%
01101
o

CS 4120
Introduction to Compilers

Andrew Myers

Cornell University

Lecture 37: Exceptional topics

Compiler project

« Due date: December 16

—Accepted (late) until December 18. Hard
deadline.

« No room for error—plan early and often
—Got test cases?
« Cool Qt-based Ul library coming soon...
« Compiler competition!
—Correctness, speed, compiler engineering

—Winners receive plaque, bragging rights.

CS 4120 Introduction to Compilers

Exceptions

« Many languages allow exceptions: alternate return paths
from a function

—null pointer, overflow, emptyStack,...
« Function either terminates normally or with an exception
— total functions = robust software
- normal case code separated from unusual cases
-no ignorable encoding of error conditions in result (e.g., null)

« Exception propagates dynamically to nearest enclosing
try..catch statement (up call tree)
-Tricky to implement dynamic exceptions efficiently
-Result: underused by programmers (see Map.get, etc.)

CS 4120 Introduction to Compilers 3

Exceptions: goals

1. normal return w little or no added overhead

2. try/catch free if no exception

3. catching exception ~ cheap as checking for
error value
—C/C++: setjmp/longjmp. Try/catch expensive.

« Static exception tables (CLU):
—insight: can map pc to handler w/in each function.

—on exception: climb stack using return pc, look up
exception handler at each stack frame (binary
search on pc)

CS 4120 Introduction to Compilers 4




Example

throw A
h )

- need to store callee-save regs on walk

CS 4120 Introduction to Compilers

f f() throws B = (
try g() " 1
catch A =>
pc w/’///////t;y/h()at L\—
— fp catch B => S2 “—
) L =
g() throws A, B = (
s try h()
/@{Ech B=>S3 :
pc j | —
—~_fp h() throws A,B = (

— lookup complicated if exc names = classes — need dispatch

5

w> >

w >

Run-time type discrimination

+ How to discover types at run time?
- n tag bits =Tag 2"-1 primitives, align memory to 2"2words, some
performance hit, range limitation on ints (x—= 2" x)
+ oinstanceof T, (T)o, typecase 0 of T1=> 51| To= 52
1. look up DT pointer, class descriptor in hash table containing type
relationships (may be filled lazily)
2. (Sl only, separate compilation) Record superclasses sequentially in
DT (display). instanceof C = check if class at depth depth(C) is C.
3.(Single inheritance only) in-order traversal of hierarchy with classes
numbered sequentially = all subclasses of C in contiguous range.
Test class index in range with single unsigned comparison.

4. Quick range test (ala #2) can be done even with Ml using PQ-trees.

CS 4120 Introduction to Compilers 6

Metaobjects

« Some languages (Smalltalk, Java, ...) expose
classes as objects (metaobjects)

—query methods, fields, inheritance structure...

—good for building compilers, run-time
adapters, serialization code... not regular code
« Metaobject protocol: methods exposed for
querying classes, other type-level entities
« Java 1.5*: parametric polymorphism not
reflected — really JVM metaobjects

CS 4120 Introduction to Compilers 7

Generalized LR parsing

« Some parser generators (e.g. PPG) support
grammar inheritance to support language
extension

—Problem: LALR grammars are not very extensible

« GLR parsing: conflicts resolved late by forking
the parser stack. Compiler must reconcile
alternate parsing results.

« Another nice idea: parser feedback to lexer to
identify next legal tokens

CS 4120 Introduction to Compilers 8




Static Single Assignment (SSA)

+ Intermediate language form: every variable has exactly one definition
- variables are immutable = simplified analyses and code transformations
— close correspondence to functional style (see Appel)
— Need extra “phi” nodes indexed by incoming edge

« Extra dataflow analyses needed for conversion to SSA.

Combine
2= P(ar, a3) info about ay, as
ifa;> 0 into a;
CS 4120 Introduction to Compilers 9

Path and object sensitivity

- Flow-insensitive: same information
throughout code (type checking)

- Flow-sensitive: information per program point

- Context-sensitive: information per calling
context

- Path-sensitive: information per execution path
leading to program point.

- Object-sensitive: information per method
receiver object. Helps with points-to analysis.

CS 4120 Introduction to Compilers 10

Speeding up dataflow analysis

« Expensive to rerun analysis after each
optimization!

« Incremental analysis: “fix up” analysis results
to deal with optimizations.

« Cascading analysis: build expected
optimization into the analysis.

« Composition of analyses also possible
(Vortex compiler)

CS 4120 Introduction to Compilers 11

Abstract interpretation

« Many forward analyses can be viewed as instances of
abstract interpretation

+ ldea: analysis ~ running the program, but mapping
actual program state to a simplified abstract state.
- Example: points-to analysis using abstract heap, a relation

on “variables” and “objects”.

« Transfer function is an abstraction of computation. Maps
input abstraction to an output abstraction that includes
all feasible concrete outputs.

+ Convergence = run loops until abstract state converges.

+ A rich mathematical structure for explaining and
developing program analysis.

CS 4120 Introduction to Compilers 12




Attribute grammars

« Essentially a type system for program analysis and
synthesis, with extra constraints in rules.

« Typing rules generate additional information about
program (analysis results, output machine code, ...)

« Iterative constraint solving, not recursive type
checking — information flows up and down in AST in
complex ways.

« Examples:

—Synthesizer Generator (Teitelbaum): a Cornell compiler
framework based on attribute grammars.

—JastAdd: a Java compiler based on attribute grammars.

CS 4120 Introduction to Compilers 13

Optimizing for locality

+ 100*-fold speed difference between memory and cache =
locality is crucial for performance.

+ Inlining objects and arrays into referencing structures avoids
indirection, requires exact type and escape analysis.

« Some important tricks for matrices: )
1. Transpose matrices so

loops go across rows.
Pad rows to avoid
cache conflicts
3.Rewrite nested loops
with outer loops over
blocks, inner loop
within each block.

good locality 5

bad ’OCGI ’ty CS 4120 Introduction to Compilers 14

Instruction scheduling

« Key: want to keep every pipeline stage of processor busy.

« Order of instructions matters; hard to predict effect.
—Start load instructions early
—Intel: compiles instructions to RISC-like micro-ops.

« Instruction scheduling: low-level optimization on
assembly code.

—Reorder instructions subject to dependencies between
instructions (topological sort, need alias analysis...)
—Scheduling is traversing dependency DAG on instructions
« heuristics to start important work early, keep functional units busy.

—Knowing ISA is not enough.

« Need to schedule before and after register allocation.

CS 4120 Introduction to Compilers 15

Type-preserving compilation

+ Idea: compiler propagates types to compiled code.
Verifier checks to see compiled code is safe.
—Code consumer doesn’t have to trust compiler or
compiled code.
—Examples: Java bytecode, Typed Assembly Language
(TAL).
« Bytecode verification is a dataflow analysis.
—Dataflow values = mapping from locals, stack
locations to types.
« Challenge: low-level code needs complex types.
(Type of stack pointer? program counter?)

CS 4120 Introduction to Compilers 16




Closing thoughts

+ Being able to build a compiler opens new opportunities
for solving problems. Valuable knowledge!

- Many uses for domain-specific languages—Ilook for
opportunities to use them.

-G, Java are pretty good target languages — let someone else
write the optimizer (except: exceptions, threads, coroutines,
dispatching, transactions, ...)

+ Possible next steps:

—CS 6110: Advanced programming languages (theory, SP10)

—CS 4110: Programming languages (features, FA10)

—CS 6120: Advanced compilers, not offered soon.

—TA this course in FA11

CS 4120 Introduction to Compilers 17




