CS 4120
Introduction to Compilers
Ross Tate
Cornell University
Lecture 34: Pointer Analysis

Applications
• Aliasing
 • helps identify commuting operations

• Exact Types
 • can turn dynamic dispatch into static call

Styles
• Inclusion-Based
 • each pointer may point to many “locations”
 • two pointers alias if locations overlap

• Unification-Based
 • each pointer addresses one “location”
 • two pointers alias if unified

Flow Sensitivity
• Flow sensitive
 • “for each node”
 • different abstraction at each program point

• Flow insensitive
 • same abstraction for entire program
 • less precise, but much more efficient

Abstract Interpretation
Real Heap
• infinite set of locations
• for each location and field
 • a single points to location
 • or null

(An) Abstract Heap
• finite set of abstract locs
• for each location and field
 • finite set of points to locs
 • possibly including null

Abstracting Heaps

<\text{L}, \text{target}> is abstracted by <\text{L}, \text{targets}>
iff there is a mapping \text{m} : \text{L} \rightarrow \text{L}
such that for all \text{l} in \text{L}, \text{m(target(l)) is in targets(m(l))}
Finite Set of Abstract Locations

For each abstract class, all designated a new abstract location (only 1 way to do this, there are many others)

Abstract Interpretation

Real Heap
- an infinite set of locations
- for each location and field
 - a single points-to location
 - or null

(Another) Abstract Heap
- a finite set of locations
- for each location and field
 - a single points-to location
 - or null

\(<L, \text{target}>\) is abstracted by \(<L, \text{targets}>\)
iff there is a mapping \(m : L \rightarrow L'\) such that for all \(l \in L\), \(m(\text{target}(l)) \in \text{targets}(m(l))\)