle special programming situations. These mechanisms include:

® The I/O instructions, locking instructions, the LOCK prefix, and serializing instructions
force stronger ordering on the processor.

®*  The memory type range registers (MTRRs) can be used to strengthen or weaken memory
ordering for specific area of physica memory (refer to Section 9.12., “Memory Type
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Range Registers (MTRRSs)”, in ChapteMegmory Cache Control). MTRRs are available
only in the P6 family processors.

These mechanisms can be used as follows.

Memory mapped devices and other 1/0O devices on the bus are often sensitive to the order of
writes to their 1/0O buffers. I/O instructions can be used to (the IN and OUT instructions) impose
strong write ordering on such accesses as follows. Prior to executing an I/O instruction, the
processor waits for all previous instructions in the program to complete and for all buffered
writes to drain to memory. Only instruction fetch and page tables walks can pass I/O instruc-
tions. Execution of subsequent instructions do not begin until the processor determines that the
I/O instruction has been completed.

Synchronization mechanisms in multiple-processor systems may depend upon a strong
memory-ordering model. Here, a program can use a locking instruction such as the XCHG
instruction or the LOCK prefix to insure that a read-modify-write operation on memory is
carried out atomically. Locking operations typically operate like 1/0 operations in that they wait
for all previous instructions to complete and for all buffered writes to drain to memory (refer to
Section 7.1.2., “Bus Locking”).

Program synchronization can also be carried out with serializing instructions (refer to Section
7.4., “Serializing Instructions”). These instructions are typically used at critical procedure or
task boundaries to force completion of all previous instructions before a jump to a new section
of code or a context switch occurs. Like the I/O and locking instructions, the processor waits
until all previous instructions have been completed and all buffered writes have been drained to
memory before executing the serializing instruction.

The MTRRs were introduced in the P6 family processors to define the cache characteristics for
specified areas of physical memory. The following are two examples of how memory types set
up with MTRRs can be used strengthen or weaken memory ordering for the P6 family proces-
sors:

® The uncached (UC) memory type forces a strong-ordering model on memory accesses.
Here, all reads and writes to the UC memory region appear on the bus and out-of-order or
speculative accesses are not performed. This memory type can be applied to an address
range dedicated to memory mapped 1/0 devices to force strong memory ordering.

® For areas of memory where weak ordering is acceptable, the write back (WB) memory
type can be chosen. Here, reads can be performed speculatively and writes can be buffered
and combined. For this type of memory, cache locking is performed on atomic (locked)
operations that do not split across cache lines, which helps to reduce the performance
penalty associated with the use of the typical synchronization instructions, such as XCHG,
that lock the bus during the entire read-modify-write operation. With the WB memory
type, the XCHG instruction locks the cache instead of the bus if the memory access is
contained within a cache line.

It is recommended that software written to run on P6 family processors assume the processor-
ordering model or a weaker memory-ordering model. The P6 family processors do not imple-
ment a strong memory-ordering model, except when using the UC memory type. Despite the
fact that P6 family processors support processor ordering, Intel does not guarantee that future
processors will support this model. To make software portable to future processors, it is recom-
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mended that operating systems provide critical region and resource control constructs and API's
(application program interfaces) based on I/O, locking, and/or serializing instructions be used to
synchronize access to shared areas of memory in multiple-processor systems. Also, software
should not depend on processor ordering in situations where the system hardware does not vsup-
port this memory-ordering model.

7.3. PROPAGATION OF PAGE TABLE ENTRY CHANGES TO
MULTIPLE PROCESSORS

In a multiprocessor system, when one processor changes a page table entry or mapping, the
changes must also be propagated to all the other processors. This process is also known as “TLB
Shootdown.” Propagation may be done by memory-based semaphores and/or interprocessor
interrupts between processors. One naive but algorithmically correct TLB Shootdown sequence
for the Intel Architecture is:

1. Begin barrier: Stop all processors. Cause all but one to HALT or stop in a spinloop.
2. Let the active processor change the PTE(S).

3. Let all processors invalidate the PTE(s) modified in their TLBs.

4. End barrier: Resume all processors.

Alternate, performance-optimized, TBL Shootdown algorithms may be developed; however,
care must be taken by the developers to ensure that either:

®* The differing TLB mappings are not actually used on different processors during the
update process.

OR

® The operating system is prepared to deal with the case where processor(s) is/are using the
stale mapping during the update process.

7.4. SERIALIZING INSTRUCTIONS

The Intel Architecture defines several serializing instructions. These instructions force the
processor to complete all modificationsto flags, registers, and memory by previousinstructions
and to drain al buffered writes to memory before the next instruction is fetched and executed.
For example, when aMOV to control register instruction isused to load anew val ueinto control
register CRO to enable protected mode, the processor must perform a serializing operation
before it enters protected mode. This serializing operation insures that all operations that were
started while the processor was in real-address mode are completed before the switch to
protected mode is made.

The concept of serializing instructions was introduced into the Intel Architecture with the
Pentium® processor to support parallel instruction execution. Serializing instructions have no
meaning for the Intel486™ and earlier processors that do not implement parallel instruction
execution.

I 7-11



MULTIPLE-PROCESSOR MANAGEMENT Intel®

It isimportant to note that executing of serializing instructions on P6 family processors constrain
speculative execution, because the results of speculatively executed instructions are discarded.

Thefollowing instructions are serializing instructions:

® Privileged serializing instructions—MOV (to control register), MOV (to debug register),
WRMSR, INVD, INVLPG, WBINVD, LGDT, LLDT, LIDT, and LTR.

® Nonprivileged serializing instructions—CPUID, IRET, and RSM.

The CPUID instruction can be executed at any privilege level to serialize instruction execu-
tion with no effect on program flow, except that the EAX, EBX, ECX, and EDX registers
are modified.

Nothing can pass a serializing instruction, and serializing instructions cannot pass any other
instruction (read, write, instruction fetch, or I/O).

When the processor serializes instruction execution, it ensures that all pending memory transac-
tions are completed, including writes stored in its store buffer, before it executes the next
instruction.

The following additional information is worth noting regarding serializing instructions:

® The processor does not writeback the contents of modified datain its data cache to external
memory when it serializes instruction execution. Software can force modified data to be
written back by executing the WBINVD instruction, which is a serializing instruction. It
should be noted that frequent use of the WBINV D instruction will seriously reduce system
performance.

® When an instruction is executed that enables or disables paging (that is, changes the PG
flag in control register CRO), the instruction should be followed by ajump instruction. The
target instruction of the jump instruction is fetched with the new setting of the PG flag (that
is, paging is enabled or disabled), but the jump instruction itself is fetched with the
previous setting. The P6 family processors do not require the jump operation following the
move to register CRO (because any use of the MOV instruction in a P6 family processor to
write to CRO is completely serializing). However, to maintain backwards and forward
compatibility with code written to run on other Intel Architecture processors, it is
recommended that the jump operation be performed.

® Whenever an instruction is executed to change the contents of CR3 while paging is
enabled, the next instruction is fetched using the trandation tables that correspond to the
new value of CR3. Therefore the next instruction and the sequentially following instruc-
tions should have a mapping based upon the new value of CR3. (Global entries in the
TLBs are not invalidated, refer to Section 9.10., “Invalidating the Translation Lookaside
Buffers (TLBs)”, Chapter 9Yemory Cache Control.)

® The Pentium® and P6 family processors use branch-prediction techniques to improve
performance by prefetching the destination of a branch instruction before the branch
instruction is executed. Consequently, instruction execution is not deterministically
serialized when a branch instruction is executed.
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7.5. ADVANCED PROGRAMMABLE INTERRUPT CONTROLLER
(APIC)

The Advanced Programmable Interrupt Controller (APIC), referred to in the following sections
as the local APIC, was introduced into the Intel Architecture with the Pentium® processor
(beginning with the 735/90 and 815/100 models) and isincluded in all P6 family processors. The
local APIC performs two main functions for the processor:

® |t processes local external interrupts that the processor receives at its interrupt pins and
local internal interrupts that software generates.

® |n multiple-processor systems, it communicates with an external 1/0 APIC chip. The
external 1/0 APIC receives external interrupt events from the system and interprocessor
interrupts from the processors on the system bus and distributes them to the processors on
the system bus. The I/O APIC is part of Intel's system chip set.

Figure 7-2 shows the relationship of the local APICs on the processors in a multiple-processor
(MP) system and the I/O APIC. The local APIC controls the dispatching of interrupts (to its
associated processor) that it receives either locally or from the I/O APIC. It provides facilities

for queuing, nesting and masking of interrupts. It handles the interrupt delivery protocol with its
local processor and accesses to APIC registers, and also manages interprocessor interrupts and
remote APIC register reads. A timer on the local APIC allows local generation of interrupts, and
local interrupt pins permit local reception of processor-specific interrupts. The local APIC can

be disabled and used in conjunction with a standard 8259A-style interrupt controller. (Disabling
the local APIC can be done in hardware for the Peritipnocessors or in software for the P6

family processors.)

The 1/O APIC is responsible for receiving interrupts generated by 1/0 devices and distributing

them among the local APICsby meansof the APIC Bus. Thel/O APIC managesinterruptsusing

either static or dynamic distribution schemes. Dynamic distribution of interrupts allows routing

of interrupts to the lowest priority processors. It also handles the distribution of interprocessor
interrupts and system-wide control functions such as NMI, INIT, SMI and start-up-interpro-

cessor interrupts. Individual pins on the 1/0 APIC can be programmed to generate a specific,
prioritized interrupt vector when asserted. The I/O APIC also has a “virtual wire mode” that
allows it to cooperate with an external 8259A in the system.

The APIC in the Pentiufnand P6 family processors is an architectural subset of the Intel
82489DX external APIC. The differences are described in Section 7.5.19., “Software Visible
Differences Between the Local APIC and the 82489DX"

The following sections focus on the local APIC, and its implementation in the P6 family proces-
sors. Contact Intel for the information on 1/O APIC.
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Processor #1 Processor #2 Processor #3
CPU CPU CPU
Local APIC Local APIC Local APIC
Local A Local A Local A
Interrupts Interrupts Interrupts
A APIC Bus
\i
1/0 APIC
External T
Interrupts 1/0 Chip Set

Figure 7-2. 1/O APIC and Local APICs in Multiple-Processor Systems

7.5.1. Presence of APIC

Beginning with the P6 family processors, the presence or absence of an on-chip APIC can be
detected using the CPUID instruction. When the CPUID instruction is executed, bit 9 of the
feature flags returned in the EDX register indicates the presence (set) or absence (clear) of an
on-chip local APIC.

7.5.2. Enabling or Disabling the Local APIC

For the P6 family processors, a flag (the E flag, bit 11) in the APIC_BASE MSR register
permitsthelocal APIC to be explicitly enabled or disabled. Refer to Section 7.5.8., “Relocation
of the APIC Registers Base Address” for a description of this flag. For the P&ptioessor,
the APICEN pin (which is shared with the PICD1 pin) is used during reset to enable or disable
thelocal APIC.

7.5.3. APIC Bus

All I/O APIC and local APICs communicate through the APIC bus (a 3-line inter-APIC bus).
Two of the lines are open-drain (wired-OR) and are used for data transmission; the third lineis
aclock. Thebusand its messages are invisible to software and are not classed as ar chitec-
tural (that is, the APIC bus and message format may change in future implementations
without having any effect on software compatibility).
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7.5.4. Valid Interrupts

Thelocal and 1/0 APICs support 240 distinct vectorsin therange of 16 to 255. Interrupt priority
isimplied by its vector, according to the following relationship:

priority = vector / 16

Oneisthelowest priority and 15 isthe highest. Vectors 16 through 31 are reserved for exclusive

use by the processor. The remaining vectors are for general use. The processor’s local APIC
includes an in-service entry and a holding entry for each priority level. To avoid losing inter-
rupts, software should allocate no more than 2 interrupt vectors per priority.

7.5.5. Interrupt Sources

The local APIC can receive interrupts from the following sources:
® Interrupt pins on the processor chip, driven by locally connected 1/0O devices.
* A busmessage fromthe 1/O APIC, originated by an 1/0O device connected to the 1/O APIC.

® A bus message from another processor’s local APIC, originated as an interprocessor
interrupt.

® The local APIC’s programmable timer or the error register, through the self-interrupt
generating mechanism.

® Software, through the self-interrupt generating mechanism.
® (P6family processors.) The performance-monitoring counters.

Thelocal APIC servicesthe |/O APIC and interprocessor interrupts according to theinformation

included in the bus message (such as vector, trigger type, interrupt destination, etc.). Interpreta-

tion of the processor’s interrupt pins and the timer-generated interrupts is programmable, by
means of the local vector table (LVT). To generate an interprocessor interrupt, the source
processor programs its interrupt command register (ICR). The programming of the ICR causes
generation of a corresponding interrupt bus message. Refer to Section 7.5.11., “Local Vector
Table” and Section 7.5.12., “Interprocessor and Self-Interrupts” for detailed information on
programming the LVT and ICR, respectively.

7.5.6. Bus Arbitration Overview

Being connected on a common bus (the APIC bus), the local and I/O APICs have to arbitrate for
permission to send a message on the APIC bus. Logically, the APIC bus is a wired-OR connec-
tion, enabling more than one local APIC to send messages simultaneously. Each APIC issues its
arbitration priority at the beginning of each message, and one winner is collectively selected
following an arbitration round. At any given time, a local APIC’s the arbitration priority is a
unigue value from 0 to 15. The arbitration priority of each local APIC is dynamically modified
after each successfully transmitted message to preserve fairness. Refer to Section 7.5.16., “APIC
Bus Arbitration Mechanism and Protocol” for a detailed discussion of bus arbitration.
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Section 7.5.3., “APIC Bus” describes the existing arbitration protocols and bus message
formats, while Section 7.5.12., “Interprocessor and Self-Interrupts” describes the INIT level de-
assert message, used to resynchronize all local APICs’ arbitration IDs. Note that except for start-
up (refer to Section 7.5.11., “Local Vector Table”), all bus messages failing during delivery are
automatically retried. The software should avoid situations in which interrupt messages may be
“ignored” by disabled or nonexistent “target” local APICs, and messages are being resent
repeatedly.

7.5.7. The Local APIC Block Diagram

Figure 7-3 gives a functional block diagram for the local APIC. Software interacts with the local
APIC by reading and writing its registers. The registers are memory-mapped to the processor’s
physical address space, and for each processor they have an identical address space of 4 KByte:
starting at address FEEOOOOOH. (Refer to Section 7.5.8., “Relocation of the APIC Registers
Base Address” for information on relocating the APIC registers base address for the P6 family
processors.)

NOTE

For P6 family processors, the APIC handles all memory accesses to addresses
within the 4-KByte APIC register space and no external bus cycles are
produced. For the Pentittnprocessors with an on-chip APIC, bus cycles are
produced for accesses to the 4-KByte APIC register space. Thus, for software

intended to run on Pentium® processors, system software should explicitly

not map the APIC register space to regular system memory. Doing so can

result in an invalid opcode exception (#UD) being generated or unpredictable
execution.

The 4-KByte APIC register address space should be mapped as uncacheable (UC), refer to
Section 9, “Memory Cache Control”, in ChapteiMimory Cache Control.
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Figure 7-3. Local APIC Structure

Within the 4-KByte APIC register area, the register address allocation schemeisshownin Table
7-1. Register offsets are aligned on 128-bit boundaries. All registers must be accessed using 32-
bit loads and stores. Wider registers (64-bit or 256-hit) are defined and accessed as independent
multiple 32-hit registers. If a LOCK prefix is used with a MOV instruction that accesses the
APIC address space, the prefix isignored; that is, alocking operation does not take place.
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Table 7-1. Local APIC Register Address Map

Address Register Name Software Read/Write

FEEO 0000H Reserved

FEEO 0010H Reserved

FEEO 0020H Local APIC ID Register Read/write

FEEO 0030H Local APIC Version Register Read only

FEEO 0040H Reserved

FEEO 0050H Reserved

FEEO 0060H Reserved

FEEO 0070H Reserved

FEEO 0080H Task Priority Register Read/Write

FEEO 0090H Arbitration Priority Register Read only

FEEO 00AOH Processor Priority Register Read only

FEEO 00BOH EOI Register Write only

FEEO 00COH Reserved

FEEO O0DOH Logical Destination Register Read/Write

FEEO OOEOH Destination Format Register Bits 0-27 Read only. Bits
28-31 Read/Write

FEEO O0FOH Spurious-Interrupt Vector Register Bits 0-3 Read only. Bits
4-9 Read/Write

FEEO 0100H through ISR 0-255 Read only

FEEO 0170H

FEEO 0180H through TMR 0-255 Read only

FEEO 01FOH

FEEO 0200H through IRR 0-255 Read only

FEEO 0270H

FEEO 0280H Error Status Register Read only

FEEO 0290H through Reserved

FEEO 02FOH

FEEO 0300H Interrupt Command Reg. 0-31 Read/Write

FEEO 0310H Interrupt Command Reg. 32-63 Read/Write

FEEO 0320H Local Vector Table (Timer) Read/Write

FEEO 0330H Reserved

FEEO 0340H Performance Counter LVT? Read/Write

FEEO 0350H Local Vector Table (LINTO) Read/Write

FEEO 0360H Local Vector Table (LINT1) Read/Write

FEEO 0370H Local Vector Table (Error)? Read/Write

FEEO 0380H Initial Count Register for Timer Read/Write
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Table 7-1. Local APIC Register Address Map (Contd.)

Address Register Name Software Read/Write
FEEO 0390H Current Count Register for Timer Read only
FEEO 03AO0H through Reserved
FEEO 03DOH
FEEO O3EOH Timer Divide Configuration Register Read/Write
FEEO 03FOH Reserved
NOTES:

1. Introduced into the APIC Architecture in the Pentium® Pro processor.
2. Introduced into the APIC Architecture in the Pentium® processor.

7.5.8. Relocation of the APIC Registers Base Address

The P6 family processors permit the starting address of the APIC registers to be relocated from
FEEOQOOOOH to another physical address. This extension of the APIC architectureis provided to
help resolve conflicts with memory maps of existing systems. The P6 family processors also
provide the ahility to enable or disable the local APIC.

An aternate APIC base addressis specified through the APIC_BASE M SR register. ThisMSR
islocated at MSR address 27 (1BH). Figure 7-4 shows the encoding of the bitsin this register.
Thisregister also provides the flag for enabling or disabling the local APIC.

The functions of the bitsin the APIC_BASE_MSR register are as follows:

BSP flag, bit 8 Indicates if the processor is the bootstrap processor (BSP), determined during
the MP initialization (refer to Section 7.7., “Multiple-Processor (MP) Initial-
ization Protocol”). Following a power-up or reset, this flag is clear for all the
processors in the system except the single BSP.

63 36 35 12111098 7 0

Reserved APIC Base

APIC Base—Base physical address Q

E—APIC enable/disable
BSP—Processor is BSP

E Reserved

Figure 7-4. APIC_BASE_MSR

E (APIC Enabled) flag, bit 11
Permits the local APIC to be enabled (set) or disabled (clear). Following a
power-up or reset, this flag is set, enabling the local APIC. When this flag is
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clear, the processor isfunctionally equivalent to an Intel Architecture processor

without an on-chip APIC (for example, an Intel486™ processor). This flag is
implementation dependent and in not guaranteed to be available or available at
the same location in future Intel Architecture processors.

APIC Basefield, bits 12 through 35
Specifies the base address of the APIC registers. This 24-bit value is extended
by 12 bits at the low end to form the base address, which automatically aligns
the address on a 4-KByte boundary. Following a power-up or reset, this field is
set to FEEOOOOOH.

Bits O through 7, bits 9 and 10, and bits 36 through 63 in the APIC_BASE_MSR register are
reserved.

7.5.9. Interrupt Destination and APIC ID

The destination of an interrupt can be one, all, or a subset of the processors in the system. The
sender specifies the destination of an interrupt in one of two destination modes: physical or
logical.

7.5.9.1. PHYSICAL DESTINATION MODE

In physical destination mode, the destination processor is specified by its local APIC ID. This
ID is matched against the local APIC’s actual physical ID, which is stored in the local APIC ID
register (refer to Figure 7-5). Either a single destination (the ID is O through 14) or a broadcast
to all (the ID is 15) can be specified in physical destination mode. Note that in this mode, up to
15 the local APICs can be individually addressed. An ID of all 1s denotes a broadcast to all local
APICs. The APIC ID register is loaded at power up by sampling configuration data that is driven
onto pins of the processor. For the P6 family processors, pins A11# and A12# and pins BRO#
through BR3# are sampled; for the Pentiymocessor, pins BEO# through BE3# are sampl ed.

The ID portion can be read and modified by software.

31 28 27 24 23 0

Reserved | APIC ID Reserved

Address: OFEEO 0020H
Value after reset: 0000 0000H

Figure 7-5. Local APIC ID Register

7.5.9.2. LOGICAL DESTINATION MODE

Inlogical destination mode, message destinations are specified using an 8-bit message destina
tion address (MDA). The MDA is compared against the 8-bit logical APIC ID field of the APIC
logical destination register (LDR), refer to Figure 7-6.
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31 24 23 0

Logical APIC ID Reserved

Address: OFEEO 00DOH
Value after reset: 0000 0000H

Figure 7-6. Logical Destination Register (LDR)

Destination format register (DFR) defines the interpretation of the logical destination informa-
tion (refer to Figure 7-7). The DFR register can be programmed for flat model or cluster model
interrupt delivery modes.

31 28 0

Model Reserved (All 1s)

Address: OFEEO O0EOH
Value after reset: FFFF FFFFH

Figure 7-7. Destination Format Register (DFR)

7.5.9.3. FLAT MODEL

For the flat model, bits 28 through 31 of the DFR must be programmed to 1111. The MDA is
interpreted as a decoded address. This scheme allows the specification of arbitrary groups of

local APICs simply by setting each APIC’s bit to 1 in the corresponding LDR. In the flat model,
up to 8 local APICs can coexist in the system. Broadcast to all APICs is achieved by setting all
8 bits of the MDA to ones.

7.5.9.4. CLUSTER MODEL

For the cluster model, the DFR bits 28 through 31 should be programmed to 0000. In this model,
there are two basic connection schemes: flat cluster and hierarchical cluster.

In the flat cluster connection model, all clusters are assumed to be connected on a single APIC
bus. Bits 28 through 31 of the MDA contains the encoded address of the destination cluster.
These bits are compared with bits 28 through 31 of the LDR to determine if the local APIC is
part of the cluster. Bits 24 through 27 of the MDA are compared with Bits 24 through 27 of the
LDR to identify individual local APIC unit within the cluster. Arbitrary sets of processors within

a cluster can be specified by writing the target cluster address in bits 28 through 31 of the MDA
and setting selected bits in bits 24 through 27 of the MDA, corresponding to the chosen members
of the cluster. In this mode, 15 clusters (with cluster addresses of 0 through 14) each having 4
processors can be specified in the message. The APIC arbitration ID, however, supports only
15 agents, and hence the total number of processors supported in this mode is limited to 15.
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Broadcast to all local APICsisachieved by setting all destination bits to one. This guarantees a
match on all clusters, and selects all APICsin each cluster.

Inthe hierarchical cluster connection model, an arbitrary hierarchical network can be created by
connecting different flat clusters via independent APIC buses. This scheme requires a cluster
manager within each cluster, responsible for handling message passing between APIC buses.
One cluster contains up to 4 agents. Thus 15 cluster managers, each with 4 agents, can form a
network of up to 60 APIC agents. Note that hierarchical APIC networks requires a special
cluster manager device, which is not part of the local or the 1/O APIC units.

7.5.9.5. ARBITRATION PRIORITY

Each local APIC is given an arbitration priority of from 0 to 15 upon reset. The 1/O APIC uses
this priority during arbitration rounds to determine which local APIC should be alowed to
transmit a message on the APIC bus when multiplelocal APICsareissuing messages. Thelocal
APIC with the highest arbitration priority wins access to the APIC bus. Upon completion of an
arbitration round, the winning local APIC lowersits arbitration priority to 0 and the losing local
APICs each raise theirs by 1. In this manner, the I/O APIC distributes message bus-cycles
among the contesting local APICs.

The current arbitration priority for alocal APIC is stored in a 4-bit, software-transparent arbi-
tration ID (Arb ID) register. During reset, this register is initialized to the APIC ID number
(stored in the local APIC ID register). The INIT-deassert command resynchronizes the arbitra-
tion priorities of the local APICs by resetting Arb ID register of each agent to its current APIC
ID value.

7.5.10. Interrupt Distribution Mechanisms

The APIC supports two mechanisms for selecting the destination processor for an interrupt:
static and dynamic. Static distribution is used to access a specific processor in the network.
Using this mechanism, the interrupt is unconditionally delivered to all local APICs that match
the destination information supplied with the interrupt. The following delivery modes fall into
the static distribution category: fixed, SMI, NMI, EXTINT, and start-up.

Dynamic distribution assigns incoming interrupts to the lowest priority processor, which is

generaly the least busy processor. It can be programmed inthe LVT for local interrupt delivery

or the ICR for bus messages. Using dynamic distribution, only the “lowest priority” delivery
mode is allowed. From all processors listed in the destination, the processor selected is the one
whose current arbitration priority is the lowest. The latter is specified in the arbitration priority
register (APR), refer to Section 7.5.13.4., “Arbitration Priority Register (APR)” If more than one
processor shares the lowest priority, the processor with the highest arbitration priority (the
unique value in the Arb ID register) is selected.

In lowest priority mode, if fiocus processor exists it may accept the interrupt, regardless of its
priority. A processor is said to be the focus of an interrupt if it is currently servicing that interrupt
or if it has a pending request for that interrupt.
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7.5.11. Local Vector Table

The local APIC contains a local vector table (LVT), specifying interrupt delivery and status
information for the local interrupts. The information contained in this table includes the inter-

rupt’s associated vector, delivery mode, status bits and other data as shown in Figure 7-8. The
LVT incorporates five 32-bit entries: one for the timer, one each for the two local interrupt
(LINTO and LINT1) pins, one for the error interrupt, and (in the P6 family processors) one for
the performance-monitoring counter interrupt.

The fields in the LVT are as follows:
Vector Interrupt vector number.

Delivery Mode Defined only for local interrupt entries 1 and 2 and the performance-
monitoring counter. The timer and the error status register (ESR)
generate only edge triggered maskable hardware interrupts to the
local processor. The delivery mode field does not exist for the timer
and error interrupts. The performance-monitoring counter LVT may
be programmed with a Deliver Mode equal to Fixed or NMI only.
Note that certain delivery modes will only operate as intended when
used in conjunction with a specific Trigger Mode. The allowable
delivery modes are as follows:

000 (Fixed) Delivers the interrupt, received on the local
interrupt pin, to this processor as specified in the
corresponding LVT entry. The trigger mode can be
edge or level. Note, if the processor is not used in
conjunction with an 1/0 APIC, the fixed delivery
mode may be software programmed for an edge-
triggered interrupt, but the P6 family processors
implementation will always operate in a level-
triggered mode.

100 (NM1) Delivers the interrupt, received on the local inter-
rupt pin, to this processor as an NMl interrupt. The
vector information is ignored. The NMI interrupt
is treated as edge-triggered, even if programmed
otherwise. Note that the NMI may be masked. It is
the software's responsibility to program the LVT
mask bit according to the desired behavior of
NMI.

111 (ExtINT)  Delivers the interrupt, received on the local inter-
rupt pin, to this processor and responds as if the
interrupt originated in an externally connected
(8259A-compatible) interrupt controller. A spe-
cial INTA bus cycle corresponding to EXtINT, is
routed to the external controller. The latter is ex-
pected to supply the vector information. When the
delivery mode is ExtINT, the trigger-mode is
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level-triggered, regardless of how the APIC trig-
gering mode is programmed. The APIC architec-
ture supports only one ExtINT sourcein a system,

usually contained in the compatibility bridge.

31 18 17 16 15 1312 11 87 0
Timer Vector
. A A Address: FEEO 0320H
Timer Mode Value after Reset: 0001 0000H
0: One-shot ’
1: Periodic Delivery Status
0: Idle
1: Send Pending
Mask
0: Not Masked
1: Masked
Interrupt Input Delivery Mode
Pin Polarity 000: Fixed
100: NMI
111: ExtINT
Remote All other combinations
IRR are Reserved
Trigger Mode
0: Edge
1: Level
31 17 y 11 10| 8 7 0
LINTO Vector
LINT1 Vector
ERROR Vector
PCINT Vector
1o 15 113 2 Add FEEO 0350H
ress:
[ ] Reserved Address: FEEO 0360H

Address: FEEOQ 0370H
Address: FEEO 0340H
Value After Reset: 0001 0000H
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Delivery Status (read only)
Holds the current status of interrupt delivery. Two states are defined:

0 (Idle) Thereis currently no activity for thisinterrupt, or
the previous interrupt from this source has com-
pleted.

1 (Send Pending)
Indicates that the interrupt transmission has start-
ed, but has not yet been completely accepted.

Interrupt Input Pin Polarity
Specifies the polarity of the corresponding interrupt pin: (0) active
high or (1) active low.

Remote I nterrupt Request Register (IRR) Bit
Used for level triggered interrupts only; its meaning is undefined for
edge triggered interrupts. For level triggered interrupts, the bit is set
when the logic of the local APIC accepts the interrupt. The remote
IRR bit is reset when an EOl command is received from the
processor.

Trigger Mode Selectsthetrigger mode for the local interrupt pinswhen the delivery
mode is Fixed: (0) edge sensitive and (1) level sensitive. When the
delivery mode is NMI, the trigger mode is aways level sensitive;
when the delivery mode is ExtINT, the trigger mode is always level
sensitive. The timer and error interrupts are always treated as edge

sensitive.

M ask Interrupt mask: (0) enables reception of theinterrupt and (1) inhibits
reception of the interrupt.

Timer Mode Selectsthetimer mode: (0) one-shot and (1) periodic (refer to Section

7.5.18., “Timer”).

7.5.12. Interprocessor and Self-Interrupts

A processor generates interprocessor interrupts by writing into the interrupt command register
(ICR) of its local APIC (refer to Figure 7-9). The processor may use the ICR for self interrupts
or for interrupting other processors (for example, to forward device interrupts originally
accepted by it to other processors for service). In addition, special inter-processor interrupts
(IPI) such as the start-up IPl message, can only be delivered using the ICR mechanism. ICR-
based interrupts are treated as edge triggered even if programmed otherwise. Note that not all
combinations of options for ICR generated interrupts are valid (refer to Table 7-2).
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63 56 55

32

Destination Field

Reserved

31

2019181716 15141312 1110

8 7

Reserved

Vector

Destination Shorthand J

00: Dest. Field
01: Self

10: All Incl. Self
11: All Excl. Self

\:’ Reserved

Address: FEEOQ 0310H
Value after Reset: OH

L

Delivery Mode
000: Fixed

001: Lowest Priority
010: SMI

011: Reserved

100: NMI

101: INIT

110: Start Up

111: Reserved

Destination Mode
0: Physical
1: Logical

Delivery Status
0: Idle
1: Send Pending

Level
0 = De-assert
1 = Assert

Trigger Mode
0: Edge
1: Level

Figure 7-9. Interrupt Command Register (ICR)

All fields of the ICR are read-write by software with the exception of the delivery status field,
which isread-only. Writing to the 32-bit word that contains the interrupt vector causes the inter-
rupt message to be sent. The ICR consists of the following fields.

The vector identifying the interrupt being sent. The localAPIC
register addresses are summarized in Table 7-1.

Vector

Delivery Mode
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Specifies how the APICs listed in the destination field should act

upon reception of the interrupt. Notethat all interprocessor interrupts
behave as edge triggered interrupts (except for INIT level de-assert
message) even if they are programmed as level triggered interrupts.

000 (Fixed)

Deliver the interrupt to all processors listed in the

destination field according to the information pro-
vided in the ICR. The fixed interrupt is treated as
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an edge-triggered interrupt even if programmed
otherwise.

001 (Lowest Priority)
Same as fixed mode, except that the interrupt is
delivered to the processor executing at the lowest
priority among the set of processors listed in the

destination.

010 (SM1) Only the edge trigger modeis allowed. The vector
field must be programmed to 00B.

011 (Reserved)

100 (NM1) Delivers the interrupt as an NMI interrupt to all

processors listed in the destination field. The vec-
tor information is ignored. NMI is treated as an
edge triggered interrupt even if programmed oth-
erwise.

101 (INIT) Deliversthe interrupt asan INIT signal to all pro-
cessors listed in the destination field. As aresult,
all addressed APICs will assume their INIT state.
As in the case of NMI, the vector information is
ignored, and INIT is treated as an edge triggered
interrupt even if programmed otherwise.

101 (INIT Level De-assert)

(The trigger mode must also be set to 1 and level
mode to 0.) Sends a synchronization message to
all APIC agents to set their arbitration I1Ds to the
values of their APIC IDs. Notethat the INIT inter-
rupt is sent to all agents, regardless of the destina
tion field value. However, at least one valid
destination processor should be specified. For fu-
ture compatibility, the software is requested to use
a broadcast-to-all (“all-incl-self” shorthand, as de-
scribed below).

110 (Start-Up) Sends a special message between processors in a

multiple-processor system. For details refer to the
Pentium® Pro Family Developer's Manual, Vol-
ume 1 The Vector information contains the start-

up address for the multiple-processor boot-up pro-

tocol. Start-up istreated as an edge triggered inter-

rupt even if programmed otherwise. Note that
interrupts are not automatically retried by the
source APIC upon failure in delivery of the mes-

sage. It is up to the software to decide whether a

7-27



MULTIPLE-PROCESSOR MANAGEMENT Intel®

Destination Mode
Delivery Status

Level

Trigger Mode
Destination Shorthand

7-28

retry is needed in the case of failure, and issue a
retry message accordingly.

Selects either (0) physical or (1) logical destination mode.
Indicates the delivery status:

0 (Idle) Thereis currently no activity for this interrupt, or
the previous interrupt from this source has com-
pleted.

1 (Send Pending)
Indicates that the interrupt transmission has start-
ed, but has not yet been completely accepted.

For INIT level de-assert delivery mode the level is O. For all other
modes the level is 1.

Used for the INIT level de-assert delivery mode only.

Indicates whether a shorthand notation is used to specify the destina-
tion of the interrupt and, if so, which shorthand is used. Destination
shorthands do not use the 8-bit destination field, and can be sent by
software using a single write to the lower 32-hit part of the APIC
interrupt command register. Shorthands are defined for the following
cases. software self interrupt, interrupt to al processorsin the system
including the sender, interrupts to all processors in the system
excluding the sender.

00: (destination field, no shorthand)
The destination is specified in bits 56 through 63
of the ICR.

01: (self) The current APIC is the single destination of the
interrupt. This is useful for software self inter-
rupts. The destination field isignored. Refer to Ta-
ble 7-2 for description of supported modes. Note
that self interrupts do not generate bus messages.

10: (all including self)
Theinterrupt issent to all processorsin the system
including the processor sending the interrupt. The
APIC will broadcast a message with the destina-
tionfield set to FH. Refer to Table 7-2 for descrip-
tion of supported modes.

11: (all excluding self)
Theinterrupt issent to all processorsin the system
with the exception of the processor sending thein-
terrupt. The APIC will broadcast a message using
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the physical destination mode and destination
field set to FH.

Destination Thisfield is only used when the destination shorthand field is set to
“dest field”. If the destination mode is physical, then bits 56 through
59 contain the APIC ID. In logical destination mode, the interpreta-
tion of the 8-bit destination field depends on the DFR and LDR of the
local APIC Units.

Table 7-2 shows the valid combinations for the fields in the interrupt control register.

Table 7-2. Valid Combinations for the APIC Interrupt Command Register

Trigger Valid/ Destination
Mode Destination Mode Delivery Mode Invalid Shorthand

Edge Physical or Logical | Fixed, Lowest Priority, NMI, Valid Dest. Field
SMI, INIT, Start-Up

Level Physical or Logical | Fixed, Lowest Priority, NMI 1 Dest. field

Level Physical or Logical INIT 2 Dest. Field

Level x* SMI, Start-Up Invalid? X

Edge X Fixed Valid Self

Level X Fixed 1 Self

X X Lowest Priority, NMI, INIT, Invalid® Self
SMI, Start-Up

Edge X Fixed Valid All inc Self

Level X Fixed 1 Allinc Self

X X Lowest Priority, NMI, INIT, Invalid® All inc Self
SMI, Start-Up

Edge X Fixed, Lowest Priority, NMI, Valid All excl Self
INIT, SMI, Start-Up

Level X Fixed, Lowest Priority, NMI 1 All excl Self

Level X SMI, Start-Up Invalid® All excl Self

Level X INIT 2 All excl Self

NOTES:

1. Valid. Treated as edge triggered if Level = 1 (assert), otherwise ignored.

2. Valid. Treated as edge triggered when Level = 1 (assert); when Level = 0 (deassert), treated as “INIT
Level Deassert” message. Only INIT level deassert messages are allowed to have level = deassert. For
all other messages the level must be “assert.”

3. Invalid. The behavior of the APIC is undefined.
4. X—Don't care.
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7.5.13. Interrupt Acceptance

Three 256-bit read-only registers (the IRR, ISR, and TMR registers) areinvolved in theinterrupt
acceptance logic (refer to Figure 7-10). The 256 hits represents the 256 possible vectors.
Because vectors 0 through 15 are reserved, so are bits 0 through 15 in these registers. The func-
tions of the three registers are as follows:

TMR (trigger mode register)
Upon acceptance of an interrupt, the corresponding TMR bit is
cleared for edge triggered interrupts and set for level interrupts. If the
TMR bit is set, the local APIC sends an EOl message to all 1/0
APICs as a result of software issuing an EOl command (refer to
Section 7.5.13.6., “End-Of-Interrupt (EOI)” for a description of the
EOI register).

255 16 15 0
Reserved IRR

Reserved ISR

Reserved TMR

Addresses: IRR FEEO 0200H - FEEO 0270H
ISR FEEO 0100H - FEEO 0170H
TMR FEEO 0180H - FEEO 01FOH
Value after reset: OH

Figure 7-10. IRR, ISR and TMR Registers

IRR (interrupt request register)
Contains the active interrupt requests that have been accepted, but
not yet dispensed by the current local APIC. A bitin IRR is set when
the APIC accepts the interrupt. The IRR bit is cleared, and a corre-
sponding ISR bit is set when the INTA cycle is issued.

ISR (in-serviceregister)
Marks the interrupts that have been delivered to the processor, but
have not been fully serviced yet, as an EOI has not yet been received
from the processor. The ISR reflects the current state of the processor
interrupt queue. The ISR bit for the highest priority IRR is set during
the INTA cycle. During the EOI cycle, the highest priority ISR bit is
cleared, and if the corresponding TMR bit was set, an EOl message
is sent to all I/O APICs.

7.5.13.1. INTERRUPT ACCEPTANCE DECISION FLOW CHART

The process that the APIC uses to accept an interrupt is shown in the flow chart in Figure 7-11.
The response of the local APIC to the start-up IPI is explained iReéhum® Pro Family
Developer’s Manual, Volume 1
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Wait to Receive
Bus Message
Discard
Message
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Message
No
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Delivery Priority
Mode?
Set Status Is Interrupt Accept
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Is Status No Yes Discard
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Message
No Is Yes
<« | SetStatus Interrupt Slot
to Retry Available?
No Am | Yes Accept
Winner? Messa’z]e >

Figure 7-11. Interrupt Acceptance Flow Chart for the Local APIC

7.5.13.2. TASK PRIORITY REGISTER

Task priority register (TPR) provides a priority threshold mechanism for interrupting the
processor (refer to Figure 7-12). Only interrupts whose priority is higher than that specified in
the TPR will be serviced. Other interrupts are recorded and are serviced as soon asthe TPR value
is decreased enough to allow that. This enables the operating system to block temporarily
specific interrupts (generally low priority) from disturbing high-priority tasks execution. The
priority threshold mechanism is not applicable for delivery modes excluding the vector infor-
mation (that is, for ExtINT, NMI, SMI, INIT, INIT-Deassert, and Start-Up delivery modes).
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31 87 0

Task
Priority

Reserved

Address: FEEO 0080H
Value after reset: OH

Figure 7-12. Task Priority Register (TPR)

The Task Priority is specified in the TPR. The 4 most-significant bits of the task priority corre-
spond to the 16 interrupt priorities, while the 4 least-significant bits correspond to the sub-class
priority. The TPR valueis generally denoted as x:y, where x isthe main priority and y provides
more precision within a given priority class. When the x-value of the TPR is 15, the APIC will
not accept any interrupts.

7.5.13.3. PROCESSOR PRIORITY REGISTER (PPR)

The processor priority register (PPR) is used to determine whether a pending interrupt can be
dispensed to the processor. Its value is computed as follows:

IF TPR[7:4] = ISRV[7:4]
THEN
PPR[7:0] = TPR[7:0]
ELSE
PPR[7:4] = ISRV[7:4] AND PPR[3:0] =0
Where ISRV isthe vector of the highest priority ISR bit set, or zero if no ISR bit is set. The PPR
format isidentical to that of the TPR. The PPR addressis FEEOOOAQH, and its value after reset
is zero.

7.5.13.4. ARBITRATION PRIORITY REGISTER (APR)

Arbitration priority register (APR) holds the current, lowest-priority of the processor, a value

used during lowest priority arbitration (refer to Section 7.5.16., “APIC Bus Arbitration Mecha-
nism and Protocol”). The APR format is identical to that of the TPR. The APR value is
computed as the following.

IF (TPR[7:4] = IRRV[7:4]) AND (TPR[7:4] > ISRV[7:4])
THEN
APRI[7:0] = TPR[7:0]
ELSE
APR([7:4] = max(TPR[7:4] AND ISRV[7:4], IRRV[7:4]), APR[3:0]=0.

Here, IRRV is the interrupt vector with the highest priority IRR bit set or cleared (if no IRR bit
is set). The APR address is FEEO 0090H, and its value after reset is 0.
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7.5.13.5. SPURIOUS INTERRUPT

A specia situation may occur when aprocessor raisesitstask priority to be greater than or equal
to the level of the interrupt for which the processor INTR signal is currently being asserted. If
at the timethe INTA cycleisissued, the interrupt that was to be dispensed has become masked
(programmed by software), the local APIC will return a spurious-interrupt vector to the
processor. Dispensing the spurious-interrupt vector does not affect the ISR, so the handler for
this vector should return without an EOI.

7.5.13.6. END-OF-INTERRUPT (EOI)

During the interrupt serving routine, software should indicate acceptance of lowest-priority,
fixed, timer, and error interrupts by writing an arbitrary value into its local APIC end-of-inter-
rupt (EOI) register (refer to Figure 7-13). Thisisan indication for thelocal APIC it canissuethe
next interrupt, regardiess of whether the current interrupt service has been terminated or not.
Note that interrupts whose priority is higher than that currently in service, do not wait for the
EOI command corresponding to the interrupt in service.

31 0

Address: OFEEO 00BOH
Value after reset: OH

Figure 7-13. EOI Register

Upon receiving end-of-interrupt, the APIC clears the highest priority bit in the ISR and selects
the next highest priority interrupt for posting to the CPU. If the terminated interrupt was alevel-
triggered interrupt, thelocal APIC sends an end-of-interrupt messageto all 1/0O APICs. Notethat
EOI command is supplied for the above two interrupt delivery modes regardless of the interrupt
source (that is, asaresult of either the 1/O APIC interrupts or those issued on local pinsor using
the ICR). For future compatibility, the software is requested to issue the end-of-interrupt
command by writing avalue of OH into the EQI register.

7.5.14. Local APIC State

In P6 family processors, all local APICs are initialized in a software-disabled state after power-
up. A software-disabled local APIC unit responds only to self-interruptsand to INIT, NMI, SMI,
and start-up messages arriving on the APIC Bus. The operation of local APICs during the
disabled state is as follows:

® For the INIT, NMI, SMI, and start-up messages, the APIC behaves normally, as if fully
enabled.
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® Pending interrupts in the IRR and ISR registers are held and require masking or handling
by the CPU.

® A disabled local APIC does not affect the sending of APIC messages. It is software’s
responsibility to avoid issuing ICR commands if no sending of interrupts is desired.

® Disabling a local APIC does not affect the message in progress. The local APIC will
complete the reception/transmission of the current message and then enter the disabled
state.

® A disabled local APIC automatically sets all mask bitsin the LVT entries. Trying to reset
these bits in the local vector table will beignored.

* A software-disabled local APIC listens to all bus messages in order to keep its arbitration
ID synchronized with the rest of the system, in the event that it is re-enabled.

For the Pentium® processor, the local APIC is enabled and disabled through a hardware mecha-
nism. (Refer to the Pentium® Processor Data Book for a description of this mechanism.)

7.5.14.1. SPURIOUS-INTERRUPT VECTOR REGISTER

Software can enable or disable alocal APIC at any time by programming bit 8 of the spurious-
interrupt vector register (SVR), refer to Figure 7-14. The functions of the fields in the SVR are
asfollows:

31 10 9 8 7 43 0

Reserved 1111

Focus Processor Checking | ‘
0: Enabled
1: Disabled APIC Enabled Spurious Vector

0: APIC SW Disabled
1: APIC SW Enabled

Address: FEEO 00FOH
Value after reset: 0000 O0FFH

Figure 7-14. Spurious-Interrupt Vector Register (SVR)

Spurious Vector Released during an INTA cycle when al pending interrupts are
masked or when no interrupt is pending. Bits 4 through 7 of the this
field are programmable by software, and bits O through 3 are hard-
wired to logical ones. Software writes to bits O through 3 have no

effect.
APIC Enable Allows software to enable (1) or disable (0) the loca APIC. To
bypass APIC completely, use the APIC_BASE_MSR in Figure 7-4.
Focus Processor Determines if focus processor checking is enabled during the lowest
Checking Priority delivery: (0) enabled and (1) disabled.
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7.5.14.2. LOCAL APIC INITIALIZATION

On ahardware reset, the processor and its local APIC are initialized simultaneously. For the P6
family processors, the local APIC obtains its initial physical ID from system hardware at the
falling edge of the RESET# signal by sampling 6 lines on the system bus (the BR[3:0]) and
cluster ID[1:Q] lines) and storing this value into the APIC ID register; for the Pentium®
processor, four lines are sampled (BEO# through BE3#). Refer to the Pentium® Pro & Pentium
Il Processors Data Book and the Pentium® Processor Data Book for descriptions of this mech-
anism.

7.5.143. LOCAL APIC STATE AFTER POWER-UP RESET

The state of local APIC registers and state machines after a power-up reset are as follows:

®* The following registers are al reset to O: the IRR, ISR, TMR, ICR, LDR, and TPR
registers; the holding registers; the timer initial count and timer current count registers; the
remote register; and the divide configuration register.

® TheDFRregisterisresettoal 1s.
® ThelLVT register entries are reset to 0 except for the mask bits, which are set to 1s.
® Theloca APIC version register is not affected.

® Thelocal APIC ID and Arb ID registers are loaded from processor input pins (the Arb ID
register is set to the APIC ID value for the local APIC).

® All internal state machines are reset.
®* APICissoftwaredisabled (that is, bit 8 of the SVR register is set to 0).
® The spurious-interrupt vector register isinitialized to FFH.

7.5.14.4. LOCAL APIC STATE AFTER AN INIT RESET
An INIT reset of the processor can be initiated in either of two ways.
® By asserting the processor’s INIT# pin.

® By sending the processor an INIT IPI (sending an APIC bus-based interrupt with the
delivery mode set to INIT).

Upon receiving an INIT via either of these two mechanisms, the processor responds by begin-
ning the initialization process of the processor core and the local APIC. The state of the local
APIC following an INIT reset is the same as it is after a power-up reset, except that the APIC
ID and Arb ID registers are not affected.

7.5.145. LOCAL APIC STATE AFTER INIT-DEASSERT MESSAGE

An INIT-disassert message has no affect on the state of the APIC, other than to reload the arbi-
tration 1D register with the value in the APIC ID register.
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7.5.15. Local APIC Version Register

The local APIC contains a hardwired version register, which software can use to identify the
APIC version (refer to Figure 7-16). In addition, the version register specifies the size of LVT
used in the specific implementation. Thefieldsin thelocal APIC version register are asfollows:

Version The version numbers of the local APIC or an external 82489DX
APIC controller:

1XH Local APIC.
O0XH 82489DX.
20H through FFHReserved.

Max LVT Entry Shows the number of the highest order LVT entry. For the P6 family
processors, having 5 LVT entries, the Max LVT number is 4; for the
Pentium® processor, having 4 LVT entries, the Max LVT number is 3.

31 24 23 16 15 87 0

Max. LVT
Entry

Value after reset: 000N 00VVH
V = Version, N = # of LVT entries
Address: FEEO 0030H

Reserved Reserved Version

Figure 7-15. Local APIC Version Register

7.5.16. APIC Bus Arbitration Mechanism and Protocol

Because only one message can be sent at atime on the APIC bus, the 1/O APIC and local APICs

employ a “rotating priority” arbitration protocol to gain permission to send a message on the
APIC bus. One or more APICs may start sending their messages simultaneously. At the begin-
ning of every message, each APIC presents the type of the message it is sending and its current
arbitration priority on the APIC bus. This information is used for arbitration. After each arbitra-
tion cycle (within an arbitration round, only the potential winners keep driving the bus. By the
time all arbitration cycles are completed, there will be only one APIC left driving the bus. Once

a winner is selected, it is granted exclusive use of the bus, and will continue driving the bus to
send its actual message.

After each successfully transmitted message, all APICs increase their arbitration priority by 1.
The previous winner (that is, the one that has just successfully transmitted its message) assumes
a priority of O (lowest). An agent whose arbitration priority was 15 (highest) during arbitration,

but did not send a message, adopts the previous winner’s arbitration priority, incremented by 1.

Note that the arbitration protocol described above is slightly different if one of the APICs issues
a special End-Of-Interrupt (EOI). This high-priority message is granted the bus regardless of its
sender’s arbitration priority, unless more than one APIC issues an EOI message simultaneously.
In the latter case, the APICs sending the EOl messages arbitrate using their arbitration priorities.
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If the APICs are set up to use “lowest priority” arbitration (refer to Section 7.5.10., “Interrupt
Distribution Mechanisms”) and multiple APICs are currently executing at the lowest priority
(the value in the APR register), the arbitration priorities (unique values in the Arb ID register)
are used to break ties. All 8 bits of the APR are used for the lowest priority arbitration.

7.5.16.1. BUS MESSAGE FORMATS

The APICs use three types of messages: EOl message, short message, and non-focused lowest
priority message. The purpose of each type of message and its format are described below.

EOI Message. Local APICs send 14-cycle EOI messages to the 1/0O APIC to indicate that a level
triggered interrupt has been accepted by the processor. This interrupt, in turn, is a result of soft-
ware writing into the EOI register of the local APIC. Table 7-3 shows the cycles in an EOI
message.

The checksum is computed for cycles 6 through 9. It is a cumulative sum of the 2-bit (Bit1:Bit0)
logical data values. The carry out of all but the last addition is added to the sum. If any APIC
computes a different checksum than the one appearing on the bus in cycle 10, it signals an error,
driving 11 on the APIC bus during cycle 12. In this case, the APICs disregard the message. The
sending APIC will receive an appropriate error indication (refer to Section 7.5.17., “Error
Handling”) and resend the message. The status cycles are defined in Table 7-6.

Short Message. Short messages (21-cycles) are used for sending fixed, NMI, SMI, INIT, start-
up, ExtINT and lowest-priority-with-focus interrupts. Table 7-4 shows the cycles in a short
message.

Table 7-3. EOI Message (14 Cycles)

Cycle Bitl Bit0
1 1 1 11 = EOI
2 ArbID3 0 Arbitration ID bits 3 through 0
3 ArbID2 0
4 ArbID1 0
5 ArbIDO 0
6 V7 V6 Interrupt vector V7 - VO
7 V5 V4
8 V3 V2
9 V1 VO
10 C C Checksum for cycles 6 - 9
11 0 0
12 A A Status Cycle 0
13 Al Al Status Cycle 1
14 0 0 Idle
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If the physical delivery mode is being used, then cycles 15 and 16 represent the APIC ID and

cycles 13 and 14 are considered don't care by the receiver. If the logical delivery modeis being

used, then cycles 13 through 16 are the 8-bit logical destination field. For shorthands of “all-
incl-self” and “all-excl-self,” the physical delivery mode and an arbitration priority of 15
(D0:D3 =1111) are used. The agent sending the message is the only one required to distinguish
between the two cases. It does so using internal information.

When using lowest priority delivery with an existing focus processor, the focus processor iden-
tifies itself by driving 10 during cycle 19 and accepts the interrupt. This is an indication to other
APICs to terminate arbitration. If the focus processor has not been found, the short message is
extended on-the-fly to the non-focused lowest-priority message. Note that except for the EOI
message, messages generating a checksum or an acceptance error (refer to Section 7.5.17.
“Error Handling”) terminate after cycle 21.

Table 7-4. Short Message (21 Cycles)

Cycle Bitl BitO
1 0 1 0 1 =normal
2 ArblD3 0 Arbitration ID bits 3 through 0
3 ArbID2 0
4 ArbID1 0
5 ArbIDO 0
6 DM M2 DM = Destination Mode
7 M1 MO M2-MO = Delivery mode
Cycle Bitl BitO
8 L ™ L = Level, TM = Trigger Mode
9 V7 V6 V7-VO = Interrupt Vector
10 V5 V4
11 V3 V2
12 V1 VO
13 D7 D6 D7-DO0 = Destination
14 D5 D4
15 D3 D2
16 D1 DO
17 C C Checksum for cycles 6-16
18 0 0
19 A A Status cycle 0
20 Al Al Status cycle 1
21 0 0 Idle

Nonfocused L owest Priority Message. These 34-cycle messages (refer to Table 7-5) are used
in the lowest priority delivery mode when a focus processor is not present. Cycles 1 through 20
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aresame asfor the short message. If during the status cycle (cycle 19) the state of the (A:A) flags
is 10B, a focus processor has been identified, and the short message format is used (refer to
Table 7-4). If the (A:A) flags are set to 00B, lowest priority arbitration is started and the 34-
cyclesof the nonfocused lowest priority message are competed. For other combinations of status
flags, refer to Section 7.5.16.2., “APIC Bus Status Cycles”

Table 7-5. Nonfocused Lowest Priority Message (34 Cycles)

Cycle Bit0 Bitl

1 0 1 01 =normal

2 ArbID3 0 Arbitration ID bits 3 through 0

3 ArblD2 0

4 ArbID1 0

5 ArbIDO 0

6 DM M2 DM = Destination mode

7 M1 MO M2-MO = Delivery mode

8 L ™ L = Level, TM = Trigger Mode

9 V7 V6 V7-VO = Interrupt Vector

10 V5 V4

11 V3 V2

12 V1 VO

13 D7 D6 D7-DO0 = Destination
Cycle Bit0 Bitl

14 D5 D4

15 D3 D2

16 D1 DO

17 C C Checksum for cycles 6-16

18 0 0

19 A A Status cycle 0

20 Al Al Status cycle 1

21 P7 0 P7 - PO = Inverted Processor Priority

22 P6 0

23 P5 0

24 P4 0

25 P3 0

26 P2 0

27 P1 0

28 PO 0

29 ArblD3 0 Arbitration ID 3 -0

30 ArbID2 0

31 ArbID1 0

32 ArbIDO 0

33 A2 A2 Status Cycle

34 0 0 Idle
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Cycles 21 through 28 are used to arbitrate for the lowest priority processor. The processors
participating in the arbitration drive their inverted processor priority on the bus. Only the local
APICs having free interrupt slots participate in the lowest priority arbitration. If no such APIC
exists, the message will be rejected, requiring it to betried at alater time.

Cycles 29 through 32 are also used for arbitration in case two or more processors have the same
lowest priority. In the lowest priority delivery mode, all combinations of errorsin cycle 33 (A2

A2) will set the “accept error” bit in the error status register (refer to Figure 7-16). Arbitration
priority update is performed in cycle 20, and is not affected by errors detected in cycle 33. Only
the local APIC that wins in the lowest priority arbitration, drives cycle 33. An error in cycle 33

will force the sender to resend the message.

7.5.16.2.

Certain cycles within an APIC bus message are status cycles. During these cycles the status flags
(A:A) and (A1l:Al) are examined. Table 7-6 shows how these status flags are interpreted,

APIC BUS STATUS CYCLES

depending on the current delivery mode and existence of a focus processor.

Table 7-6. APIC Bus Status Cycles Interpretation

Update
Delivery ArblD and | Message
Mode A Status Al Status A2 Status Cycle# Length | Retry
EOI 00: CS_OK 10: Accept XX: Yes, 13 14 Cycle No
00: CS_OK 11: Retry XX: Yes, 13 14 Cycle Yes
00: CS_OK 0X: Accept Error XX: No 14 Cycle Yes
11: CS_Error XX: XX: No 14 Cycle Yes
10: Error XX: XX: No 14 Cycle Yes
01: Error XX: XX: No 14 Cycle Yes
Fixed 00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No
00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes
00: CS_OK 0X: Accept Error XX: No 21 Cycle Yes
11: CS_Error XX: XX: No 21 Cycle Yes
10: Error XX: XX: No 21 Cycle Yes
01: Error XX: XX: No 21 Cycle Yes
NMI, SMI, 00: CS_OK 10: Accept XX: Yes, 20 21 Cycle No
INIT, ExtINT,
Start-Up 00: CS_OK 11: Retry XX: Yes, 20 21 Cycle Yes
00: CS_OK 0X: Accept Error XX: No 21 Cycle Yes
11: CS_Error XX: XX: No 21 Cycle Yes
10: Error XX: XX: No 21 Cycle Yes
01: Error XX: XX: No 21 Cycle Yes
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Table 7-6. APIC Bus Status Cycles Interpretation (Contd.)

Lowest

00: CS_OK, NoFocus | 11: Do Lowest 10: Accept | Yes, 20 34 Cycle No
00: CS_OK, NoFocus | 11: Do Lowest 11: Error Yes, 20 34 Cycle Yes
00: CS_OK, NoFocus | 11: Do Lowest 0X: Error | Yes, 20 34 Cycle Yes
00: CS_OK, NoFocus | 10: End and Retry | XX: Yes, 20 34 Cycle Yes
00: CS_OK, NoFocus | 0X: Error XX: No 34 Cycle Yes
10: CS_OK, Focus XX: XX: Yes, 20 34 Cycle No
11: CS_Error XX: XX: No 21 Cycle Yes
01: Error XX: XX: No 21 Cycle Yes
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7.5.17. Error Handling

Thelocal APIC setsflagsin the error status register (ESR) to record all the errorsthat is detects
(refer to Figure 7-16). The ESR is aread/write register and is reset after being written to by the
processor. A write to the ESR must be done just prior to reading the ESR to allow the register to
be updated. An error interrupt is generated when one of the error bitsis set. Error bits are cumu-
lative. The ESR must be cleared by software after unmasking of the error interrupt entry in the
LVT is performed (by executing back-to-back a writes). If the software, however, wishes to
handle errors set in the register prior to unmasking, it should write and then read the ESR prior
or immediately after the unmasking.

31 876543210

Reserved

Received lllegal Vector
Send lllegal Vector
Reserved
Receive Accept Error
Send Accept Error
Receive CS Error
Send CS Error

Address: FEEO 0280H
Value after reset: OH

lllegal Register Address ‘ ’ ‘

Figure 7-16. Error Status Register (ESR)
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The functions of the ESR flags are as follows:

Send CSError Set when the local APIC detects a check sum error for a message
that was sent by it.

Receive CSError Set when the local APIC detects a check sum error for a message
that was received by it.

Send Accept Error Set when the local APIC detects that a message it sent was not

accepted by any APIC on the bus.

Receive Accept Error  Set when the local APIC detects that the message it received was not
accepted by any APIC on the bus, including itself.

Send Illegal Vector Set when the local APIC detects an illegal vector in the message that
it is sending on the bus.

Receivelllegal Vector ~ Set when the local APIC detects an illegal vector in the message it
received, including an illegal vector code in the local vector table
interrupts and self-interrupts from ICR.

Illegal Reg. Address Set when the processor is trying to access a register that is not

(P6 Family Processors implemented in the P6 family processors’ local APIC register

Only) address space; that is, within FEEOOOOOH (the APICBase MSR)
through FEEOO3FFH (the APICBase MSR plus 4K Bytes).

7.5.18. Timer

The local APIC unit contains a 32-bit programmable timer for use by the local processor. This

timer is configured through the timer register in the local vector table (refer to Figure 7-8). The

time base is derived from the processor’s bus clock, divided by a value specified in the divide
configuration register (refer to Figure 7-17). After reset, the timer is initialized to zero. The timer
supports one-shot and periodic modes. The timer can be configured to interrupt the local
processor with an arbitrary vector.

31 4 3210
Reserved 0

Address: FEEO 03EOH
Value after reset: OH
Divide Value (bits 0, 1 and 3)

000: Divide by 2
001: Divide by 4
010: Divide by 8
011: Divide by 16
100: Divide by 32
101: Divide by 64
110: Divide by 128
111: Divide by 1

Figure 7-17. Divide Configuration Register
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The timer is started by programming its initial-count register, refer to Figure 7-18. The initial
count value is copied into the current-count register and count-down is begun. After the timer
reaches zero in one-shot mode, an interrupt is generated and the timer remains at its 0 val ue until
reprogrammed. In periodic mode, the current-count register is automatically reloaded from the
initial-count register when the count reaches 0 and the count-down is repeated. If during the
count-down process the initial-count register is set, the counting will restart and the new value
will be used. Theinitial-count register isread-write by software, whilethe current-count register
isread only.

31 0

Initial Count

Current Count

Address: Initial Count FEEO 0380H
Current Count FEEO 0390H
Value after reset: OH

Figure 7-18. Initial Count and Current Count Registers

7.5.19. Software Visible Differences Between the Local APIC and
the 82489DX

Thefollowing local APIC features differ in their definitions from the 82489DX features:

® Whentheloca APIC is disabled, its internal registers are not cleared. Instead, setting the
mask bits in the local vector table to disable the local APIC merely causes it to cease
accepting the bus messages except for INIT, SMI, NMI, and start-up. In the 82489DX,
when the local unit is disabled by resetting the bit 8 of the spurious vector register, all the
internal registers including the IRR, ISR and TMR are cleared and the mask bits in the
local vector tables are set to logical ones. In the disabled mode, 82489DX loca unit will
accept only the reset deassert message.

® |ntheloca APIC, NMI and INIT (except for INIT deassert) are aways treated as edge
triggered interrupts, even if programmed otherwise. In the 82489DX these interrupts are
always level triggered.

* Intheloca APIC, interrupts generated through ICR messages are always treated as edge
triggered (except INIT Deassert). In the 82489DX, the ICR can be used to generate either
edge or level triggered interrupts.

® | ogical Destination register the local APIC supports 8 hits, where it supports 32 bits for
the 82489DX.

® APICID register is4 bitswide for the local APIC and 8 bits wide for the 82489DX.

® The remote read delivery mode provided in the 82489DX is not supported in the Intel
Architecture local APIC.
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7.5.20. Performance Related Differences between the Local APIC
and the 82489DX

For the 82489DX, in the lowest priority mode, all the target local APICs specified by the desti-
nation field participate in the lowest priority arbitration. Only thoselocal APICswhich have free
interrupt slots will participate in the lowest priority arbitration.

7.5.21. New Features Incorporated in the Pentium® and P6 Family
Processors Local APIC

The local APIC in the Pentium® and P6 family processors have the following new features not
found in the 82489DX.

® Theloca APIC supports cluster addressing in logical destination mode.
® Focus processor checking can be enabled/disabled in the local APIC.
® |nterrupt input signal polarity can be programmed in the local APIC.
®* Theloca APIC supports SMI through the ICR and I/O redirection table.

® The local APIC incorporates an error status register to log and report errors to the
processor.

In the P6 family processors, the local APIC incorporates an additional local vector table entry
to handle performance monitoring counter interrupts.

7.6. DUAL-PROCESSOR (DP) INITIALIZATION PROTOCOL

The Pentium® processor contains an internal dual-processing (DP) mechanism that permits two
processors to be initialized and configured for tightly coupled symmetric multiprocessing
(SMP). The DPinitialization protocol supports the controlled booting and configuration of the
two Pentium® processors. When configuration has been compl eted, the two Pentium® processors
can share the processing load for the system and share the handling of interrupts received from
the system’s 1/0O APIC.

The Pentiurfi DP initialization protocol defines two processors:

® Primary processor (also called the bootstrap processor, BSP)—This processor boots itself,

configures the APIC environment, and starts the second processor.

® Secondary processor (also called the dual processor, DP)—This processor boots itself then
waits for a startup signal from the primary processor. Upon receiving the startup signal, it

completes its configuration.

Appendix C,Dual-Processor (DP) Bootup Sequence Example (Specific to Pentium® Proces-
sors)gives an example (with code) of the bootup sequence for two Pentium® processors oper-
ating in a DP configuration.
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Appendix E, Programming the LINTO and LINT1 Inputs describes (with code) how to program
the LINT[0:1] pins of the processor’s local APICs after a dual-processor configuration has been
completed.

7.7. MULTIPLE-PROCESSOR (MP) INITIALIZATION PROTOCOL

The Intel Architecture (beginning with the PentfurBro processors) defines a multiple-
processor (MP) initialization protocol, for use with both single- and multiple-processor systems.
(Here, multiple processors is defined as two or more processors.) The primary goals of this
protocol are asfollows:

® To permit sequential or controlled booting of multiple processors (from 2 to 4) with no
dedicated system hardware. The initialization algorithm is not limited to 4 processors; it
can support supports from 1 to 15 processors in a multiclustered system when the APIC
busses are tied together. Larger systems are not supported.

® Tobeableto initiate the MP protocol without the need for a dedicated signal or BSP.

® To provide fault tolerance. No single processor is geographically designated the BSP. The
BSP is determined dynamically during initialization.

The following sections describe an MP initialization protocol.

Appendix D, Multiple-Processor (MP) Bootup Sequence Example (Specific to P6 Family
Processors) gives an example (with code) of the bootup sequence for two P6 family processors
operating in an MP configuration.

Appendix E, Programming the LINTO and LINT1 Inputs describes (with code) how to program
the LINT[0:1] pins of the processor’'s local APICs after an MP configuration has been
completed.

7.7.1. MP Initialization Protocol Requirements and Restrictions

The MP protocol imposes the following requirements and restrictions on the system:

® An APIC clock (APICLK) must be provided on al systems based on the P6 family
processors (excluding mobile processors and modul es).

® All interrupt mechanisms must be disabled for the duration of the MP protocol agorithm,
including the window of time between the assertion of INIT# or receipt of an INIT IPI by
the application processors and the receipt of a STARTUP IPI by the application processors.
That is, requests generated by interrupting devices must not be seen by the local APIC unit
(on board the processor) until the completion of the algorithm. Failure to disable the
interrupt mechanisms may result in processor shutdown.

® The MP protocol should be initiated only after a hardware reset. After completion of the
protocol algorithm, aflag is set in the APIC base MSR of the BSP (APIC_BASE.BSP) to
indicate that it isthe BSP. Thisflag is cleared for all other processors. If a processor or the
complete system is subject to an INIT sequence (either through the INIT# pin or an INIT
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IPl), then the MP protocol is not re-executed. Instead, each processor examines its BSP

flag to determine whether the processor should boot or wait for a STARTUP IPI.

7.7.2.

MP Protocol Nomenclature

The MPinitialization protocol defines two classes of processors:

® The bootstrap processor (BSP)—This primary processor is dynamically selected by the
MP initialization algorithm. After the BSP has been selected, it configures the APIC

environment, and starts the secondary processors, under software control.

® Application processors (APs)—These secondary processors are the remainder of the
processors in a MP system that were not selected as the BSP. The APs complete a minimal
self-configuration, then wait for a startup signal from the BSP processor. Upon receiving a

startup signal, an AP completes its configuration.

Table 7-7 describes the interrupt-style abbreviations that will be used through out the remaining
description of the MP initialization protocol. These IPIs do not define new interrupt messages.
They are messages that are special only by virtue of the time that they exist (that is, before the

RESET sequence is complete).

Table 7-7. Types of Boot Phase IPIs

Message Type

Abbreviation

Description

Processor Interrupt

BSP) processor in an MP system.

Boot Inter- BIPI An APIC serial bus message that Symmetric Multiprocessing

Processor Interrupt (SMP) agents use to dynamically determine a BSP after reset.

Final Boot Inter- FIPI An APIC serial bus message that the BSP issues before it fetches

Processor Interrupt from the reset vector. This message has the lowest priority of all
boot phase IPIs. When a BSP sees an FIPI that it issued, it
fetches the reset vector because no other boot phase IPIs can
follow an FIPI.

Startup Inter- SIPI Used to send a new reset vector to a Application Processor (non-

Table 7-8 describes the various fields of each boot phase IPI.

Table 7-8. Boot Phase IPlI Message Format
Destination Destination | Trigger Destination Delivery Vector
Type Field Shorthand Mode Level Mode Mode (Hex)
BIPI Not used All including Edge Deassert Don't Care Fixed 40 to 4E*
self (000)
FIPI Not used All including Edge Deassert Don't Care Fixed 10to 1E
self (000)
SIPI Used All allowed Edge Assert Physical or StartUp 00 to FF
Logical (110)
NOTE:
* For all P6 family processors.
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For BIPI and FIPI messages, the lower 4 bits of the vector field are equal to the APIC ID of the
processor issuing the message. The upper 4 bits of the vector field of a BIPI or FIPI can be
thought of as the “generation ID” of the message. All processors that run symmetric to a P6
family processor will have a generation ID of 0100B or 4H. BIPIs in a system based on the P6
family processors will therefore use vector values ranging from 40H to 4EH (4FH can not be
used because FH is not a valid APIC ID).

7.7.3. Error Detection During the MP Initialization Protocol

Errors may occur on the APIC bus during the MP initialization phase. These errors may be tran-
sient or permanent and can be caused by a variety of failure mechanisms (for example, broken
traces, soft errors during bus usage, etc.). All serial bus related errors will result in an APIC
checksum or acceptance error.

The occurrence of an APIC error causes a processor shutdown.

7.7.4. Error Handling During the MP Initialization Protocol

The MP initialization protocol makes the following assumptions:

® |If any errors are detected on the APIC bus during execution of the MP initialization
protocol, all processors will shutdown.

® |n a system that conforms to Intel Architecture guidelines, a likely error (broken trace,
check sum error during transmission) will result in no more than one processor booting.

®* The MP initialization protocol will be executed by processors even if they fail their BIST
sequences.

7.7.5. MP Initialization Protocol Algorithm

The MP initialization protocol uses the message passing capabilities of the processor’s local
APIC to dynamically determine a boot strap processor (BSP). The algorithm used essentially
implements a “race for the flag” mechanism using the APIC bus for atomicity.

The MP initialization algorithm is based on the fact that one and only one message is allowed
to exist on the APIC bus at a given time and that once the message is issued, it will complete
(APIC messages are atomic). Another feature of the APIC architecture that is used in the initial-
ization algorithm is the existence of a round-robin priority mechanism between all agents that
use the APIC bus.

The MP initialization protocol algorithm performs the following operations in a SMP system
(refer to Figure 7-19):

1. After completing their internal BISTs, all processors start their MP initialization protocol
sequence by issuing BIPIs to “all including self’ (at time t=0). The four least significant
bits of the vector field of the IPI contain each processor's APIC ID. The APIC hardware
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observes the BNR# (block next request) pin to guarantee that the initial BIPI is not issued
on the APIC bus until the BIST sequence is completed for all processorsin the system.

2. When the first BIPI completes (at time t=1), the APIC hardware (in each processor)
propagates an interrupt to the processor coreto indicate the arrival of the BIPI.

3. The processor compares the four least significant bits of the BIPI's vector field to the
processor's APIC ID. A match indicates that the processor should be the BSP and continue
the initialization sequence. If the APIC ID fails to match the BIPIs vector field, the
processor is essentially the “loser” or not the BSP. The processor then becomes an
application processor and should enter a “wait for SIPI” loop.

4. The winner (the BSP) issues an FIPI. The FIPI is issued to “all including self” and is
guaranteed to be the last IP1 on the APIC bus during the initialization sequence. This is due
to the fact that the round-robin priority mechanism forces the winning APIC agent's (the
BSPs) arbitration priority to 0. The FIPI is therefore issued by a priority 0 agent and has to
wait until all other agents have issued their BIPI's. When the BSP receives the FIPI that it
issued (t=5), it will start fetching code at the reset vector (Intel Architecture address).

System (CPU) Bus

P6 Family P6 Family P6 Family P6 Family
Processor A Processor B Processor C Processor D
A A A A
\ / \ \
- A ) [ 5
APIC Bus
t=0 t=1 ?2 ?3 t=4 t=5
‘ BIPLA ‘ BIPI.B ‘ BIPI.C ‘ BIPI.D ‘ FIPI ‘

Serial Bus Activity

Figure 7-19. SMP System

5. All application processors (non-BSP processors) remain in a “halted” state and can only be
woken up by SIPIs issued by another processor (note an AP in the startup IPI loop will also
respond to BINIT and snoops).
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CHAPTER 8
PROCESSOR MANAGEMENT AND
INITIALIZATION

This chapter describes the facilities provided for managing processor wide functions and for
initializing the processor. The subjects covered include: processor initialization, FPU initializa-
tion, processor configuration, feature determination, mode switching, the MSRs (in the
Pentium® and P6 family processors), and the MTRRs (in the P6 family processors).

8.1. INITIALIZATION OVERVIEW

Following power-up or an assertion of the RESET# pin, each processor on the system bus

performs a hardware initialization of the processor (known as a hardware reset) and an optional

built-in self-test (BIST). A hardware reset sets each processor’s registers to a known state and
places the processor in real-address mode. It also invalidates the internal caches, translation
lookaside buffers (TLBs) and the branch target buffer (BTB). At this point, the action taken
depends on the processor family:

* P6 family processors—All the processors on the system bus (including a single processor
in a uniprocessor system) execute the multiple processor (MP) initialization protocol
across the APIC bus. The processor that is selected through this protocol as the bootstrap
processor (BSP) then immediately starts executing software-initialization code in the
current code segment beginning at the offset in the EIP register. The application (non-BSP)
processors (AP) go into a halt state while the BSP is executing initialization code. Refer to
Section 7.7., “Multiple-Processor (MP) Initialization Protocol” in ChapteMultiple-
Processor Management for more details. Note that in a uniprocessor system, the single P6
family processor automatically becomes the BSP.

® Pentium® processors—In either a single- or dual- processor system, a single Pentium

processor is aways pre-designated as the primary processor. Following areset, the primary
processor behaves as follows in both single- and dual-processor systems. Using the dual-
processor (DP) ready initialization protocol, the primary processor immediately starts
executing software-initialization code in the current code segment beginning at the offset
in the EIP register. The secondary processor (if there is one) goesinto a halt state. (Refer to
Section 7.6., “Dual-Processor (DP) Initialization Protocol” in ChapteMultiple-
Processor Management for more details.)

® Intel4d86™ processor—The primary processor (or single processor in a uniprocessor
system) immediately starts executing software-initialization code in the current code
segment beginning at the offset in the EIP register. (The Intel486™ does not automatically
execute a DP or MP initialization protocol to determine which processor is the primary
processor.)

The software-initialization code performs all system-specific initialization of the BSP or
primary processor and the system logic.
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At this point, for MP (or DP) systems, the BSP (or primary) processor wakes up each AP (or
secondary) processor to enable those processors to execute self-configuration code.

When all processorsareinitialized, configured, and synchronized, the BSP or primary processor
begins executing an initial operating-system or executive task.

The floating-point unit (FPU) is aso initialized to a known state during hardware reset. FPU
software initialization code can then be executed to perform operations such as setting the preci-
sion of the FPU and the exception masks. No special initialization of the FPU is required to
switch operating modes.

Asserting the INIT# pin on the processor invokes a similar response to a hardware reset. The
major difference isthat during an INIT, the internal caches, MSRs, MTRRs, and FPU state are
left unchanged (although, the TLBsand BTB areinvalidated aswith ahardware reset). AnINIT
provides a method for switching from protected to real-address mode while maintaining the
contents of theinternal caches.

8.1.1. Processor State After Reset

Table 8-1 shows the state of the flags and other registers following power-up for the Pentium®
Pro, Pentium®, and Intel486™ processors. The state of control register CRO is 60000010H (refer
to Figure 8-1), which places the processor is in real-address mode with paging disabled.

8.1.2. Processor Built-In Self-Test (BIST)

Hardware may request that the BIST be performed at power-up. The EAX register is cleared
(OH) if the processor passes the BIST. A nonzero value in the EAX register after the BIST indi-
cates that a processor fault was detected. If the BIST is not requested, the contents of the EAX
register after a hardware reset is OH.

The overhead for performing a BIST varies between processor families. For example, the BIST
takes approximately 5.5 million processor clock periods to execute on the PeRtiom
processor. (This clock count is model-specific, and Intel reserves the right to change the exact

number of periods, for any of the Intel Architecture processors, without notification.)
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Table 8-1. 32-Bit Intel Architecture Processor States
Following Power-up, Reset, or INIT

Register P6 Family Processors Pentium® Processor Intel486™ Processor
EFLAGS! 00000002H 00000002H 00000002H
EIP 0000FFFOH 0000FFFOH 0000FFFOH
CRO 60000010H2 60000010H? 60000010H?
CR2, CR3, CR4 | 00000000H 00000000H 00000000H
MXCSR Pentium® Il processor only- | NA NA
Pwr up or Reset: 1F80H
FINIT/FNINIT: Unchanged
CSs Selector = FOOOH Selector = FOOOH Selector = FOOOH
Base = FFFFO000H Base = FFFFO000H Base = FFFFO000H
Limit = FFFFH Limit = FFFFH Limit = FFFFH
AR = Present, R/W, AR = Present, R/W, AR = Present, R/W,
Accessed Accessed Accessed
SS, DS, ES, FS, | Selector = 0000H Selector = 0000H Selector = 0000H
GS Base = 00000000H Base = 00000000H Base = 00000000H
Limit = FFFFH Limit = FFFFH Limit = FFFFH
AR = Present, R/W, AR = Present, R/W, AR = Present, R/W,
Accessed Accessed Accessed
EDX 000006xxH 000005xxH 000004xxH
EAX 03 03 03
EBX, ECX, ESI, | 00000000H 00000000H 00000000H
EDI, EBP, ESP
MMO through Pentium® Pro processor - Pwr up or Reset: NA
MMT74 NA 0000000000000000H
Pentium® 1l and Pentium® 11l | FINIT/FNINIT: Unchanged
processor -
Pwr up or Reset:
0000000000000000H
FINIT/FENINIT: Unchanged
XMMO through Pentium® Il processor only- | NA NA

XMM7°

STO through
ST74

FPU Control
Word*

FPU Status
Word*

FPU Tag Word*

FPU Data
Operand and CS
Seg. Selectors*

Pwr up or Reset:
0000000000000000H
FINIT/FENINIT: Unchanged

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 5555H
FINIT/ENINIT: FFFFH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 5555H
FINIT/ENINIT: FFFFH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: +0.0
FINIT/FNINIT: Unchanged

Pwr up or Reset: 0040H
FINIT/FNINIT: 037FH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

Pwr up or Reset: 5555H
FINIT/ENINIT: FFFFH

Pwr up or Reset: 0000H
FINIT/FNINIT: 0000H

8-3




PROCESSOR MANAGEMENT AND INITIALIZATION

intgl.

Table 8-1. 32-Bit Intel Architecture Processor States

Following Power-up, Reset, or INIT (Contd.)

Register

FPU Data
Operand and
Inst. Pointers*

P6 Family Processors

Pwr up or Reset:
00000000H
FINIT/FNINIT: 00000000H

Pentium® Processor

Pwr up or Reset:
00000000H
FINIT/FNINIT: 00000000H

Intel486™ Processor

Pwr up or Reset:
00000000H
FINIT/FNINIT: 00000000H

GDTR,IDTR Base = 00000000H Base = 00000000H Base = 00000000H
Limit = FFFFH Limit = FFFFH Limit = FFFFH
AR = Present, RIW AR = Present, R/'W AR = Present, R/IW
LDTR, Task Selector = 0000H Selector = 0000H Selector = 0000H
Register Base = 00000000H Base = 00000000H Base = 00000000H
Limit = FFFFH Limit = FFFFH Limit = FFFFH
AR = Present, RIW AR = Present, R/'W AR = Present, R/IW
DRO, DR1, DR2, | 00000000H 00000000H 00000000H
DR3
DR6 FFFFOFFOH FFFFOFFOH FFFF1FFOH
DR7 00000400H 00000400H 00000000H
Time-Stamp Power up or Reset: OH Power up or Reset: OH Not Implemented
Counter INIT: Unchanged INIT: Unchanged
Perf. Counters Power up or Reset: OH Power up or Reset: OH Not Implemented
and Event INIT: Unchanged INIT: Unchanged
Select

All Other MSRs

Pwr up or Reset:
Undefined
INIT: Unchanged

Pwr up or Reset:
Undefined
INIT: Unchanged

Not Implemented

Data and Code Invalid Invalid Invalid
Cache, TLBs
Fixed MTRRs Pwr up or Reset: Disabled Not Implemented Not Implemented

INIT: Unchanged

Variable MTRRs

Pwr up or Reset: Disabled
INIT: Unchanged

Not Implemented

Not Implemented

Machine-Check
Architecture

Pwr up or Reset:
Undefined
INIT: Unchanged

Not Implemented

Not Implemented

APIC

Pwr up or Reset: Enabled
INIT: Unchanged

Pwr up or Reset: Enabled
INIT: Unchanged

Not Implemented

NOTES:

1. The 10 most-significant bits of the EFLAGS register are undefined following a reset. Software should not
depend on the states of any of these bits.

2. The CD and NW flags are unchanged, bit 4 is set to 1, all other bits are cleared.

3. If Built-In Self-Test (BIST) is invoked on power up or reset, EAX is 0 only if all tests passed. (BIST cannot
be invoked during an INIT.)

4. The state of the FPU state and MMX™ registers is not changed by the execution of an INIT.

5. Available in the Pentium® Ill processor and Pentium® Ill Xeon™ processor only. The state of the SIMD
floating-point registers is not changed by the execution of an INIT.
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Paging disabled: 0
Caching disabled: 1
Not write-through disabled: 1

Alignment check disabled: 0
,7 Write-protect disabled: 0

31302928 1918 1716 15 6 543210
PlC|N Al |w N|, [T|E|m|P
G|plw M| |P E[*|s|M|P|E

External FPU error reporting: 0 ‘
(Not used): 1

No task switch: 0
FPU instructions not trapped: 0
WAIT/FWAIT instructions not trapped: 0
Real-address mode: 0

D Reserved

Figure 8-1. Contents of CRO Register after Reset

8.1.3. Model and Stepping Information

Following a hardware reset, the EDX register contains component identification and revision
information (refer to Figure 8-2). The device ID field is set to the value 6H, 5H, 4H, or 3H to

indicate a Pentium® Pro, Pentium®, Intel486™, or Intel386™ processor, respectively. Different

values may be returned for the various members of these Intel Architecture families. For
example the Intel386™ SX processor returns 23H in the device ID field. Binary object code can
be made compatible with other Intel processors by using this number to select the correct initial-

ization software.

31 14131211 87 43 0

Stepping

EDX Family | Model D

Processor Type ‘
Family (0110B for the Pentium® Pro Processor Family)—‘

Model (Beginning with 0001B}
|:| Reserved

Figure 8-2. Processor Type and Signature in the EDX Register after Reset
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The stepping ID field contains a unique identifier for the processor’s stepping ID or revision
level. The upper word of EDX is reserved following reset.

8.1.4. First Instruction Executed

The firstinstruction that is fetched and executed following a hardware reset is located at physical
address FFFFFFFOH. This address is 16 bytes below the processor’'s uppermost physical
address. The EPROM containing the software-initialization code must be located at this address.

The address FFFFFFFOH is beyond the 1-MByte addressable range of the processor while in
real-address mode. The processor is initialized to this starting address as follows. The CS
register has two parts: the visible segment selector part and the hidden base address part. In real-
address mode, the base address is normally formed by shifting the 16-bit segment selector value
4 bits to the left to produce a 20-bit base address. However, during a hardware reset, the segment
selector in the CS register is loaded with FOOOH and the base address is loaded with
FFFFOOOOH. The starting address is thus formed by adding the base address to the value in the
EIP register (that is, FFFF0000 + FFFOH = FFFFFFFOH).

The first time the CS register is loaded with a new value after a hardware reset, the processor
will follow the normal rule for address translation in real-address mode (that is, [CS base address
= CS segment selector * 16]). To insure that the base address in the CS register remains
unchanged until the EPROM based software-initialization code is completed, the code must not
contain a far jump or far call or allow an interrupt to occur (which would cause the CS selector
value to be changed).

8.2. FPU INITIALIZATION

Software-initialization code can determine the whether the processor contains or is attached to
an FPU by using the CPUID instruction. The code must then initialize the FPU and set flags in
control register CRO to reflect the state of the FPU environment.

A hardware reset places the Pentiyrocessor FPU in the state shown in Table 8-1. This state
isdifferent from the state the processor is placed in when executing an FINIT or FNINIT instruc-
tion (also shown in Table 8-1). If the FPU isto be used, the software-initialization code should
execute an FINIT/FNINIT instruction following a hardware reset. These instructions, tag all
dataregisters asempty, clear all the exception masks, set the TOP-of -stack valueto 0, and select
the default rounding and precision controls setting (round to nearest and 64-bit precision).

If the processor is reset by asserting the INIT# pin, the FPU state is not changed.

8.2.1. Configuring the FPU Environment

Initialization code must load the appropriate values into the MP, EM, and NE flags of control
register CRO. These hits are cleared on hardware reset of the processor. Figure 8-2 shows the
suggested settings for these flags, depending on the Intel Architecture processor being initial-
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ized. Initialization code can test for the type of processor present before setting or clearing these
flags.

Table 8-2. Recommended Settings of EM and MP Flags on Intel Architecture Processors
EM MP NE Intel Architecture Processor

1 0 1 Intel486™ SX, Intel386™ DX, and Intel386™ SX processors
only, without the presence of a math coprocessor.

0 1 lor0' Pentium®Pro, Pentium®, Intel486™ DX, and Intel 487 SX
processors, and also Intel386™ DX and Intel386™ SX
processors when a companion math coprocessor is present.

NOTE:
* The setting of the NE flag depends on the operating system being used.

The EM flag determines whether floating-point instructions are executed by the FPU (EM is
cleared) or generate a device-not-available exception (#NM) so that an exception handler can
emul ate the floating-point operation (EM = 1). Ordinarily, the EM flag is cleared when an FPU
or math coprocessor is present and set if they are not present. If the EM flag is set and no FPU,
math coprocessor, or floating-point emulator is present, the system will hang when a floating-
point instruction is executed.

The MP flag determines whether WAIT/FWAIT instructions react to the setting of the TS flag.
If the MP flag is clear, WAIT/FWAIT instructions ignore the setting of the TS flag; if the MP
flagisset, they will generate adevice-not-available exception (#NM) if the TSflag is set. Gener-
ally, the MP flag should be set for processors with an integrated FPU and clear for processors
without an integrated FPU and without a math coprocessor present. However, an operating
system can choose to save the floating-point context at every context switch, in which casethere
would be no need to set the MP bit.

Table 2-1in Chapter 2, System Architecture Overview shows the actions taken for floating-point
and WAIT/FWAIT instructions based on the settings of the EM, MP, and TS flags.

The NE flag determines whether unmasked floating-point exceptions are handled by generating
afloating-point error exception internally (NE is set, native mode) or through an external inter-
rupt (NE is cleared). In systems where an external interrupt controller is used to invoke numeric
exception handlers (such as MS-DOS-based systems), the NE bit should be cleared.
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8.2.2. Setting the Processor for FPU Software Emulation

Setting the EM flag causes the processor to generate a device-not-available exception (#NM)
and trap to a software exception handler whenever it encounters a floating-point instruction.
(Table 8-2 shows when it is appropriate to use this flag.) Setting this flag has two functions:

® |t allowsfloating-point code to run on an Intel processor that neither has an integrated FPU
nor is connected to an external math coprocessor, by using a floating-point emulator.

* |t allows floating-point code to be executed using a special or nonstandard floating-point
emulator, selected for a particular application, regardiess of whether an FPU or math
COprocessor is present.

To emulate floating-point instructions, the EM, MP, and NE flag in control register CRO should
be set as shown in Table 8-3.

Table 8-3. Software Emulation Settings of EM, MP, and NE Flags

CRO Bit Value
EM 1
MP 0
NE 1

Regardless of thevalue of the EM bit, the Intel486™ SX processor generates a device-not-avail-
able exception (#NM) upon encountering any floating-point instruction.

8.3. CACHE ENABLING

The Intel Architecture processors (beginning with the Intel4d86™ processor) contain internal
instruction and data caches. These caches are enabled by clearing the CD and NW flags in
control register CRO. (They are set during a hardware reset.) Because all internal cache lines are
invalid following reset initialization, it is not necessary to invalidate the cache before enabling
caching. Any external caches may require initialization and invalidation using a system-specific
initialization and invalidation code sequence.

Depending on the hardware and operating system or executive requirements, additional config-
uration of the processor’s caching facilities will probably be required. Beginning with the
Intel486™ processor, page-level caching can be controlled with the PCD and PWT flags in
page-directory and page-table entries. For P6 family processors, the memory type range regis-
ters (MTRRS) control the caching characteristics of the regions of physical memory. (For the
Intel486™ and Pentiufrprocessors, external hardware can be used to control the caching char-
acteristics of regions of physical memory.) Refer to Chapter 9, Memory Cache Control, for

detailed information on configuration of the caching facilities in the P6 family processors and

system memory.

8.4. MODEL-SPECIFIC REGISTERS (MSRS)

The P6 family processors and Pentium® processors contain model-specific registers (MSRs).
These registers are by definition implementation specific; that is, they are not guaranteed to be
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supported on future Intel Architecture processors and/or to have the same functions. The MSRs
are provided to control avariety of hardware- and software-related features, including:

® The performance-monitoring counters (refer to Section 15.6., “Performance-Monitoring
Counters”, in Chapter 1®Rebugging and Performance Monitoring).

® (P6 family processors only.) Debug extensions (refer to Section 15.4., “Last Branch,
Interrupt, and Exception Recording”, in Chapter I3¢bugging and Performance
Monitoring).

® (P6 family processors only.) The machine-check exception capability and its accompa-
nying machine-check architecture (refer to Chapter 13, Machine-Check Architecture).

® (P6 family processors only.) The MTRRs (refer to Section 9.12., “Memory Type Range
Registers (MTRRS)”, in Chapter Blemory Cache Control).

The MSRs can be read and written to using the RDMSR and WRMSR instructions, respectively.

When performing software initialization of a PentfuRto or Pentium® processor, many of the
MSRs will need to be initialized to set up things like performance-monitoring events, run-time
machine checks, and memory types for physical memory.

Systems configured to implement FRC mode must write all of the processors’ internal MSRs to
deterministic values before performing either a read or read-modify-write operation using these
registers. The following is a list of MSRs that are not initialized by the processors’ reset

sequences.

¢ All fixed and variable MTRRs.

® All Machine Check Architecture (MCA) status registers.
® Microcode update signature register.

® All L2 cacheinitidization MSRs.

The list of available performance-monitoring counters for the Pentium® Pro and Pentium®
processors is given in Appendix A, Performance-Monitoring Events, and the list of available
MSRs for the Pentium® Pro processor is given in Appendix B, Model-Specific Registers. The
references earlier in this section show where the functions of the various groups of MSRs are
described in this manual .

8.5. MEMORY TYPE RANGE REGISTERS (MTRRS)

Memory type range registers (MTRRs) were introduced into the Intel Architecture with the
Pentium® Pro processor. They allow thetype of caching (or no caching) to be specified in system
memory for selected physical address ranges. They allow memory accesses to be optimized for
various types of memory such as RAM, ROM, frame buffer memory, and memory-mapped I/0
devices.

In general, initidizing the MTRRs is normally handled by the software initialization code or
BIOS and is not an operating system or executive function. At the very least, all the MTRRs
must be cleared to 0, which selects the uncached (UC) memory type. Refer to Section 9.12.,
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“Memory Type Range Registers (MTRRSs)”, in Chaptev@mory Cache Control, for detailed
information on the MTRRs.

8.6. SOFTWARE INITIALIZATION FOR REAL-ADDRESS MODE
OPERATION

Following a hardware reset (either through a power-up or the assertion of the RESET# pin) the

processor is placed in real-address mode and begins executing software initialization code from
physical address FFFFFFFOH. Software initialization code must first set up the necessary data
structures for handling basic system functions, such as a real-mode IDT for handling interrupts

and exceptions. If the processor is to remain in real-address mode, software must then load addi-
tional operating-system or executive code modules and data structures to allow reliable execu-
tion of application programs in real-address mode.

If the processor is going to operate in protected mode, software must load the necessary data
structures to operate in protected mode and then switch to protected mode. The protected-mode
data structures that must be loaded are described in Section 8.7., “Software Initialization for
Protected-Mode Operation”.

8.6.1. Real-Address Mode IDT

In real-address mode, the only system data structure that must be loaded into memory is the IDT
(also called the “interrupt vector table”). By default, the address of the base of the IDT is phys-
ical address OH. This address can be changed by using the LIDT instruction to change the base
address value in the IDTR. Software initialization code needs to load interrupt- and exception-
handler pointers into the IDT before interrupts can be enabled.

The actual interrupt- and exception-handler code can be contained either in EPROM or RAM,;

however, the code must be located within the 1-MByte addressable range of the processor in
real-address mode. If the handler code is to be stored in RAM, it must be loaded along with the
IDT.

8.6.2. NMl Interrupt Handling

The NMI interrupt is always enabled (except when multiple NMls are nested). If the IDT and
the NMI interrupt handler need to be loaded into RAM, there will be a period of time following
hardware reset when an NMI interrupt cannot be handled. During this time, hardware must
provide a mechanism to prevent an NMI interrupt from halting code execution until the IDT and
the necessary NMI handler software is loaded.
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Here are two examples of how NMIs can be handled during theinitial states of processor initial-

ization:

® AsmpleIDT and NMI interrupt handler can be provided in EPROM. This alows an NMI
interrupt to be handled immediately after reset initialization.

® The system hardware can provide a mechanism to enable and disable NMIs by passing the
NMI# signal through an AND gate controlled by aflag in an I/O port. Hardware can clear
the flag when the processor is reset, and software can set the flag when it is ready to handle
NMI interrupts.

8.7. SOFTWARE INITIALIZATION FOR PROTECTED-MODE
OPERATION

The processor is placed in real-address mode following a hardware reset. At this point in the
initialization process, some basic data structures and code modul es must be loaded into physical

memory to support further initialization of the processor, as described in Section 8.6., “Software
Initialization for Real-Address Mode Operation”. Before the processor can be switched to
protected mode, the software initialization code must load a minimum number of protected
mode data structures and code modules into memory to support reliable operation of the
processor in protected mode. These data structures include the following:

® A protected-mode IDT.

* AGDT.

* ATSS

® (Optional.) AnLDT.

® |f pagingisto be used, at least one page directory and one page table.

® A code segment that contains the code to be executed when the processor switches to
protected mode.

®  One or more code modules that contain the necessary interrupt and exception handlers.

Software initialization code must also initialize the following system registers before the
processor can be switched to protected mode:

® TheGDTR.

® (Optional.) The IDTR. This register can also be initialized immediately after switching to
protected mode, prior to enabling interrupts.

® Control registers CR1 through CR4.
®  (Pentium® Pro processor only.) The memory type range registers (MTRRS).

With these data structures, code modules, and system registers initialized, the processor can be
switched to protected mode by loading control register CRO with a value that sets the PE flag
(bit 0).
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8.7.1. Protected-Mode System Data Structures

The contents of the protected-mode system data structures |oaded into memory during software
initialization, depend largely on the type of memory management the protected-mode operating-
system or executive is going to support: flat, flat with paging, segmented, or segmented with
paging.

To implement a flat memory model without paging, software initialization code must at a
minimum load a GDT with one code and one data-segment descriptor. A null descriptor in the
first GDT entry is also required. The stack can be placed in a normal read/write data segment,
so no dedicated descriptor for the stack is required. A flat memory model with paging also
requires apagedirectory and at | east one pagetable (unlessall pages are4 MBytesin which case
only a page directory is required). Refer to Section 8.7.3., “Initializing Paging”

Before the GDT can be used, the base address and limit for the GDT must be loaded into the
GDTR register using an LGDT instruction.

A multisegmented model may require additional segments for the operating system, as well as
segments and LDTs for each application program. LDTs require segment descriptors in the
GDT. Some operating systems allocate new segments and LDTs as they are needed. This
provides maximum flexibility for handling a dynamic programming environment. However,
many operating systems use a single LDT for all tasks, allocating GDT entries in advance. An
embedded system, such as a process controller, might pre-allocate a fixed number of segments
and LDTs for a fixed number of application programs. This would be a simple and efficient way

to structure the software environment of a real-time system.

8.7.2. Initializing Protected-Mode Exceptions and Interrupts

Software initialization code must at a minimum load a protected-mode IDT with gate descriptor
for each exception vector that the processor can generate. If interrupt or trap gates are used, the
gate descriptors can all point to the same code segment, which contains the necessary exceptior
handlers. If task gates are used, one TSS and accompanying code, data, and task segments ar
required for each exception handler called with a task gate.

If hardware allows interrupts to be generated, gate descriptors must be provided in the IDT for
one or more interrupt handlers.

Before the IDT can be used, the base address and limit for the IDT must be loaded into the IDTR
register using an LIDT instruction. This operation is typically carried out immediately after
switching to protected mode.

8.7.3. Initializing Paging

Paging is controlled by the PG flag in control register CRO. When this flag is clear (its state
following a hardware reset), the paging mechanism is turned off; when it is set, paging is
enabled. Before setting the PG flag, the following data structures and registers must be initial-
ized:
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* Software must load at least one page directory and one page table into physical memory.
The page table can be eliminated if the page directory contains adirectory entry pointing to
itself (here, the page directory and page table reside in the same page), or if only 4-MByte
pages are used.

® Control register CR3 (also called the PDBR register) is loaded with the physical base
address of the page directory.

® (Optional) Software may provide one set of code and data descriptors in the GDT or in an
LDT for supervisor mode and another set for user mode.

With this paging initialization complete, paging is enabled and the processor is switched to
protected mode at the same time by 1oading control register CRO with animage in which the PG
and PE flags are set. (Paging cannot be enabled before the processor is switched to protected
mode.)

8.7.4. Initializing Multitasking

If the multitasking mechanism is not going to be used and changes between privilege levels are
not allowed, it is not necessary load a TSS into memory or to initialize the task register.

If the multitasking mechanism is going to be used and/or changes between privilege levels are
allowed, software initialization code must load at least one TSS and an accompanying TSS
descriptor. (A TSSisrequired to change privilege level s because pointersto the privileged-level
0, 1, and 2 stack segments and the stack pointers for these stacks are obtained from the TSS.)
TSS descriptors must not be marked as busy when they are created; they should be marked busy
by the processor only as a side-effect of performing atask switch. Aswith descriptorsfor LDTS,
TSS descriptorsreside in the GDT.

After the processor has switched to protected mode, the LTR instruction can be used to load a
segment selector for a TSS descriptor into the task register. This instruction marks the TSS
descriptor as busy, but does not perform atask switch. The processor can, however, usethe TSS
to locate pointersto privilege-level O, 1, and 2 stacks. The segment selector for the TSS must be
loaded before software performs its first task switch in protected mode, because a task switch
copies the current task state into the TSS.

After the LTR instruction has been executed, further operations on the task register are
performed by task switching. Aswith other segments and LDTs, TSSs and TSS descriptors can
be either pre-allocated or allocated as needed.

8.8. MODE SWITCHING

To use the processor in protected mode, a mode switch must be performed from real-address
mode. Oncein protected mode, software generally does not need to return to real-address mode.
To run software written to run in real-address mode (8086 mode), it isgenerally more convenient
to run the software in virtual-8086 mode, than to switch back to real-address mode.

I 8-13



PROCESSOR MANAGEMENT AND INITIALIZATION Intel®

8.8.1. Switching to Protected Mode

Before switching to protected mode, aminimum set of system data structures and code modules

must be loaded into memory, as described in Section 8.7., “Software Initialization for Protected-
Mode Operation”. Once these tables are created, software initialization code can switch into
protected mode.

Protected mode is entered by executing a MOV CRO instruction that sets the PE flag in the CRO
register. (In the same instruction, the PG flag in register CRO can be set to enable paging.)
Execution in protected mode begins with a CPL of 0.

The 32-bit Intel Architecture processors have slightly different requirements for switching to
protected mode. To insure upwards and downwards code compatibility with all 32-bit Intel
Architecture processors, it is recommended that the following steps be performed:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI
interrupts can be disabled with external circuitry. (Software must guarantee that no
exceptions or interrupts are generated during the mode switching operation.)

2. Execute the LGDT instruction to load the GDTR register with the base address of the
GDT.

3. Execute a MOV CRO instruction that sets the PE flag (and optionally the PG flag) in
control register CRO.

4. Immediately following the MOV CRO instruction, execute a far JMP or far CALL
instruction. (This operation is typically a far jump or call to the next instruction in the
instruction stream.)

The JMP or CALL instruction immediately after the MOV CRO instruction changes the
flow of execution and serializes the processor.

If paging is enabled, the code for the MOV CRO instruction and the JMP or CALL
instruction must come from a page that is identity mapped (that is, the linear address before
the jump is the same as the physical address after paging and protected mode is enabled).
The target instruction for the JMP or CALL instruction does not need to be identity
mapped.

5. If a local descriptor table is going to be used, execute the LLDT instruction to load the
segment selector for the LDT in the LDTR register.

6. Execute the LTR instruction to load the task register with a segment selector to the initial
protected-mode task or to a writable area of memory that can be used to store TSS
information on a task switch.

7. After entering protected mode, the segment registers continue to hold the contents they had
in real-address mode. The JMP or CALL instruction in step 4 resets the CS register.
Perform one of the following operations to update the contents of the remaining segment
registers.

— Reload segment registers DS, SS, ES, FS, and GS. If the ES, FS, and/or GS registers
are not going to be used, load them with a null selector.
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— Perform a JMP or CALL instruction to a new task, which automatically resets the
values of the segment registers and branches to a new code segment.

8. Execute the LIDT instruction to load the IDTR register with the address and limit of the
protected-mode IDT.

9. Execute the STI instruction to enable maskable hardware interrupts and perform the
necessary hardware operation to enable NMI interrupts.

Random failures can occur if other instructions exist between steps 3 and 4 above. Failures will
be readily seen in some situations, such as when instructions that reference memory are inserted
between steps 3 and 4 while in System Management mode.

8.8.2. Switching Back to Real-Address Mode

The processor switches back to real-address mode if software clears the PE bit in the CRO
register with a MOV CRO instruction. A procedure that re-enters real-address mode should
perform the following steps:

1. Disable interrupts. A CLI instruction disables maskable hardware interrupts. NMI
interrupts can be disabled with external circuitry.

2. If paging is enabled, perform the following operations:

— Transfer program control to linear addresses that are identity mapped to physical
addresses (that is, linear addresses equal physical addresses).

— Insure that the GDT and IDT are in identity mapped pages.
— Clear the PG bit in the CRO register.
— Move OH into the CR3 register to flush the TLB.

3. Transfer program control to a readable segment that has a limit of 64 KBytes (FFFFH).
This operation loads the CS register with the segment limit required in real-address mode.

4. Load segment registers SS, DS, ES, FS, and GS with a selector for a descriptor containing
the following values, which are appropriate for real-address mode:

— Limit = 64 KBytes (OFFFFH)
— Byte granular (G =0)

— Expand up (E=0)

— Writable (W = 1)

— Present (P =1)

— Base = any value

The segment registers must be loaded with nonnull segment selectors or the segment
registers will be unusable in real-address mode. Note that if the segment registers are not
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reloaded, execution continues using the descriptor attributes loaded during protected
mode.

5. Execute an LIDT instruction to point to a real-address mode interrupt table that is within
the 1-MByte real-address mode address range.

Clear the PE flag in the CRO register to switch to real-address mode.

7. Execute a far IMP instruction to jump to a real-address mode program. This operation
flushes the instruction queue and |oads the appropriate base and access rights valuesin the
CSregister.

8. Loadthe SS, DS, ES, FS, and GS registers as needed by the real-address mode code. If any
of the registers are not going to be used in real-address mode, write 0s to them.

9. Execute the STI instruction to enable maskable hardware interrupts and perform the
necessary hardware operation to enable NMI interrupts.

NOTE

All the code that is executed in steps 1 through 9 must be in a single page and
the linear addresses in that page must be identity mapped to physica
addresses.

8.9. INITIALIZATION AND MODE SWITCHING EXAMPLE

This section provides an initialization and mode switching exampl e that can beincorporated into

an application. This codewas originally written to initialize the Intel 386 ™ processor, but it will
execute successfully on the PentfuPro, Pentium®, and Intel486™ processors. The code in this
example is intended to reside in EPROM and to run following a hardware reset of the processor.
The function of the code is to do the following:

® Establish abasic real-address mode operating environment.
® | oad the necessary protected-mode system data structuresinto RAM.

® |oad the system registers with the necessary pointers to the data structures and the
appropriate flag settings for protected-mode operation.

® Switch the processor to protected mode.

Figure 8-3 shows the physical memory layout for the processor following a hardware reset and

the starting point of thisexample. The EPROM that containstheinitialization code resides at the

upper end of the processor’s physical memory address range, starting at address FFFFFFFFH
and going down from there. The address of the first instruction to be executed is at FFFFFFFOH,
the default starting address for the processor following a hardware reset.

The main steps carried out in this example are summarized in Table 8-4. The source listing for
the example (with the filename STARTUP.ASM) is given in Example 8-1. The line humbers
given in Table 8-4 refer to the source listing.
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The following are some additional notes concerning this example:

When the processor is switched into protected mode, the original code segment base-
address value of FFFFO000H (located in the hidden part of the CSregister) is retained and
execution continues from the current offset in the EIP register. The processor will thus
continue to execute code in the EPROM until a far jump or call is made to a new code
segment, at which time, the base address in the CS register will be changed.

Maskable hardware interrupts are disabled after a hardware reset and should remain
disabled until the necessary interrupt handlers have been installed. The NMI interrupt is
not disabled following a reset. The NMI# pin must thus be inhibited from being asserted
until an NMI handler has been loaded and made availabl e to the processor.

The use of a temporary GDT allows simple transfer of tables from the EPROM to
anywhere in the RAM area. A GDT entry is constructed with its base pointing to address 0
and alimit of 4 GBytes. When the DS and ES registers are loaded with this descriptor, the
temporary GDT is no longer needed and can be replaced by the application GDT.

This code loads one TSS and no LDTs. If more TSSs exist in the application, they must be
loaded into RAM. If there are LD Ts they may be loaded as well.

After Reset

FFFF FFFFH
[CS.BASE+EIP] —>»F — = — = = — — FFFF FFFOHT T

64K EPROM

EIP = 0000 FFFOH
CS.BASE = FFFF 0000H FFFF 0000H
DS.BASE = OH
ES.BASE = OH
SS.BASE = OH
ESP = OH

[SP, DS, SS,ES] —>» 0

Figure 8-3. Processor State After Reset
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Table 8-4. Main Initialization Steps in STARTUP.ASM Source Listing

STARTUP.ASM
Line Numbers

From To Description

157 157 Jump (short) to the entry code in the EPROM

162 169 Construct a temporary GDT in RAM with one entry:
(1) - rF‘%l;\lllv data segment, base = 0, limit = 4 GBytes

171 172 Load the GDTR to point to the temporary GDT

174 177 Load CRO with PE flag set to switch to protected mode

179 181 Jump near to clear real mode instruction queue

184 186 Load DS, ES registers with GDT[1] descriptor, so both point to the entire
physical memory space

188 195 Perform specific board initialization that is imposed by the new protected
mode

196 218 Copy the application’s GDT from ROM into RAM

220 238 Copy the application’s IDT from ROM into RAM

241 243 Load application’s GDTR

244 245 Load application’s IDTR

247 261 Copy the application’s TSS from ROM into RAM

263 267 Update TSS descriptor and other aliases in GDT (GDT alias or IDT alias)

277 277 Load the task register (without task switch) using LTR instruction

282 286 Load SS, ESP with the value found in the application's TSS

287 287 Push EFLAGS value found in the application’s TSS

288 288 Push CS value found in the application’s TSS

289 289 Push EIP value found in the application’s TSS

290 293 Load DS, ES with the value found in the application’s TSS

296 296 Perform IRET; pop the above values and enter the application code

8-1