
1

CS 4120

Introduction to Compilers

Ross Tate

Cornell University

Lecture 29: Register Allocation

2

Review
• Want to replace all variables (including

temporaries) with some fixed set of
registers if possible

• First: need to know which variables are
live after each instruction

• Two simultaneously live variables cannot
be allocated to same register

3

Register allocation
• For every node n in CFG now have out[n] :

which variables (temporaries) are live on
exit from node.

• If two variables are in same live set, can’t
be allocated to the same register – they
interfere with each other

• How do we assign registers to variables?

4

Inference Graph
• Nodes of graph: variables

• Edges connect all
variables that interfere
with each other

• Register assignment is graph coloring

a

b c

eax

ebx

a

a,b

a,c

a,b

b = a + 2;

c = b*b;

b = c + 1;

return b*a;

5

Graph Coloring
• Questions:

– Can we efficiently find a coloring of the graph
whenever possible?

– Can we efficiently find the optimum coloring
of the graph?

– How can we choose registers to avoid mov
instructions?

– What do we do when there aren’t enough
colors (registers) to color the graph?

6

Coloring a Graph
• Kempe’s algorithm [1879] for finding a K-

coloring of a graph: (Assume K=3)

• Step 1: find some node with at most K-1
edges and cut it out of graph (simplify)

2

7

Kempe’s Algorithm
• Once coloring is found for simplified graph,

selected node can be colored using free color

• Step 2: simplify until graph contain no nodes,
unwind adding nodes back & assigning colors

8

Failure of heuristic
• Failure: reduces to a graph in which every node

has at least K neighbors

• May happen even if graph is colorable in K!

• Finding K-coloring is NP-hard problem
(requires search)

?

9

Spilling
• Once all nodes have K or more neighbors, pick a

node and mark it for spilling (storage on
stack). Remove it from graph, continue as before

• Try to pick node not used much, not in inner
loop

x

10

Optimistic Coloring
• Spilled node may be K-colorable; when assigning colors,

try to color it and only spill if necessary.

• If not colorable, record this node as one to be spilled,
assign it a stack location and keep coloring

x

11

Accessing spilled variables
• Need to generate additional instructions

to get spilled variables out of stack and
back in again

• Naive approach: always keep extra
registers handy for shuttling data in and
out. Problem: uses up 3 registers!

• Better approach: rewrite code introducing
a new temporary, rerun liveness analysis
and register allocation

12

Rewriting code
 add t1, t2

• Suppose that t2 is selected for spilling and
assigned to stack location [ebp-24]

• Invent new variable t35 for just this

instruction, rewrite:

 mov t35, [ebp - 24]

 add t1, t35

• Advantage: t35 doesn’t interfere with as
much as t2 did. Now rerun algorithm;
fewer or no variables will spill.

3

13

Precolored nodes
• Some variables are pre-assigned to registers

• mul instruction has
use(n) = eax, def (n) = { eax, edx }

• call instruction kills caller-save regs:
def (n) = { eax, ecx, edx }

• To properly allocate registers, treat these
register uses as special temporary variables
and enter into interference graph as
precolored nodes

14

Simplifying graph with

precolored nodes

• Can’t simplify graph by removing a pre-
colored node

• Precolored nodes: starting point of
coloring process

• Once simplified graph is all colored
nodes, add other nodes back in and
color them

15

Optimizing mov instructions
• Code generation produces a lot of extra

mov instructions

 mov t5, t9

• If we can assign t5 and t9 to same register,
we can get rid of the mov

• Idea: if t5 and t9 are not connected in
inference graph, coalesce them into a
single variable. mov will be redundant.

16

Coalescing
• Problem: coalescing two nodes can make the

graph uncolorable

• High-degree nodes can make graph harder to
color, even impossible

• Avoid creation of high-degree (>K) nodes
(conservative coalescing)

t5 t9 t5/t9

17

Simplification + Coalescing
• Start by simplifying as much as possible without

removing nodes that are either the source or
destination of a mov (move-related nodes)

• Coalesce some pair of move-related nodes as
long as low-degree node results; delete
corresponding mov instruction(s)

• If can neither simplify nor coalesce, take a move-
related pair and freeze the mov instruction, do
not consider nodes move-related

18

High-level algorithm

Simplify, coalesce,

and freeze

Spill node if

necessary

Color graph

optimistically

Rewrite code

if necessary

