Type Checking Cubex

Ross Tate
CS 4120

Contexts in Cubex
• Ψ – Class/Interface context
 – Specifies methods, inheritance, and classiness
• Θ – Kind context
 – Indicates what type variables are in scope
• Δ – Function context
 – Indicates the type schemes of functions in scope
• Γ – Type context
 – Indicates the types of variables in scope

Subtyping

Method Lookup

Types

Expressions
Principal Types

- Expression e has principal type τ in some context if
 - (context)$\vdash e : \tau$ holds
 - for all τ', if (context)$\vdash e : \tau'$ holds then (context)$\vdash \tau < \tau'$
- In other words, while e may have many types, τ is the most precise one.
- Java, C#, and Scala do not have principal types
 - OCaml and Haskell have principal type schemes

Cubex has principal types!!!
Appending Iterables

- What is the principal type of $e_1 + e_2$ in Cubex?
 - Given each e_i has principal type τ_i

 $\tau_i : \text{Int} \times \text{Double}$

 $e_1 + e_2 : \text{Int} \times \text{Double} < \tau_1 \sqcup \tau_2$

Cubex has principal instantiations!!!

Join – Most precise common supertype

- $\tau_1 \sqcup \tau_2$ denotes the join of τ_1 and τ_2 (if it exists)
 - $\tau_1 \sqsubseteq \tau_1 \sqcup \tau_2$ and $\tau_2 \sqsubseteq \tau_1 \sqcup \tau_2$
 - For any τ, $\tau_1 \sqsubseteq \tau$ and $\tau_2 \sqsubseteq \tau$ implies $\tau_1 \sqcup \tau_2 \sqsubseteq \tau$

 $\text{class} \ Foo \ 	ext{extends} \ A B \ B L D$

 $\text{class} \ Bar \ 	ext{extends} \ D C L A$

 $\text{fun} \ \text{L} \ Foo \ = \ A \& B \ D$

Cubex has joins!!!

Covariant Arrays (not in Cubex)

Contravariance (not in Cubex)