CS 4120
Introduction to Compilers
Ross Tate
Cornell University

Lecture 26: Live-Variable Analysis

Problem
- Abstract assembly contains arbitrarily many registers \(t \)
- Want to replace all such nodes with register nodes for \(e[a-d]x, e[bdj], (ebp) \)
- Local variables allocated to TEMP’S too
- Only 6-7 usable registers: need to allocate multiple \(t \) to each register
- For each statement, need to know which variables are live to reuse registers

Using scope
- Observation: temporaries, variables have bounded scope in program
- Simple idea: use information about program scope to decide which variables are live
- Problem: overestimates liveness

Live-variable analysis
- Goal: for each statement, identify which temporaries are live
- Analysis will be conservative (may over-estimate liveness, will never under-estimate)
- But more precise than simple scope analysis (will estimate fewer live temporaries)

Control-Flow Graph
- Canonical IR forms control-flow graph (CFG)
 - statements are nodes; jumps/fall-throughs are edges

Liveness
- Liveness is associated with edges of control flow graph, not nodes (statements)
- Same register can be used for different temporaries manipulated by one statement
Example

\[a = b + 1 \]

\[\text{MOVE}(\text{TEMP}(ta), \text{TEMP}(tb) + 1) \]

\[\text{mov} \ta, \tb \]

\[\text{add} \ta, 1 \]

Register allocation: \(ta \rightarrow \text{eax}, \tb \rightarrow \text{eax} \)

\[\text{mov eax}, \text{eax} \]

\[\text{add eax}, 1 \]

Live: \(tb \)

\[\text{mov} \ta, \tb \]

\[\text{add} \ta, 1 \]

Live: \(ta \)

Use/Def

- Every statement uses some set of variables (reads from them) and defines some set of variables (writes to them)
- For statement \(s \) define:
 - \(\text{use}[s] \): set of variables used by \(s \)
 - \(\text{def}[s] \): set of variables defined by \(s \)
- Example:
 - \(a = b + c \)
 - \(\text{use} = b, c \)
 - \(\text{def} = a \)
 - \(a = a + 1 \)
 - \(\text{use} = a \)
 - \(\text{def} = a \)

Liveness

- Variable \(v \) is live on edge \(e \) if there is
 - a node \(n \) in the CFG that uses it and
 - a directed path from \(e \) to \(n \) passing through no \(\text{def} \)
- How to compute efficiently?
- How to use?

Simple algorithm: Backtracing

- "variable \(v \) is live on edge \(e \) if there is a node \(n \) in the CFG that uses it and a directed path from \(e \) to \(n \) passing through no \(\text{def} \)"
- (Slow) algorithm: Try all paths "from" each use of a variable, tracing backward in the CFG until a \(\text{def} \) node or previously visited node is reached. Mark variable live on each edge traversed.

Dataflow Analysis

- Idea: compute liveness for all variables simultaneously
- Approach: define formulae that must be satisfied by any liveness determination
- Solve formulae by iteratively converging on solution
- Instance of general technique for computing program properties: data-flow analysis

Data-flow values

\(\text{use}[n] \): set of variables used by \(n \)
\(\text{def}[n] \): set of variables defined by \(n \)
\(\text{in}[n] \): variables live on entry to \(n \)
\(\text{out}[n] \): variables live on exit from \(n \)

Clearly: \(\text{in}[n] \supseteq \text{use}[n] \)

What other constraints are there?
Data-flow constraints

- $in[n] \supseteq use[n]$
 - A variable must be live on entry to n if it is used by the statement itself
- $in[n] \supseteq out[n] \setminus def[n]$
 - If a variable is live on output and the statement does not define it, it must be live on input too
- $out[n] \supseteq in[n']$ if $n' \in succ[n]$
 - if live on input to n', must be live on output from n

Iterative data-flow analysis

- Initial assignment to $in[n], out[n]$ is empty set \emptyset
 - will not satisfy constraints

 $$in[n] \supseteq use[n]$$
 $$out[n] \supseteq out[n'] \setminus def[n']$$

 - Idea: iteratively recompute $in[n], out[n]$ when forced to by constraints. Live-variable sets will increase monotonically.

 - Dataflow equations:
 $$in'[n] = use[n] \cup (out[n] \setminus def[n])$$
 $$out'[n] = \bigcup_{n' \in succ[n]} in[n']$$

Complete algorithm

for all n, $in[n] = out[n] = \emptyset$
repeat until no change
 for all n
 $$out[n] = \bigcup_{n' \in succ[n]} in[n']$$
 $$in[n] = use[n] \cup (out[n] \setminus def[n])$$
end

- Finds fixed point of in/out equations
- Problem: does extra work recomputing in/out values when no change can happen

Example

$e=1$
if $x>0$
$z=e*e$
y=$e*x$
e=z$
if $x&1$
e=y
return x
def: e
use: x
use: x
use: e
def: z
use: e, x
def: y
use: z
def: e
use: x
def: e
use: y
def: e
all equations satisfied

2: $in=[x]$
3: $in=[e]$
4: $in=[x]$
5: $in=[e,x]$
6: $in=[x]$
7: $out=[x], in=[x,z]$
8: $out=[x], in=[y,x]$
1: $out=[x], in=[x]$
5: $out=[x], in=[e,x]$
6: $out=[x], in=[e,x]$
7: $out=[e,x], in=[e,x]$
8: $out=[e,x], in=[e,x]$
1: $out=[e,x], in=[e,x]$
5: $out=[e,x], in=[e,x]$
6: $out=[e,x], in=[e,x]$
7: $out=[e,x], in=[e,x]$
8: $out=[e,x], in=[e,x]$
all equations satisfied

Faster algorithm

- Information only propagates between nodes because of this equation:
 $$out[n] = \bigcup_{n' \in succ[n]} in[n']$$

- Node is updated from its successors
 - If successors haven’t changed, no need to apply equation for node
 - Should start with nodes at “end” and work backward

Worklist algorithm

- Idea: keep track of nodes that might need to be updated in worklist : FIFO queue

 for all n, $in[n] = out[n] = \emptyset$
 w = [set of all nodes]
 repeat until w empty
 n = w.pop()
 $$out[n] = \bigcup_{n' \in succ[n]} in[n']$$
 $$in[n] = use[n] \cup (out[n] \setminus def[n])$$
 if change to $in[n]$
 for all predecessors m of n, w.add(m)
 end