
Project 2: Preemption

CS 415

Alin Dobra
Department of Computer Science

Cornell University
dobra@cs.cornell.edu

February 12, 2002



What you need to do

• Add Preemption

• Add Alarms

• Add minithread_sleep_with_timeout



Interrupts

• In project 2 we have interrupts:
– Much more realistic machine model

• For now only clock interrupts:
– periodic interrupt

– call minithread_clock_init to start

• Interrupts behave like they do on native hardware



How it works

• At startup interrupts are disabled

• You need to initialize the clock device:

#define PERIOD 50*MILLISECOND
typedef void (*interrupt_handler_t)(void* );
void minithread_clock_init(interrupt_handler_t clock_handler);

• Clock frequency defined in interrupts.h

– Initially set it to something like 5 seconds

• Once the clock device is initialized, interrupts are still dis-
abled



Enabling interrupts

• Turn interrupts on or off with:

interrupt_level_t set_interrupt_level(interrupt_level_t newlevel);

• Example:

set_interrupt_level(ENABLED);

• You will now start getting interrupts every 5 seconds

• The interrupts arrive on the stack of whatever thread hap-
pens to be currently executing



Interrupt stack

• Whatever the running thread was doing is interrupted

• Old state is saved onto its stack

• Your handler is called

• If your handler returns, the old state is resumed



Preemption

• Everything you run inside your interrupt handler executes in
the context of the interrupted thread

• What happens if the interrupt handler calls minithread_yield ?



Interrupt handlers

• You cannot do anything you want inside an interrupt handler

• You cannot take too long
– It takes CPU time away from real computations

– If you take far too long, you will get a second clock interrupt

• You cannot use spin locks
– The interrupted thread may be holding the lock you are spinning on

– Consequently, you will spin forever and the machine will hang

• You cannot block (i.e. call P)
– It will block the thread the interrupt arrived on

• You can signal (i.e. V) other threads though



Disabling interrupts

• At critical points in your system code, you may not want to
take interrupts (e.g. while manipulating the run queue)

• You can disable interrupts for short periods of time
– Make sure you reenable them properly

– On all paths, back to their prior value

– Make sure you do not execute application code with interrupts disabled

– Be aware of the fact that minithread_switch reenables interrupts when called



Preemption testing

• Once you have implemented preemption:
– Reduce your quantum to 100ms

– No printf s, no unnecessary tasks inside the clock interrupt handler

• Your FCFS scheduler became RR
– Optional: Implement multi-level queue scheduling

• Run the idle thread only when the system is truly idle



Alarms

• Often, you need to schedule something to happen in the
future:

– E.g. Wake me up in 30ms.

• You need to implement an alarm facility where functions to
be executed in the future can be registered

– You need to keep track of time

– You need to call the alarm functions when they expire



Alarm interface

• Two functions:

int register_alarm(int delay, void (*func)(void*), void *arg);
void deregister_alarm(int alarmid);

• Keep track of how many ticks have elapsed

• Execute the given function when enough ticks have gone by

• Assume that the functions are interrupt safe, i.e. you can
call them from within the interrupt handler



Thread sleep

• Implement a call by which threads can sleep for a specified
amount of time

minthread_sleep_with_timeout(int timeout);

• You need to take the calling thread out of the run queue,
have it wait someplace until timeout

• Semaphores can help here
– Make sure that if more than one thread calls minithread_sleep_with_timeout

they sleep the right amount of time



Testing

• Test preemption with your food services implementation and
other tests from Project 1 and 2

• Makefile : change the MAINvariable to indicate which main()
function you are linking against


