
CS 4120
Introduction to Compilers

Andrew Myers
Cornell University

Lecture 37: Exceptional topics

1

CS 4120 Introduction to Compilers

Compiler project
• Due date: December 16

–Accepted (late) until December 18. Hard
deadline.

• No room for error—plan early and often
–Got test cases?

• Cool Qt-based UI library coming soon...
• Compiler competition!

–Correctness, speed, compiler engineering
–Winners receive plaque, bragging rights.

2

CS 4120 Introduction to Compilers 3

Exceptions
• Many languages allow exceptions: alternate return paths

from a function
– null pointer, overflow, emptyStack,...

• Function either terminates normally or with an exception
– total functions ⇒ robust software

– normal case code separated from unusual cases
– no ignorable encoding of error conditions in result (e.g., null)

• Exception propagates dynamically to nearest enclosing
try..catch statement (up call tree)
-Tricky to implement dynamic exceptions e!ciently
-Result: underused by programmers (see Map.get, etc.)

CS 4120 Introduction to Compilers

Exceptions: goals
1. normal return w little or no added overhead
2. try/catch free if no exception
3. catching exception ~ cheap as checking for

error value
–C/C++: setjmp/longjmp. Try/catch expensive.

• Static exception tables (CLU):
–insight: can map pc to handler w/in each function.
–on exception: climb stack using return pc, look up

exception handler at each stack frame (binary
search on pc)

4

CS 4120 Introduction to Compilers 5

Example
f() throws B = (
 try g()
 catch A => S1
 try h()
 catch B => S2
)
g() throws A, B = (
 try h()
 catch B => S3
)
h() throws A,B = (
 throw A
)

A
B

A
B

A
B

f

pc
fp

g

pc
fp

h
– need to store callee-save regs on walk

– lookup complicated if exc names = classes – need dispatch
CS 4120 Introduction to Compilers

Run-time type discrimination
• How to discover types at run time?

– n tag bits ⇒Tag 2n-1 primitives, align memory to 2n-2 words, some

performance hit, range limitation on ints (x! 2n x)
• o instanceof T, (T)o, typecase o of T1⇒ s1 | T2⇒ s2

1. look up DT pointer, class descriptor in hash table containing type
relationships (may be filled lazily)

2. (SI only, separate compilation) Record superclasses sequentially in
DT (display). instanceof C ⇒ check if class at depth depth(C) is C.

3.(Single inheritance only) in-order traversal of hierarchy with classes
numbered sequentially ⇒ all subclasses of C in contiguous range.
Test class index in range with single unsigned comparison.

4. Quick range test (ala #2) can be done even with MI using PQ-trees.

6

CS 4120 Introduction to Compilers

Metaobjects
• Some languages (Smalltalk, Java, …) expose

classes as objects (metaobjects)
–query methods, fields, inheritance structure…
–good for building compilers, run-time

adapters, serialization code… not regular code
• Metaobject protocol: methods exposed for

querying classes, other type-level entities
• Java 1.5+: parametric polymorphism not

reflected – really JVM metaobjects
7 CS 4120 Introduction to Compilers

Generalized LR parsing
• Some parser generators (e.g. PPG) support

grammar inheritance to support language
extension
–Problem: LALR grammars are not very extensible

• GLR parsing: conflicts resolved late by forking
the parser stack. Compiler must reconcile
alternate parsing results.

• Another nice idea: parser feedback to lexer to
identify next legal tokens

8

CS 4120 Introduction to Compilers

Static Single Assignment (SSA)
• Intermediate language form: every variable has exactly one definition

– variables are immutable ⇒ simplified analyses and code transformations

– close correspondence to functional style (see Appel)
– Need extra “phi” nodes indexed by incoming edge

• Extra dataflow analyses needed for conversion to SSA.

9

a = a – 1

if a > 0

a = 10

a3 = a2 – 1

a2 = "(a1, a3)
if a2> 0

a1 = 10

Combine
info about a1, a3
into a2

CS 4120 Introduction to Compilers

Path and object sensitivity
• Flow-insensitive: same information

throughout code (type checking)
• Flow-sensitive: information per program point
• Context-sensitive: information per calling

context
• Path-sensitive: information per execution path

leading to program point.
• Object-sensitive: information per method

receiver object. Helps with points-to analysis.

10

CS 4120 Introduction to Compilers

Speeding up dataflow analysis
• Expensive to rerun analysis after each

optimization!
• Incremental analysis: “fix up” analysis results

to deal with optimizations.
• Cascading analysis: build expected

optimization into the analysis.
• Composition of analyses also possible

(Vortex compiler)

11 CS 4120 Introduction to Compilers

Abstract interpretation
• Many forward analyses can be viewed as instances of

abstract interpretation
• Idea: analysis ~ running the program, but mapping

actual program state to a simplified abstract state.
– Example: points-to analysis using abstract heap, a relation

on “variables” and “objects”.
• Transfer function is an abstraction of computation. Maps

input abstraction to an output abstraction that includes
all feasible concrete outputs.

• Convergence = run loops until abstract state converges.
• A rich mathematical structure for explaining and

developing program analysis.
12

CS 4120 Introduction to Compilers

Attribute grammars
• Essentially a type system for program analysis and

synthesis, with extra constraints in rules.
• Typing rules generate additional information about

program (analysis results, output machine code, …)
• Iterative constraint solving, not recursive type

checking – information flows up and down in AST in
complex ways.

• Examples:
–Synthesizer Generator (Teitelbaum): a Cornell compiler

framework based on attribute grammars.
–JastAdd: a Java compiler based on attribute grammars.

13 CS 4120 Introduction to Compilers

Optimizing for locality
• 100+-fold speed di"erence between memory and cache ⇒

locality is crucial for performance.
• Inlining objects and arrays into referencing structures avoids

indirection, requires exact type and escape analysis.
• Some important tricks for matrices:

14

good locality

bad locality

1.Transpose matrices so
loops go across rows.

2.Pad rows to avoid
cache conflicts

3.Rewrite nested loops
with outer loops over
blocks, inner loop
within each block.

CS 4120 Introduction to Compilers

Instruction scheduling
• Key: want to keep every pipeline stage of processor busy.
• Order of instructions matters; hard to predict e"ect.

– Start load instructions early
– Intel: compiles instructions to RISC-like micro-ops.

• Instruction scheduling: low-level optimization on
assembly code.
– Reorder instructions subject to dependencies between

instructions (topological sort, need alias analysis…)
– Scheduling is traversing dependency DAG on instructions

• heuristics to start important work early, keep functional units busy.

– Knowing ISA is not enough.
• Need to schedule before and after register allocation.

15 CS 4120 Introduction to Compilers

Type-preserving compilation
• Idea: compiler propagates types to compiled code.

Verifier checks to see compiled code is safe.
–Code consumer doesn’t have to trust compiler or

compiled code.
–Examples: Java bytecode, Typed Assembly Language

(TAL).
• Bytecode verification is a dataflow analysis.

–Dataflow values = mapping from locals, stack
locations to types.

• Challenge: low-level code needs complex types.
(Type of stack pointer? program counter?)

16

CS 4120 Introduction to Compilers

Closing thoughts
• Being able to build a compiler opens new opportunities

for solving problems. Valuable knowledge!
– Many uses for domain-specific languages—look for

opportunities to use them.
– C, Java are pretty good target languages – let someone else

write the optimizer (except: exceptions, threads, coroutines,
dispatching, transactions, …)

• Possible next steps:
– CS 6110: Advanced programming languages (theory, SP10)
– CS 4110: Programming languages (features, FA10)
– CS 6120: Advanced compilers, not o"ered soon.
– TA this course in FA11

17

