Loops
- Most execution time in most programs is spent in loops: 90/10 is typical
- Most important targets of optimization: loops
- Loop optimizations:
 - loop-invariant code motion
 - loop unrolling
 - loop peeling
 - loop-induction-variable strength reduction
 - removal of bounds checks
 - loop tiling
- When to apply loop optimizations?

High-level optimization?
- Loops may be hard to recognize in IR or quadruple form -- should we apply loop optimizations to source code or high-level IR?
 - Many kinds of loops: while, do/while, continue
 - Loop optimizations benefit from other IR-level optimizations and vice-versa -- want to be able to interleave
- Problem: identifying loops in CFG

Definition of a loop
- A loop is a set of nodes in the CFG
- We will assume each loop has a unique entry point, called the header
- Every node is reachable from header, header reachable from every node: strongly-connected component
- No entering edges from outside except to header
- Nodes with outgoing edges: loop-exit nodes

Nested loops
- Control-flow graph may contain many loops, and loops may contain each other
- Control-flow analysis: identify the loops and nesting structure:

Dominators
- CFA based on idea of dominators
- Node A dominates node B if the only way to reach B from start node is through A
- Edge in CFG is a back edge if destination dominates source
- A loop contains at least one back edge
Dominator tree

- Domination is transitive; if A dominates B and B dominates C, then A dominates C
- Domination is anti-symmetric
- Every CFG has a dominator tree

Dominator dataflow analysis

- Forward analysis; out[n] is the set of nodes dominating n
- A node B is dominated by another node A if A dominates all predecessors of B
 \[\text{in}[n] = \bigcap_{n' \in \text{pred}[n]} \text{out}[n'] \]
- Every node dominates itself
 \[\text{out}[n] = \text{in}[n] \cup \{n\} \]
- Formally:
 - preorder – sets of nodes ordered by \(\supseteq \)
 - \(\bot = \{\text{all } n\} \)
 - Flow functions \(F_n(x) = x \cup \{n\} \)
 - Standard iterative analysis gives the best solution

Completing control-flow analysis

- Dominator analysis gives all back edges
- Each back edge \(n \rightarrow h \) has an associated natural loop with \(h \) as its header
- For each back edge, find natural loop:
 - all nodes reachable from \(h \) that reach \(n \) without going through \(h \)
- Nest loops based on subset relationship between natural loops
- Exception: natural loops may share same header; merge them into a larger loop
- Control tree built using nesting relationship

Inserting \(\phi \) Nodes

- Insert \(\phi \) nodes at branch points
- \(\phi \) nodes represent the join of incoming values
- Standard iterative analysis gives the best solution