
CS 4120
Introduction to Compilers

Andrew Myers
Cornell University

Lecture 35: Linking and Loading
30 Nov 09

CS 4120 Introduction to Compilers 2

Outline
• Static linking

– Object files
– Libraries
– Shared libraries
– Relocatable code

• Dynamic linking
– explicit vs. implicit linking
– dynamically linked libraries/dynamic shared

objects

CS 4120 Introduction to Compilers 3

Object files
• Output of compiler is an

object file
– not executable
– may refer to external symbols

(variables, functions, etc.)
whose definition is not
known.

• Linker joins together object
files, resolves external
references

source code

object code

executable
image

source code

object code

compiler

linker

CS 4120 Introduction to Compilers 4

Unresolved references

extern int abs(int x);
…
y = y + abs(x);

push %ecx
call _abs
add %eax, %edx

E8 00

51

01 C2

00 00 00
to be filled in
by linker

source
code

assembly
code

object
code

CS 4120 Introduction to Compilers 5

Object file structure

• Object file contains various
sections

• text section contains the
compiled code with some
patching needed

• For uninitialized data, only
need to know total size of data
segment

• Describes structure of text and
data sections

• Points to places in text and
data section that need fix-up

symbol table
(maps identifiers to

machine code locations)

relocation info

file header

initialized data

text section: unresolved
machine code

CS 4120 Introduction to Compilers 6

Linker output
text1

sym1
rel1

init1

text2

sym2
rel3

init2

text3

sym3
rel3

init3

text3
text2
text1

init3
init2
init1

uninitialized
data

executable image
memory layout

object files

code
segment

data
segment

CS 4120 Introduction to Compilers 7

Executable file structure
• Same as object file, but ready

to be executed as-is
• Pages of code and data

brought in lazily from
text and data section as
needed: rapid start-up

• Text section shared across
processes

• Symbols for debugging
(global, stack frame layouts,
line numbers, etc.)

text section: execution-ready
machine code

optional: symbol table

file header

initialized data

CS 4120 Introduction to Compilers 8

Executing programs
• Multiple copies of program share code (text), have

own data
• Data appears at same virtual address in every process

notepad code

notepad data 1

notepad data 2

notepad data 3

notepad code

notepad data 1

notepad code

notepad data 2

notepad code

notepad data 3

 code

heap data
static data

stack data

virtualphysical

CS 4120 Introduction to Compilers 9

Libraries
• Library : collection of object files
• Linker adds all object files necessary to resolve

undefined references in explicitly named files
• Object files, libraries searched in user-

specified order for external references
 Unix: ld main.o foo.o /usr/lib/X11.a /usr/lib/libc.a

 NT: link main.obj foo.obj kernel32.lib user32.lib …

• Library contains index over all object files for
rapid searching

CS 4120 Introduction to Compilers 10

Shared libraries
• Problem: libraries take up a lot of memory when

linked into many running applications

• Solution: shared libraries (e.g. DLLs)

ls

cat

emacs

xterm

libc

libc

libc

X11

libc

X11

libc

X11

Physical memory

CS 4120 Introduction to Compilers 11

Step 1: Jump tables
• Executable file does not contain library code; library code

loaded dynamically.
• Library code found in separate shared library file (similar to

DLL); linking done against import library that does not
contain code.

• Library compiled at fixed address, starts with jump table to
allow new versions; application code jumps to jump table
(indirection).
– library can evolve.

program: library:
 scanf: jmp real_scanf

call printf printf: jmp real_printf

 putc: jmp real_putc
CS 4120 Introduction to Compilers 12

Global tables
• Problem: shared libraries may depend on external

symbols (even symbols within the shared library);
di!erent applications may have di!erent linkage:

 gcc -o prog1 main.o /usr/lib/libc.a

 gcc -o prog2 main.o mymalloc.o /usr/lib/libc.a

• If routine in libc.a calls malloc(), for prog1 should
get standard version; for prog2, version in
mymalloc.o

• Solution: Calls to external symbols made through
global o!set tables unique to each program,
generated at dynamic load time.

CS 4120 Introduction to Compilers 13

Global tables
main.o

Shared lib (libc)

mymalloc.o:

real_printf:

 malloc()

Global table
…
malloc_entry:

main.o

prog1 prog2

malloc()

real_malloc:

malloc()

Data segment:

printf: jmp …
malloc: jmp …

CS 4120 Introduction to Compilers 14

Using global tables
• Global table contains entries for all external references

malloc(n) ! push [%ebp + n]

 mov %eax, [malloc_entry]

 call *%eax ; indirect jump

• Non-shared application code una!ected
• Same-object references can still be used directly

• Global table entries (malloc_entry) placed in non-shared memory
locations so each program has di!erent linkage

• Initialized by dynamic loader when program begins: reads symbol
tables, relocation info.

• Code above may be dynamically generated as trampoline at load time

CS 4120 Introduction to Compilers 15

Relocation
• Before widespread support for virtual memory, code

had to be position-independent (could not contain
fixed memory addresses)

• With virtual memory, all programs could start at
same address, could contain fixed addresses

• Problem with shared libraries (e.g., DLLs): if
allocated at fixed addresses, can collide in virtual
memory (code, data, global tables, …)
– Collision ! code copied and explicitly relocated

• Back to position-independent code!

CS 4120 Introduction to Compilers 16

Dynamic shared objects
• Unix systems: code typically compiled as a

dynamic shared object (DSO): relocatable
shared library
– gcc: -shared option

• Shared libraries can be mapped to any
address in virtual memory—no copying!

• Questions:
–how to make code completely relocatable?
–what is the performance impact?

CS 4120 Introduction to Compilers 17

Relocation di"culties
• No absolute addresses (directly named memory

locations) anywhere:
– Not in calls to external functions
– Not for global variables in data segment
– Not even for global table entries

 push [ebp + n]

 mov eax, [malloc_entry] ; Oops!

 call eax

• Not a problem: branch instructions, local calls. Use
relative addressing

CS 4120 Introduction to Compilers 18

Global o!set tables
• Can put address of all globals into global table
• But…can’t put the global table at a fixed address: not relocatable!

• "ree solutions:
1. Pass global table address as an extra argument (possibly in a

register) : a!ects first-class functions (next global table
address stored in current GT)

2. Use address arithmetic on current program counter (eip
register) to find global table. Use link-time constant o!set
between eip and global table. (extract eip w/ dummy call)

3. Stick global table entries into the current object’s dispatch
table : DT is the global table (only works for OO code, but
otherwise the best)

CS 4120 Introduction to Compilers 19

Cost of DSOs
• Assume esi contains global table pointer (setup code

at beginning of function)
• Call to function f:
 call [esi + f_offset]

• Global variable accesses:
 mov eax, [esi + v_offset]

 mov ebx, [eax]

• Calling global functions " calling methods
• Accessing global variables is more expensive than

accessing local variables
• Most benchmarks run w/o DSOs!

CS 4120 Introduction to Compilers 20

Link-time optimization
• When linking object files, linker provides

flags to allow peephole optimization of
inter-module references

• Unix: –static link option means application
to get its own copy of library code
– calls and global variables performed directly

(peephole opt.)

• Allows performance/functionality trade-o!

call [esi + malloc_addr] call malloc

CS 4120 Introduction to Compilers 21

Dynamic linking
• Shared libraries (DLLs) and DSOs can be linked dynamically

into a running program
• Normal case: implicit linking. When setting up global tables,

shared libraries are automatically loaded if necessary (even
lazily), symbols looked up & global tables created.

• Explicit dynamic linking: application can choose how to
extend its own functionality

– Unix: h = dlopen(filename) loads an object file into
some free memory (if necessary), allows query of globals: p

= dlsym(h, name)

– Windows: h = LoadLibrary(filename),

 p = GetProcAddress(h, name)

CS 4120 Introduction to Compilers 22

Conclusions
• Shared libraries and DSOs allow e#cient memory use

on a machine running many di!erent programs that
share code

• Improves cache, TLB performance overall
• Hurts individual program performance by adding

indirections through global tables, bloating code with
extra instructions.

• Important new functionality: dynamic extension of
program.

• Peephole linker optimization can restore
performance, but with loss of functionality.

