Outline

- Context-Free Grammars (CFGs)
- Derivations
- Parse trees and abstract syntax
- Ambiguous grammars

Where we are

Source code (character stream)

if (b == 0) a = b;

Token stream

if (b == 0) a = b;

Abstract syntax tree (AST)

if_stmt

bin_op
t

variable

constant

0

while_stmt

block

Expression

expr_stmt

bin_op
t

variable

constant

1

Semantic Analysis

Lexical analysis

Syntactic Analysis (specification)

What is Syntactic Analysis?

Source code (token stream)

{ if (b == 0) a = b;
 while (a != 1) {
 stdio.print(a);
 a = a - 1;
 }
}

Abstract Syntax Tree
Parsing

- Parsing: recognizing whether a program (or sentence) is grammatically well-formed & identifying the function of each component.

 - “I gave him the book”
 - sentence
 - subject: I
 - verb: gave
 - indirect object: him
 - noun phrase
 - article: the
 - noun: book

Overview of Syntactic Analysis

- Input: stream of tokens
- Output: abstract syntax tree
- Implementation:
 - Parse token stream to traverse concrete syntax (**parse tree**)
 - During traversal, build abstract syntax tree
 - Abstract syntax tree removes extra syntax
 \[a + b \approx (a) + (b) \approx ((a)+(b)) \]

What Parsing doesn’t do

- Doesn’t check many things: type agreement, variables declared, variables initialized, etc.

 - `int x = true;`
 - `int y;`
 - `z = f(y);`
- Deferred until semantic analysis

Specifying Language Syntax

- First problem: how to describe language syntax precisely and conveniently
- Last time: can describe tokens using regular expressions
- Regular expressions easy to implement, efficient (by converting to DFA)
- Why not use regular expressions (on tokens) to specify programming language syntax?
Limits of REs

• Programming languages are not regular -- cannot be described by regular exprs
• Consider: language of all strings that contain balanced parentheses (easier than PLs)
 () (()) ()()() ()()((()()))

• Problem: need to keep track of number of parentheses seen so far: unbounded counting

Need more power!

• RE = DFA
• DFA has only finite number of states; cannot perform unbounded counting

Context-Free Grammars

• A specification of the balanced-parenthesis language:
 \[S \rightarrow (S) S \]
 \[S \rightarrow \varepsilon \]

• The definition is recursive
• A context-free grammar
 – More expressive than regular expressions
 – \[S = (S) \varepsilon = ((S) S) \varepsilon = ((\varepsilon) \varepsilon) \varepsilon = (\varepsilon) \]

If a grammar accepts a string, there is a derivation of that string using the productions of the grammar

Definition of CFG

• Terminals
 – Token or \(\varepsilon \)
 \[S \rightarrow (S) S \]
• Non-terminals
 – Syntactic variables
 \[S \rightarrow \varepsilon \]
• Start symbol
 – A special nonterminal is designated \(S \)
• Productions
 – Specify how non-terminals may be expanded to form strings
 – LHS: single non-terminal, RHS: string of terminals or non-terminals
• Vertical bar is shorthand for multiple prod’ns
RE is subset of CFG

Regular Expression defn of real numbers:
- *digit* → [0-9]
- *posint* → digit+
- *int* → -? posint
- *real* → int . (ε | posint)

- RE symbolic names are only shorthand: no recursion, so all symbols can be fully expanded:
 - real → -? [0-9]+ . (ε | ([0-9]+))

Sum grammar

\[
S \rightarrow E + S \mid E \\
E \rightarrow \text{number} \mid (S) \\
\]

- 4 productions
- 2 non-terminals (S, E)
- 4 terminals: (,), +, number
- start symbol S

Derivation Example

- Start from start symbol (S)
- Productions are used to derive a sequence of tokens from the start symbol
- For arbitrary strings α, β and γ and a production A → β
 - A single step of derivation is αAγ ⇒ αβγ
 - i.e., substitute β for an occurrence of A
 - (S + E) + E → (E + S + E)+E

- (A = S, β = E + S)
Derivation ⇒ Parse Tree

Parse Tree
- Also called “concrete syntax”

Parse Tree
- Also called “concrete syntax”
- parse tree/concrete syntax
- abstract syntax tree

(Discards/abstracts unneeded information)

Derivation order
- Can choose to apply productions in any order; select any non-terminal A
 \[\alpha A \gamma \Rightarrow \alpha \beta \gamma \]
- Two standard orders: left- and right-most -- useful for different kinds of automatic parsing
- **Leftmost derivation**: In the string, find the left-most non-terminal and apply a production to it \(E + S \rightarrow 1 + S \)
- **Rightmost derivation**: find right-most non-terminal...etc. \(E + S \rightarrow E + E + S \)

Example

\[
S \rightarrow E + S | E \\
E \rightarrow \text{number} | (S) \\
\]

- Left-most derivation
 \[
 S \rightarrow E + S \rightarrow (E + S) + S \rightarrow (1 + S) + S \rightarrow (1 + E + S) + S \rightarrow (1 + 2 + (3 + 4)) + S \\
 + S \rightarrow (1 + 2 + (3 + 4)) + S \rightarrow \ldots \rightarrow (1 + 2 + (3 + 4)) + 5
 \]
- Right-most derivation
 \[
 S \rightarrow E + S \rightarrow E + E \rightarrow E + 5 \rightarrow (S) + 5 \rightarrow (E + S) + 5 \rightarrow (E + E + S) + 5 \rightarrow (E + E + E + S) + 5 \rightarrow (E + E + E + E + S) + 5 \rightarrow \ldots \rightarrow (E + E + E + E + E + E + E + E + E + 5) \\
 \]
- Same parse tree: same productions chosen, diff. order
Ambiguous Grammars

- In example grammar, left-most and right-most derivations produced identical parse trees
- + operator associates to right in parse tree regardless of derivation order

\[(1+2+(3+4))+5\]

An Ambiguous Grammar

- + associates to right because of right-recursive production \(S \rightarrow E + S \)
- Consider another grammar:

\[S \rightarrow S + S \mid S * S \mid \text{number} \]

- Different derivations produce different parse trees: ambiguous grammar

Differing Parse Trees

\[S \rightarrow S + S \mid S * S \mid \text{number} \]

- Consider expression \(1 + 2 * 3 \)
- Derivation 1: \(S \rightarrow S + S \rightarrow 1 + S \rightarrow 1 + S * S \rightarrow 1 + 2 * 3 \)
- Derivation 2: \(S \rightarrow S * S \rightarrow S * S \rightarrow S + S \rightarrow S + 2 * 3 \rightarrow 1 + 2 * 3 \)

Impact of Ambiguity

- Different parse trees correspond to different evaluations!
- Meaning of program not defined

\[\begin{align*}
1 + 2 * 3 & = 7 \\
1 + 2 * 3 & = 9
\end{align*} \]
Eliminating Ambiguity

• Often can eliminate ambiguity by adding non-terminals & allowing recursion only on right or left
 \[S \rightarrow S + T \mid T \]
 \[T \rightarrow T * \text{num} \mid \text{num} \]
• \(T \) non-terminal enforces precedence
• Left-recursion: left-associativity

Limits of CFGs

• Syntactic analysis can’t catch all “syntactic” errors
• Example: C++
 \[
 \text{HashTable<Key,Value>} x;
 \]
 Need to know whether \(\text{HashTable} \) is the name of a type to understand syntax! Problem: “<”, “,” are overloaded
• Iota:
 \[
 f(4)[1][2] = 0;
 \]
• Difficult to write grammar for LHS of assign – may be easier to allow all exprs, check later

CFGs

• Context-free grammars allow concise specification of programming languages
• CFG specifies how to convert token stream to parse tree (if unambiguous!)
• Read Appel 3.1, 3.2

Next time: implementing a top-down parser (leftmost derivation)