
CS 4120
Introduction to Compilers

Andrew Myers
Cornell University

Lecture 37: Exceptional topics

1

CS 4120 Introduction to Compilers

Compiler project 
• Due date: December 16

–Accepted (late) until December 18. Hard 
deadline.

• No room for error—plan early and often
–Got test cases?

• Cool Qt-based UI library coming soon...
• Compiler competition!

–Correctness, speed, compiler engineering
–Winners receive plaque, bragging rights.

2

CS 4120 Introduction to Compilers 3

Exceptions
• Many languages allow exceptions: alternate return paths 

from a function
– null pointer, overflow, emptyStack,...

• Function either terminates normally or with an exception
– total functions ⇒ robust software

– normal case code separated from unusual cases
– no ignorable encoding of error conditions in result (e.g., null)

• Exception propagates dynamically to nearest enclosing 
try..catch statement (up call tree)
-Tricky to implement dynamic exceptions e!ciently
-Result: underused by programmers (see Map.get, etc.)
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Exceptions: goals
1. normal return w little or no added overhead
2. try/catch free if no exception
3. catching exception ~ cheap as checking for 

error value
–C/C++: setjmp/longjmp. Try/catch expensive.

• Static exception tables (CLU):
–insight: can map pc to handler w/in each function.
–on exception: climb stack using return pc, look up 

exception handler at each stack frame (binary 
search on pc)
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Example
f() throws B = (
 try g()
  catch A => S1
 try h()
  catch B => S2
)
g() throws A, B = (
 try h()
  catch B => S3
)
h() throws A,B = (
 throw A
)
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h
– need to store callee-save regs on walk

– lookup complicated if exc names = classes – need dispatch
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Run-time type discrimination
• How to discover types at run time?

– n tag bits ⇒Tag 2n-1 primitives, align memory to 2n-2 words, some 

performance hit, range limitation on ints (x! 2n x)
• o instanceof T, (T)o, typecase o of T1⇒ s1 | T2⇒ s2

1.  look up DT pointer, class descriptor in hash table containing type 
relationships (may be filled lazily)

2.  (SI only, separate compilation) Record superclasses sequentially in 
DT (display). instanceof C ⇒ check if class at depth depth(C) is C.

3.(Single inheritance only) in-order traversal of hierarchy with classes 
numbered sequentially ⇒ all subclasses of C in contiguous range. 
Test class index in range with single unsigned comparison.

4.  Quick range test (ala #2) can be done even with MI using PQ-trees.
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Metaobjects
• Some languages (Smalltalk, Java, …) expose 

classes as objects (metaobjects)
–query methods, fields, inheritance structure…
–good for building compilers, run-time 

adapters, serialization code… not regular code
• Metaobject protocol: methods exposed for 

querying classes, other type-level entities
• Java 1.5+: parametric polymorphism not 

reflected – really JVM metaobjects
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Generalized LR parsing
• Some parser generators (e.g. PPG) support 

grammar inheritance to support language 
extension
–Problem: LALR grammars are not very extensible

• GLR parsing: conflicts resolved late by forking 
the parser stack. Compiler must reconcile 
alternate parsing results. 

• Another nice idea:  parser feedback to lexer to 
identify next legal tokens
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Static Single Assignment (SSA)
• Intermediate language form: every variable has exactly one definition

– variables are immutable ⇒ simplified analyses and code transformations

– close correspondence to functional style (see Appel)
– Need extra “phi” nodes indexed by incoming edge

• Extra dataflow analyses needed for conversion to SSA.
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a = a – 1

if a > 0

a = 10

           

a3 = a2 – 1

a2 = "(a1, a3)
if a2> 0

a1 = 10

           

Combine
info about a1, a3 
into a2
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Path and object sensitivity
• Flow-insensitive: same information 

throughout code (type checking)
• Flow-sensitive: information per program point
• Context-sensitive: information per calling 

context
• Path-sensitive: information per execution path 

leading to program point.
• Object-sensitive: information per method 

receiver object. Helps with points-to analysis.
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Speeding up dataflow analysis
• Expensive to rerun analysis after each 

optimization!
• Incremental analysis: “fix up” analysis results 

to deal with optimizations.
• Cascading analysis: build expected 

optimization into the analysis.
• Composition of analyses also possible 

(Vortex compiler)
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Abstract interpretation
• Many forward analyses can be viewed as instances of 

abstract interpretation
• Idea: analysis ~ running the program, but  mapping 

actual program state to a simplified abstract state.
– Example: points-to analysis using abstract heap, a relation 

on “variables” and “objects”.
• Transfer function is an abstraction of computation. Maps 

input abstraction to an output abstraction that includes 
all feasible concrete outputs.

• Convergence = run loops until abstract state converges.
• A rich mathematical structure for explaining and 

developing program analysis.
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Attribute grammars
• Essentially a type system for program analysis and 

synthesis, with extra constraints in rules.
• Typing rules generate additional information about 

program (analysis results, output machine code, …)
• Iterative constraint solving, not recursive type 

checking – information flows up and down in AST in 
complex ways.

• Examples:
–Synthesizer Generator (Teitelbaum): a Cornell compiler 

framework based on attribute grammars.
–JastAdd: a Java compiler based on attribute grammars.
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Optimizing for locality
• 100+-fold speed di"erence between memory and cache ⇒ 

locality is crucial for performance.
• Inlining objects and arrays into referencing structures avoids 

indirection, requires exact type and escape analysis.
• Some important tricks for matrices:
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good locality

bad locality

1.Transpose matrices so 
loops go across rows.

2.Pad rows to avoid 
cache conflicts

3.Rewrite nested loops 
with outer loops over 
blocks, inner loop 
within each block.
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Instruction scheduling
• Key: want to keep every pipeline stage of processor busy.
• Order of instructions matters; hard to predict e"ect.

– Start load instructions early
– Intel: compiles instructions to RISC-like micro-ops.

• Instruction scheduling: low-level optimization on 
assembly code.
– Reorder instructions subject to dependencies between 

instructions (topological sort, need alias analysis…)
– Scheduling is traversing dependency DAG on instructions

• heuristics to start important work early, keep functional units busy.

– Knowing ISA is not enough.
• Need to schedule before and after register allocation.
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Type-preserving compilation
• Idea: compiler propagates types to compiled code. 

Verifier checks to see compiled code is safe.
–Code consumer doesn’t have to trust compiler or 

compiled code.
–Examples: Java bytecode, Typed Assembly Language 

(TAL).
• Bytecode verification is a dataflow analysis.

–Dataflow values = mapping from locals, stack 
locations to types.

• Challenge: low-level code needs complex types.
(Type of stack pointer? program counter?)
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Closing thoughts
• Being able to build a compiler opens new opportunities 

for solving problems. Valuable knowledge!
– Many uses for domain-specific languages—look for 

opportunities to use them.
– C, Java are pretty good target languages – let someone else 

write the optimizer (except: exceptions, threads, coroutines, 
dispatching, transactions, …)

• Possible next steps:
– CS 6110: Advanced programming languages (theory, SP10) 
– CS 4110: Programming languages (features, FA10)
– CS 6120: Advanced compilers, not o"ered soon.
– TA this course in FA11
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