
CS 4120 Lecture 28 Pointer/alias analysis 9 November 2009
Lecturer: Andrew Myers

1 Why alias analysis?

Two memory locations [e1] and [e2] are aliases if e1 and e2 evaluate to the same value. If we have two memory
operations, where at least one of them is a write, they can be safely reordered if the memory operands are
not aliases. There are various reasons, we want to be able to determine whether two locations might be
aliases:

• Instruction selection. If we can identify possible aliases, we can convert quadruples into larger expres-
sion trees, because we can change the order in which expressions accessing memory are computed.
This simplifies optimization.

• Instruction scheduling. Memory accesses tend to be slow, so we would like to schedule them early in
the instruction stream if possible. This will work well only if we can rule out aliasing.

• Redundancy elimination. Elimination of redundant memory operands is more effective if we can
conservatively identify possible aliases.

These problems all involve solving the may-alias problem. A solution will be considered if all actual
aliases are identified as possible aliases.

It is also possible to do a must-alias analysis, which enables other optimizations such as replacing one
memory operand with another one, but this is not of as general utility.

2 Aliasing heuristics

Some simple heuristics are fairly effective at identifying possible aliases. Many memory operands are stack
locations. Since the frame pointer register f p is constant throughout a given function, operands [f p + i]
and [f p + j] are aliases only if i = j. A stack location also can never alias a non-stack location, and in many
languages, stack locations and non-stack locations can be identified statically.

Some locations are immutable, such as the memory location that stores the length of an array. If we
know there can’t be any writes to such a location, we don’t have to worry about aliases. The compiler can
keep track of which locations are immutable and propagate that information to lower-level representations
such as IR or abstract assembly.

3 Points-to analysis

The usual way to solve the general alias analysis problem is as a points-to analysis, and the terms alias analysis
and points-to analysis are sometimes used interchangeably, though points-to analysis is really one way to
solve alias analysis.

The idea is analyze which locations each pointer can point to. Locations can be on the heap or the stack.
Since we can’t in general predict at compile which locations will exist at run time, we abstract the set of
storage locations in some way, typically as the set of allocation sites in the program. For example, if the
program contains an expression new C(...), all locations allocated by this expression might be mapped
onto a single abstract storage location. Two pointers that can point to different allocations made using this
expression will according to the analysis point to the same abstract location, and will be treated as aliases.
(We will see later that taking interprocedural context into account can improve the precision of this analysis.)

1

3.1 Inclusion-based vs. Unification-based

One basic choice in designing a pointer analysis is whether it should be inclusion-based or unification-based.
In an inclusion-based analysis, a pointer can point to a set of abstract locations, and two pointers may be
aliases if they both can point to some abstract location. In a unification-based analysis, pointers are placed
into equivalence classes; if pointer p can point to something that pointer q can, they are both in the same
equivalence class. Unification-based analyses more directly solve alias analysis, but they lose precision.
With an inclusion-based analysis it is possible for p to alias q and for q to alias r, but have p not alias r. In an
unification-based analysis, this is not possible.

3.2 Flow-sensitive vs. flow-insensitive analyses

Another choice for pointer analysis (and, indeed, for other analyses) is whether the analysis should be
flow-sensitive or flow-insensitive. In a flow-sensitive analysis, different points-to information is computed
for each program point, whereas for a flow-insensitive analysis, points-to information is merged across all
program points. The dataflow analyses we have been looking at are all flow-sensitive. However, we have
seen an example of a flow-insensitive program analysis: type checking, because it computes a single type
for each variable that does not change at different program points (in fact, it’s possible to have flow-sensitive
type systems).

Flow-sensitive analyses compute more precise information about the program, which is important for
many analyses. A flow-insensitive liveness analysis, for example, would be useless. However, flow-sensitive
analyses are also more expensive and, particularly if run as whole-program analyses, may not scale up to
large programs, though there has been progress in recent years at making flow-sensitive analyses more
scalable.

3.3 Analysis as abstraction

For simplicity, let’s consider a flow-insensitive analysis, so we will compute just one heap that abstracts not
only over all objects allocated by each allocation point, but also over all program points. The points-to
analysis is a kind of abstract interpretation in which we imagine running the program, but with program
state projected according to the abstraction onto a simpler, finite representation. This projection allows us
to simplify the infinite number of heap structures that can happen in real executions down to a finite heap
representation that conservatively represents all possible run-time heaps, yet contains enough information
to be useful.

3.4 Example

Figure 1 shows a small example that can create aliases. There are three variables, x, y, and z, which can
point to various heap-allocated objects. There are three allocation points, creating three abstract locations
that we will call alloc1, alloc2, and alloc3. The loop on the right constructs an arbitrarily long linked list two
elements at a time, so the possible run-time heap structures are infinite. Which of x, y, and z can be aliases
after this code executes?

The analysis of this CFG is depicted in Figure 2.
After executing the first two blocks, we know that x, y, and z can point to alloc2, alloc3, and alloc1

respectively. Now consider the loop. It makes x.n point to y, which means we add edges from x.n to
everything ymight be pointing to (only alloc3). Then, y.n=zmakes y.n point to alloc1. And z=xmeans that
z now points to the same things that x can point to: alloc2. Repeating the loop, y.n = zmakes y.n point to
to alloc2, as shown in blue. At this point the loop analysis converges.

Considering the left branch, assigning x.n=z adds the green arrow. The assignment y.n=x adds no edges
because y.n already points to everything x can. And the assignment z=y.n similarly adds no edges. The
end result is that x can point to alloc2, y can point to alloc3, and z can point to either alloc1 or alloc2.

2

z = new A

class A {
 A n;
}

x = new A
y = new A
if (c)

x.n = z
y.n = x
z = y.n

x.n = y
y.n = z
z = x

alloc1

alloc2
alloc3

Figure 1: An example with aliasing

n

x

alloc3

n

alloc2

n

alloc1

y

z

Figure 2: A flow-insensitive points-to analysis

3

For each variable v, the analysis computes a set of locations Ptr(v) that v might point to. A memory
location [v1] does not alias [v2] as long as Ptr(v1) ∩ Ptr(v2) = ∅. So x and z might be aliases, since they both
can point to abstract location alloc2, but no other pair of variables can be.

3.5 Transfer functions

Now let’s formalize a flow-sensitive inclusion-based analysis. There is a set a set of heap locations H, which
may be allocation points, addresses taken of variables (e.g., with the C & operator), or parameters that are
inputs to the function. 1

There is also a set of variables V, which include both regular variables like x but also fields such as y.n.
The dataflow values are possible bipartite graphs in which all edges go from a variable to a heap location.

That is, the values are binary relations, subsets of V × O. Given a binary relation l ⊆ V × O, we give the
notation l(v) the (standard) meaning {h | (v, h) ∈ l}. The top value is the empty relation ∅, and the ordering
v is ⊇.

A points-to relationship exists after a node if it existed before the node and isn’t killed by the node, or if
it is generated by the node:

out(n) = (in(n) − kill(n)) ∪ gen(n, in(n))

To complete this transfer function, the functions kill() and gen() are defined as follows:

n kill(n) gen(n, in(n))
p = q {p} ×H {p} × in(n)(q)

p = q. f {p} ×H {p} × in(n)(q. f)
p = q[i] {p} ×H {p} × in(n)(q.elem)

p = new . . . (alloci) {p} ×H {(p, alloci)}
p = &q {p} ×H {(p, allocq)}
p. f = q ∅ {(h. f , in(n)(q)) | h ∈ in(n)p}

p = f (. . .) {p} ×H {p} ×H′ (where H′ is any location f can return)

This transfer function is monotonic but not distributive, because we can have a loss of information when
merging graphs.

1Lack of knowledge about possible aliasing in function inputs will be a significant limitation on precision of the analysis, but the
remedy requires an interprocedural analysis.

4

