%
01101
B

CS 4120
Introduction to Compilers

Andrew Myers

Cornell University

Lecture 31: Multiple Inheritance
16 Nov 09

Field Offsets
/*4*/ /*8*/

/*12*/

Offsets of fields from beginning are same for all subclasses

Accesses to fields are indexed loads

ColoredRect x;

FIx.c] = MEM(ETx] + 12)

Fx.UR] = MEM(ZEx] + 8)

Need to know size of superclasses — can be a problem

.+ eg, Java - field offsets resolved at dynamic link/load time

CS 4120 Introduction to Compilers 2

Field Alignment
+ In many processors, a 32-bit load must be to an address
divisible by 4, address of 64-bit load must be divisible by
8

+ Inrest (e.g. Pentium), loads are 10x faster if aligned --
avoids extra load

=> Fields should be aligned c|)|(|
y
struct { d] |
int x; char c; int y; char d; z
int z; double e;
} e

CS 4120 Introduction to Compilers 3

Multiple Inheritance

Mechanism: a class may declare multiple
superclasses (C++)

Java: may implement multiple interfaces,
may inherit code from only one superclass

Two problems: multiple supertypes,
multiple superclasses

What are implications of multiple
supertypes in compiler?

CS 4120 Introduction to Compilers 4

Semantic problems

o Problem 1: ambiguity

class A{int m(); }
class B { int m(); }
class C extends A, B {} // which m?

o All methods, fields must be uniquely defined

 Problem 2: field replication

classA{int x; } A
class B1 extends A{ ... } 51/ \Bz
class B2 extends A{ ... } O
class C extends B1, B2 { ... } c
CS 4120 Introduction to Compilers 5

Dispatch vectors break

interface Shape {

void setCorner(int w, Point p); 0
3
interface Color {

float get(int rgb); 0

void set(int rgb, float value); 1
3

class Blob implements Shape, Color { ...

3

CS 4120 Introduction to Compilers 6

DV alternatives

« Option 1: search with inline cache
(Smalltalk, Java)

— For each class, interface, have table mapping
method names to method code. Recursively
walk upward in hierarchy looking for method
name

— Optimization: at call site, store class and
code pointer in call site code (inline

caching). On call, check whether class
matches cache.

CS 4120 Introduction to Compilers 7

Inline cache code

. Let t, be the receiver object:

mov t1) [to] cache data

cmp t1, [cacheClass434] (in data segment)

Jnz miss cacheClass434
call [cacheCode434] cacheCode434

miss: call slowDispatch

90% of calls from a site go to
same code as last call from object
same site

object class
information

CS 4120 Introduction to Compilers 8

Option 2: Sparse dispatch vectors

Make sure that two methods never allocated same offset: give
Shape offset 0, Color offsets 1 and 2. Allow holes in DV!

Some methods can be given same offset since they never
occur in the same DV

Graph coloring techniques can be used to compute
method indices in reasonably optimal way (finding optimum
is NP-complete!)

CS 4120 Introduction to Compilers 9

Option 3: Hash tables

Idea: don't try to give all method unique indices;
resolve conflicts by checking that entry is correct at
dispatch
Use hashing to generate method indices

— Precompute hash values!

— Some Java implementations

interface Shape {
void setCorner(int w, Point p); 11

interface Color {
float get(int rgb); 4
void set(int rgb, float value); 7

class Blob implements Shape, Color { ... }

CS 4120 Introduction to Compilers 11

Sparse Dispatch Vectors

interface Shape { | setCorner|

void setCorner(int w, Point p); 0

interface Color {

float get(int rgb); 1 -|—
void set(int rgb, float value); 3 | get
class Blob implements Shape, Color { ... } .
se
+ Advantage: same fast dispatch code as Sl case
« Disadvantage: requires knowledge of entire type
hierarchy (makes separate compilation, dynamic
loading difficult)
CS 4120 Introduction to Compilers 10

Dispatch with Hash tables

get
Fixed #
set entries
setCorner

« What if there’s a conflict? Entries containing several methods
point to resolution code

« Basic dispatch code is (almost) identical!
« Advantage: simple, reasonably fast

« Disadvantage: some wasted space in DV, extra argument for
resolution, slower dispatch if conflict

CS 4120 Introduction to Compilers 12

Option 5: Binary decision trees

+ Idea: use conditional branches, not indirect jumps
+ Unique class index stored in first object word

+ Range tests used to select among n possible classes at call site in Ign
time — direct branches to code

shape x; Color Shape
x.SetCorner(...) / \ /
mov &Y. [eax] RGBColor Blob Rectangle Circle Egg

cmp ebx, 1

jle L1 3 0 1 2 4
cmp ebx, 2

je CircleSsetCorner . . .

jmp EggSsetCorner Decision tree Circle

L1: cmp ebx, 0] 2
je BlobSsetCorner
jmp RectSsetCorner

o 1 2 3

CS 4120 Introduction to Compilers 13

Binary decision tree
« Works well if distribution of classes is highly skewed:
branch prediction hardware eliminates branch stall of
~10 cycles

— Can use profiling to identify common paths for each call site

individually
- 90%/10% : usually a common path 34/>\

to put at top of decision tree

+ Like sparse DVs: need whole-program analysis

+ Indirect jump can have better expected execution
time for >2 classes: at most one mispredict

CS 4120 Introduction to Compilers 14

