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These notes are not yet complete.

1 Interprocedural analysis

Some analyses are not sufficiently precise when done one procedure at a time, because there is not enough
information about what other procedures (either callers or callees) might do. Points-to analysis is one
example where an interprocedural analysis often yields significant benefits.

1.1 Example

Abstractions for allocation are a common pattern, as in the following code:

fO = {
a: int[] = newArray(5);
b: int[] = newArray(5);

useaandb ...
}
newArray(n: int): int[] = {
X: int[n];
. initialize x somehow . . .
return Xx;
}

To do a good job of optimizing function f, the compiler is likely to need reason accurately about the
possible aliasing of a and b with each other and with other heap locations. With no interprocedural analysis,
however, there is no information about what the result of newArray might point to. So a and b must be
treated as potential aliases for almost everything.

2 Context-insensitive analysis

A simple strategy for getting more information is to combine the control flow graphs for the various
functions, connecting them according to their calls and returns. The control flow graphs are connected
according to the call graph for the program. How this strategy works is shown in Figure 1 for the example
program.

The analysis is context-insensitive: it analyzes the function newArray for all possible calling contexts at
once. The result of this combined analysis is then sent back to all call sites via the return node.

This will at least allow the compiler to determine that a and b are both generated by allocation alloc1,
and therefore don’t alias other variables. However, it won’t be able to determine that a and b also don’t
alias each other.

The combined CFG for Figure 1 is an abstraction of the real call tree that happens at run time. The call tree
has one node for each actual procedure invocation, and therefore contains two distinct nodes for newArray.

One way of recovering precision is to connect the CFGs according to the possible call trees instead of the
call graph, cloning the newArray CFG and creating two separate copies with distinguished allocation sites
alloc1 and alloc2. Then we’d know that a can point only to alloc1 and b only to alloc2: no aliasing possible.
The result of context-sensitive analysis using cloning is shown in Figure 2

However, cloning only works if the call tree is finite (and not huge). In general there can be an infinite
number of possible call trees, and therefore an infinite number of calling contexts in which a procedure
needs to be analyzed. We need a way to abstract over possible contexts.
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Figure 1: Context-insensitive analysis (dataflow values shown in blue)
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Figure 3: Calling contexts example

3 Calling contexts

Thinking backward from a given call to a procedure f, there is some number of distinct callers, and in turn,
these callers may have multiple distinct callers, as depicted in Figure 3. This diagram expands the call graph
for the program into a tree in the backward direction. For example, there are two distinct calls to procedure
g from procedure k, labeled k; and k,. Here, at least four calling contexts for f are shown, which can be
enumerated in terms of the call paths from the root to f. These paths can be named using their call strings,
which are the sequences of names visted along the path: jkigf, jkogf, jmgf, and jmhf.

Each of these contexts could potentially provide and receive different information from their respective
calls to f, so additional precision might be gained by making a separate copy of the f CFG for each of these
contexts. But in general the number of such contexts will be infinite, in particular if there is any recursion.

4 Abstracting contexts

The solution to the problem of too many contexts, as with the problem of alias analysis, is abstraction: the
analysis needs to project classes of calling contexts into a single abstracted contexts, and do an analysis that
conservatively captures the analyses that would be done on all contexts in the class.

Context-insensitive analysis can be viewed an instance of this approach, in which all contexts are
abstracted to a single context. However, more fine-grained abstractions can do better.

4.1 k-limiting context-sensitive analysis

One approach to abstraction is to collapse together all contexts that agree on the last k procedure calls. This
is called k-limiting context-sensitive analysis, also known as k-CFA.

4.2 Abstracting cycles

Because of recursion, the last k calls may include a recursive cycle. Another approach to context sensitivity
is to consider all call strings to be equivalent if they agree when repeated recursive cycles are removed. So
the call strings hgf, hggf, hgggf would all be considered as one context hg* f. Analysis in this context entails
having the CFGs of k, g, and f wired together in a way that loses information about whether calls to g are
coming from % or from g itself.



5 Using summaries

We would like to avoid rerunning a full program analysis of a given procedure for each calling context.
This may be accomplished by computing a summary of the way the procedure affects information. If output
information can be summarized as a simple function of the input information, the summary can be used
instead of the corresponding dataflow analysis.

The summary is typically parameterized on the input information, which often requires making the
underlying analysis more general so that it can be parameterized.

For example, summarizing the behavior of the newArray procedure, we can see that when it is called
in a context ¢, it performs an allocation which we might name allocheuarray/c. The result of analyzing
the procedure is the mapping {x +— allocneyarray/c}. Note that to summarize the procedure accuately, we
generalize the points-to analysis to allow heap locations to be indexed by contexts. Given the two calls to
newArray from program points we might name f; and f,, applying the summary to these context yields the
mappings {x > allocneyarray/f,} and {x > allocheyarray/ ). Therefore the analysis of f determines points-to
information for a and b as {a > allocheuarray/ i, b F allocheuarray/f, 1, 50 the two variables are not aliases.

6 Solving equations with fixed points

Many problems can be solved iteratively, and we have seen some of them during this course: dataflow
analysis, loop-invariant expressions, LL(1) grammar construction. Type inference and information flow
analysis are some other examples.

The common feature of all these problems is that they can be expressed as a system of n equations of
n variables x1,...,x,, whose values are elements drawn from some lattice L with finite height # and top
element T. The equations come in one of the following two forms:

X1 =f1(X1,...,xn) X1 I;fl(xl,...,xn)
X2 = folx1,...,Xp) X2 C folxi, ..., %)
Xn =fn(x1/---r-xn) Xn Efn(xlr---/xn)

where, in addition, the functions f; are monotonic. Given these constraints, we know that we can use
iterative analysis to find maximal solutions to equations of either kind. Because the solution is maximal,
the solution iterative analysis finds to one of these sets of equations (using = or E) must also solve the
corresponding set of equations of the other kind (E or =, respectively). Therefore we will simply assume
the equations use equality.

The simple iterative analysis algorithm uses the equations to evaluate x1, x», x3, and so on up to x,, and
then repeats until convergence. However, for many problems, we can speed up convergence asympotically
by evaluating the equations for the x; in a different order.

The key to speeding up analysis is to observe that for a given system of equations, not all the functions
fi depend on all the variables x, ..., x,. For any system of equations, we can draw a dependency graph on
variables, where each variable is a node and there is an edge from x; to x; if f; depends directly on x;. For
dataflow analysis, this dependency graph is essentially the same as the control flow graph.

6.1 Example

Consider the dependency graph shown in Figure 4. When the equations are applied in the order 1,...,n, it
can take n — 1 iterations to propagate information all the way from x,, to x;, or total time O(1?).

On the other hand, if the variables were evaluated in reverse order, convergence would be achieved after
just one pass, or O(n) time.
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Figure 4: A simple dependency graph

7 Reverse postorder algorithm

A useful refinement of the basic iterative analysis algorithm is to topologically sort the variables, at least
approximately. This is accomplished by doing a depth-first postorder traversal of the nodes in the depen-
dence graph, and ordering the evaluations in the reverse of this order. This means a node is visited before
all its successor nodes have been, unless the successor is reached by a back edge.

For example, if we do a depth-first traversal of the graph in Figure 4, we leave each node in the order
X1,%2,...,%,. The reverse of this postorder traversal is then to update x,, x,,, ..., x1, achieving convergence
after the first iteration.

8 Worklist algorithm

There is no need to update variables whose predecessors have not changed. This motivates the worklist
algorithm for solving equations, which we can now write more in a more general form:

1. Initialize all x; to T.
2. Initialize the worklist w := {i | i € 1..n}.
3. While some i € w repeat:

(a) w:=w—{i}
(b) x; == fi(x1,...,xn)
(c) w:=wU({j| fj depends on x;}

The worklist is a set of node identifiers. Usually the set acts as a FIFO queue, so that newly added
elements go to the end of the queue. The initial ordering of nodes can be reverse postorder.

9 Strongly-connected components

Figure 5 shows a dependency graph where it makes sense to be more intelligent about worklist ordering.
The dependency graph contains strongly connected components (SCCs) spanning multiple nodes. In fact,
every directed graph can be reduced to a direct acyclic graph (DAG) whose nodes are strongly connected
components. It makes sense to propagate information through this DAG, allowing each SCC to converge
before propagating its information into the rest of the DAG.

Strongly connected components can be found in linear time with two depth-first traversals:

1. Do a postorder traversal of the graph.

2. Do a traversal of the transposed graph (follow edges backward), but pick the nodes to start from in
reverse postorder. All nodes reached from a starting node are part of the same SCC as that node.
Further, the SCCs will be found in topologically sorted order.

For example, in the graph of Figure 5, one postorder traversal of the graph starting from node 1 (it
doesn’t matter much which node we start from) is: 9,8,3,2,7,6,5,4,1. Now we start from the end with node
1. No other nodes are reachable from it in the transposed graph, so it is its own SCC. Node 4 is the same.
From node 5 we can reach nodes 6 and 7, so (5,6,7) is an SCC. From node 2 we reach node 3, so (2,3) is an
SCC. And finally, (8,9) is an SCC. Reversing this, the ordering on SCCs is (1),(4), (6,7,5), (2,3), (8,9).
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Figure 5: Dependency graph with strongly connected components

10 Priority-SCC lIteration

Priority-SCC iteration works by propagating information through the DAG of SCCs. To make each SCC
converge well, we topologically sort each SCC and use reverse postorder with a worklist. In the example
above, this gives us, e.g., (1), (4), (5,6,7), (2,3), (8,9). Each SCC is then iterated over repeatedly until it
converges; the analysis then proceeds to the next SCC in the list. A worklist is used to avoid unnecessary
updates within an SCC.

In the worst case where the whole graph forms one SCC, this is equivalent to reverse postorder iteration.



