
CS 4120
Introduction to Compilers

Andrew Myers
Cornell University

Lecture 31: Multiple Inheritance
16 Nov 09

CS 4120 Introduction to Compilers 2

Field O!sets
class Shape {
 Point LL /* 4 */ , UR; /* 8 */
 void setCorner(int which, Point p);
}
class ColoredRect extends Shape {
 Color c; /* 12 */
 void setColor(Color c_);
}

• O!sets of fields from beginning are same for all subclasses
• Accesses to fields are indexed loads

 ColoredRect x;

E!x.c" = MEM(E!x" + 12)

E!x.UR" = MEM(E!x" + 8)

• Need to know size of superclasses – can be a problem
• e.g., Java – field o!sets resolved at dynamic link/load time

CS 4120 Introduction to Compilers 3

Field Alignment
• In many processors, a 32-bit load must be to an address

divisible by 4, address of 64-bit load must be divisible by
8

• In rest (e.g. Pentium), loads are 10× faster if aligned --
avoids extra load

! Fields should be aligned

struct {
 int x; char c; int y; char d;
 int z; double e;
}

x
c

y
d

z

e

CS 4120 Introduction to Compilers 4

Multiple Inheritance
• Mechanism: a class may declare multiple

superclasses (C++)
• Java: may implement multiple interfaces,

may inherit code from only one superclass
• Two problems: multiple supertypes,

multiple superclasses
• What are implications of multiple

supertypes in compiler?

CS 4120 Introduction to Compilers 5

Semantic problems
• Problem 1: ambiguity
class A { int m(); }
class B { int m(); }
class C extends A, B {} // which m?

• All methods, fields must be uniquely defined

• Problem 2: field replication

class A { int x; }
class B1 extends A { … }
class B2 extends A { … }
class C extends B1, B2 { … }

A

B1 B2

C

CS 4120 Introduction to Compilers 6

Dispatch vectors break
interface Shape {

 void setCorner(int w, Point p); 0

}

interface Color {

 float get(int rgb); 0

 void set(int rgb, float value); 1

}

class Blob implements Shape, Color { ...

}

CS 4120 Introduction to Compilers 7

DV alternatives
• Option 1: search with inline cache

(Smalltalk, Java)
– For each class, interface, have table mapping

method names to method code. Recursively
walk upward in hierarchy looking for method
name

–Optimization: at call site, store class and
code pointer in call site code (inline

caching). On call, check whether class
matches cache.

CS 4120 Introduction to Compilers 8

Inline cache code
• Let to be the receiver object:

 mov t1, [to]

 cmp t1, [cacheClass434]

 jnz miss

 call [cacheCode434]

miss: call slowDispatch

cacheClass434

cacheCode434

object
object class
information

cache data
(in data segment)

90% of calls from a site go to
same code as last call from

 same site

CS 4120 Introduction to Compilers 9

Option 2: Sparse dispatch vectors

• Make sure that two methods never allocated same o!set: give
Shape o!set 0, Color o!sets 1 and 2. Allow holes in DV!

• Some methods can be given same o!set since they never
occur in the same DV

• Graph coloring techniques can be used to compute
method indices in reasonably optimal way (finding optimum
is NP-complete!)

CS 4120 Introduction to Compilers 10

Sparse Dispatch Vectors

• Advantage: same fast dispatch code as SI case
• Disadvantage: requires knowledge of entire type

hierarchy (makes separate compilation, dynamic
loading di#cult)

interface Shape {
 void setCorner(int w, Point p); 0
}
interface Color {
 float get(int rgb); 1
 void set(int rgb, float value); 3
}
class Blob implements Shape, Color { … }

setCorner

get

set

CS 4120 Introduction to Compilers 11

Option 3: Hash tables
• Idea: don’t try to give all method unique indices;

resolve conflicts by checking that entry is correct at
dispatch

• Use hashing to generate method indices
– Precompute hash values!
– Some Java implementations

interface Shape {
 void setCorner(int w, Point p); 11
}
interface Color {
 float get(int rgb); 4
 void set(int rgb, float value); 7
}
class Blob implements Shape, Color { … }

CS 4120 Introduction to Compilers 12

Dispatch with Hash tables

• What if there’s a conflict? Entries containing several methods
point to resolution code

• Basic dispatch code is (almost) identical!
• Advantage: simple, reasonably fast
• Disadvantage: some wasted space in DV, extra argument for

resolution, slower dispatch if conflict

Fixed #
entriesset

setCorner

get

CS 4120 Introduction to Compilers 13

Option 5: Binary decision trees
• Idea: use conditional branches, not indirect jumps
• Unique class index stored in first object word
• Range tests used to select among n possible classes at call site in lg n

time – direct branches to code

Shape x;
x.SetCorner(…)

mov ebx, [eax]
cmp ebx, 1
jle L1
cmp ebx, 2
je Circle$setCorner
jmp Egg$setCorner
L1: cmp ebx, 0
je Blob$setCorner
jmp Rect$setCorner

Shape

Blob Rectangle Circle

Color

0 1 2
RGBColor Egg

43

Decision tree

0 1 2 3

2
Circle

CS 4120 Introduction to Compilers 14

Binary decision tree
• Works well if distribution of classes is highly skewed:

branch prediction hardware eliminates branch stall of
~10 cycles
– Can use profiling to identify common paths for each call site

individually
– 90%/10% : usually a common path

to put at top of decision tree

• Like sparse DVs: need whole-program analysis
• Indirect jump can have better expected execution

time for >2 classes: at most one mispredict

34
… …

