
10/7/2013

1

1

CS 4120

Introduction to Compilers

Ross Tate

Cornell University

Lecture 16: Basic blocks, CFGs, traces

1

2 CS 4120 Introduction to Compilers

Where we are
abstract syntax tree

intermediate code

canonical intermediate code

assembly code

syntax-directed translation (IR generation)

syntax-directed translation (flattening)

reordering with traces

instruction selection

abstract assembly code

register allocation

3 CS 4120 Introduction to Compilers

IR lowering

• We lower the IR to a canonical form in

which code is a sequence of statements,

each containing a single side effect.

• Done by transformations that lift side-

effecting statements to the top of the IR

tree.

• L[s] = s1...sn

• L[e] = s1...sn ; e’
• Side effects of e in si. Value of e computed by side-effect-

free e’

3 4 CS 4120 Introduction to Compilers

Conditional jumps
• IR is now just a linear list of statements with

one side effect per statement

• Still contains CJUMP nodes : two-way branches

• Real machines : fall-through branches (e.g.
JZ, JNZ)

CJUMP(e, t, f)
...
LABEL(t)
if-true code
LABEL(f)

 evaluate e
 JZ f
 if-true code
f:

5 CS 4120 Introduction to Compilers

Simple Solution
• Translate CJUMP into conditional branch

followed by unconditional branch

CJUMP(TEMP(t1)==TEMP(t2), t, f) CMP t1,t2

 JZ t

 JMP f

•JMP is usually gratuitous

• Code can be reordered so jump goes to next
statement

6 CS 4120 Introduction to Compilers

Basic blocks

• Unit of reordering is a basic block

• A sequence of statements that is always begun at
its start and always exits at the end:

• starts with a LABEL(n) statement
(or beginning of all statements)

• ends with a JUMP, CJUMP,
or RETURN statement, or
just before a LABEL statement

• contains no other JUMP or CJUMP
statement

• contains no interior LABEL used as a jump target

• No point to breaking up a basic block during
reordering

LABEL(l)
…

CJUMP(e, l1, l2)

10/7/2013

2

7 CS 4120 Introduction to Compilers

Basic block example

CJUMP(e, L2, L3)

LABEL(L1)

MOVE(TEMP(x), TEMP(y)

LABEL(L2)

MOVE(TEMP(x), TEMP(y) + TEMP(z))

JUMP(NAME(L1))

LABEL(L3)

EXP(CALL(NAME(f)), TEMP(x))

CS 4120 Introduction to Compilers

Control-flow graph
• Control-flow graph has basic blocks as nodes

• Edges show control flow between basic blocks

CJUMP(e, L2, L3)
LABEL(L1)
MOVE(TEMP(x), TEMP(y)
LABEL(L2)
MOVE(TEMP(x), TEMP(y) + TEMP(z))
JUMP(NAME(L1))
LABEL(L3)
EXP(CALL(NAME(f)), TEMP(x))

CJUMP(e, L2, L3)

LABEL(L1)

MOVE(TEMP(x), TEMP(y)

LABEL(L3)

EXP(CALL(NAME(f)), TEMP(x))

LABEL(L2)

MOVE(TEMP(x), TEMP(y) + TEMP(z))

JUMP(NAME(L1))

9 CS 4120 Introduction to Compilers

Fixing conditional jumps

• Reorder basic blocks so that (if possible)

• the “false” direction of two-way jumps goes to the

very next block

•JUMPs go to the next block (are deleted)

• What if not satisfied?

• For CJUMP add another JUMP immediately after

to go to the right basic block

• How to find such an ordering of the basic

blocks?

10 CS 4120 Introduction to Compilers

Traces

• Idea: order blocks according to a possible trace:
a sequence of blocks that might (naively) be

executed in sequence, never visiting a block

more than once

• Algorithm:

• pick an unmarked block (begin w/ start block)

• run a trace until no more unmarked blocks can be

visited, marking each block on arrival

• repeat until no more unmarked blocks

11 CS 4120 Introduction to Compilers

Example

• Possible traces?

1 2

3

4 5

12 CS 4120 Introduction to Compilers

Arranging by traces

1 2

3

4 5

1

2

4

5

3

1

2

4

5

3

•Can use profiling information, heuristics

to choose which branch to follow

10/7/2013

3

13 CS 4120 Introduction to Compilers

Reordered code

CJUMP(e, L2, L3)

LABEL(L1)

MOVE(TEMP(x),

 TEMP(y))

LABEL(L2)

MOVE(TEMP(x), …)

JUMP(L1)

LABEL(L3)

EXP(CALL(f),

 TEMP(x))

CJUMP(e, L2, [L3])

LABEL(L2)

MOVE(TEMP(x), TEMP(y) + TEMP(z))

JUMP(L1)

LABEL(L1)

MOVE(TEMP(x), TEMP(y)

JUMP(L2)

LABEL(L3)

EXP(CALL(NAME(f)), TEMP(x))

14 CS 4120 Introduction to Compilers

Reversing sense of jumps

CJUMP(e, L2, [L3])

LABEL(L2)

MOVE(TEMP(x), TEMP(y) + TEMP(z))

JUMP(L1)

LABEL(L1)

MOVE(TEMP(x), TEMP(y)

JUMP(L2)

LABEL(L3)

EXP(CALL(NAME(f)), TEMP(x))

CJUMP(NOT(e), L3, [L2])

LABEL(L2)

MOVE(TEMP(x), TEMP(y) + TEMP(z))

JUMP(L1)

LABEL(L1)

MOVE(TEMP(x), TEMP(y)

JUMP(L2)

LABEL(L3)

EXP(CALL(NAME(f)), TEMP(x))

