
CS 4120 Lecture 22 Dataflow analysis frameworks 19 October 2009
Lecturer: Andrew Myers

1 Iterative analysis

Last time we saw that a dataflow analysis can be characterized as a four-tuple (D,L,u,F): the direction of
analysis D, the space of values L, transfer functions Fn, and a meet operator u. We’re not yet guaranteed
that the worklist algorithm works, however.

Let’s consider a simpler algorithm that computes the answer to a dataflow analysis. If the dataflow
analysis framework satisfies certain properties to be identified, this algorithm will compute the same thing
as the worklist algorithm, but less efficiently. We can think of the worklist algorithm as an optimized version
of this iterative analysis algorithm, which avoids recomputing out(n) for nodes n whose value couldn’t have
changed (because it hasn’t changed for any predecessors of n).

Iterative analysis (forward):

• for all n, out(n) := >

• repeat until no change:

– in(n) :=
�

n′≺n out(n′)

– out(n) := Fn(in(n))

The algorithm updates out(n) for all n on each iteration. If we imagine each of the nodes n as having one of
the distinct indices 1, . . . ,N, we can think of all the values out(n) as forming an N-tuple (out(n1), . . . , out(nN)),
which is an element of the set LN.

We can think of the action of each iteration of the loop as mapping an element of LN to a new element
of LN; that is, it is a function F : LN

→ LN. The action of the algorithm produces a series of tuples until the
same tuple happens on two consecutive iterations:

(>,>, . . . ,>)

−→ (l11, l
1
2, . . . , l

1
N)

−→ (l21, l
2
2, . . . , l

2
N)

...

−→ (lk1, l
k
2, . . . , l

k
N)

−→ (lk1, l
k
2, . . . , l

k
N)

• When is this algorithm guaranteed to terminate, i.e., converge on a tuple, and how big can the iteration
count k be?

• When does it produce a solution to the dataflow equations?

• When does it produce the best solution to the equations?

To get answers to these questions, we need to understand the theory of partial orders, because we will
want the space of dataflow values L to be a partial order.

1

2

CS 611 Fall '00 -- Andrew Myers, Cornell University 7

Orderings

• Fixed points of denotation of while differ
only in case of non-termination

• We want while true do skip

• Idea: define ordering on fixed points of
such that least fixed point is the one we
want

• Compare to inductive definitions
– ordering was

– doesn’t work here: how to order elements of
?

CS 611 Fall '00 -- Andrew Myers, Cornell University 8

Partial orders
• A partial-order is

– a set of elements S

– an relation x y that is
• reflexive: x x

• transitive: (x y y z) x z

• anti-symmetric: (x y y x) x = y

– two elements may be incomparable

• Examples (S,)
(Z,) (Z,=)? (Z, <)?

(2S,) (2S,)

(S,)

CS 611 Fall '00 -- Andrew Myers, Cornell University 9

Hasse diagram: 2{a,b,c},

{a}{b}

{a,b}

{c}

{a,c}{b,c}

{a,b,c}

x

y

x y

{ }

=

CS 611 Fall '00 -- Andrew Myers, Cornell University 10

LUBs and Chains
• Given a subset B S, y is an upper bound

of B if x B . x y

• y is a least upper bound (B) if y z for
all upper bounds z

• A chain is a sequence of elements
x0, x1, x2, … such that x0 x1 x2 …

• For any finite chain x0,…,xn, xn is LUB

• What about infinite chains?

x0

x1

x2

…

CS 611 Fall '00 -- Andrew Myers, Cornell University 11

Complete partial orders
• A complete partial order (cpo) is a partial

order in which every chain has a least
upper bound

• Examples (S,)

(2S,)

({ },)

([0,1],)

(S,=)? (S,)?

• cpo may have least element : pointed

CS 611 Fall '00 -- Andrew Myers, Cornell University 12

Information content
• We consider one domain element to be

less than another if it gives less
information

• Non-termination gives less information
than any store (x)

• Stores are incomparable unless equal

• Recall: trying to find least fixed point in
; how to order functions?

… …
: cpo?

Figure 1: Hasse diagram

2 Partial orders

A partial order (or partially ordered set, or poset) is a set of elements (called the carrier of the partial order) along
with a relation v that is:

• reflexive: x v x for all x.

• transitive: if x v y and y v z, then x v z.

• antisymmetric: if x v y and y v x, then x and y are the same element.

The key thing that makes this a partial order is that it is possible for two elements to be incomparable;
they are not related in either direction.

For dataflow analysis, we interpret the ordering l1 v l2 to means that l2 is a better or more informative
result.

Some examples of partial orders are the integers ordered by≤ (i.e., (Z,≤), types ordered by the subtyping
relation ≤ (in many languages), sets ordered by ⊆ (or ⊇), booleans ordered by⇒. If (L,v) is a partial order,
the dual partial order (L,w) is too. Some examples of non-partial orders are the reals ordered by < and pairs
of integers ordered by their sums.

2.1 Hasse diagram

A useful way to visualize a partial order is through a Hasse diagram, as shown in Figure 1. This is a
diagram for the subsets of {a, b, c}with the ordering relation ⊆. In the diagram, elements that are ordered are
connected by a line if there is no intermediate element that lies between them in the ordering. And elements
connected by a line are displaced vertically to show which is the greater in the relation. Therefore, any two
related elements are connected by a path that goes consistently upward or downward in the diagram.

The height of a partial order is the number of edges n on the longest chain of elements l0 v l1 v l2 v . . . ln.
Therefore, the height of the example in Figure 1 is 3.

2.2 Lattices

A lower bound of two elements x and y is an element that is less than both of them. Some partial orders have
the property that every two elements have a greatest lower bound, or GLB, or meet. It is written x u y, and
pronounced as “x meet y”.

The meet of two elements is above all other lower bounds in the ordering: z v x ∧ z v y⇒ z v x u y.
Dually, for some partial orders, every two elements have a greatest upper bound (LUB), written x t y

and pronounced “x join y”.
If a partial order has both a meet and a join for every pair of elements, it is called a lattice. If it has a meet

for every pair of elements, it is a lower semilattice. If it has a join for every pair of elements, it is an upper
semilattice. We will be interested only in meets, so we will be working with lower semilattices, which we
may simply abbreviate to “lattice” (and most of the partial orders we care about are, in fact, full lattices).

2

2.3 Tuples

Suppose that L is a partial order. Then the set of tuples LN is also a partial order under the componentwise
ordering:

(l1, l2, . . . , lN) v (l′1, l
′

2, . . . , l
′

N) ⇐⇒ ∀i∈1..N li v l′i
You can check for yourself that if L is a partial order, this ordering on LN is also reflexive, transitive, and
antisymmetric.

If L is a lattice, then LN is also a lattice, with the meet (or join) taken componentwise:

(l1, . . . , lN) u (l′1, . . . , l
′

N) = (l1 u l′1, . . . , lN u l′N)
(l1, . . . , lN) t (l′1, . . . , l

′

N) = (l1 t l′1, . . . , lN t l′N)

To see that this works for meets, we need to show that (l1 u l′1, . . . , lN u l′N) is greater than any other
lower bound for (l1, . . . , lN) and (l′1, . . . , l

′

N). Suppose we have such a lower bound (l′′1 , . . . , l
′′

N). Since it is a
lower bound, for all i, l′′i v li and also l′′i v l′i . But that implies that l′′i v li u l′i . Therefore, according to the
componentwise ordering on LN, (l′′1 , . . . , l

′′

N) v (l1 u l′1, . . . , lN u l′N).

3 Monotonicity

The iterative analysis algorithm starts from the top of the lattice LN, (>,>, . . . ,>), and repeatedly applies a
function F : LN

→ LN to it, until a fixed point of the function is reached: a tuple X = (lk1, . . . , l
k
N) such that F(X) =

X. As the algorithm executes, a series of tuples X0,X1,X2, . . . ,Xk is produced, where X0 = (>,>, . . . ,>) and
Xk is the fixed point of F.

Given that a fixed point is reached, all the dataflow equations must be satisfied; otherwise, a different
tuple would have resulted from the last iteration of the loop. So if the algorithm terminates, it does find a
solution. How do we know that it finds a solution?

The key is to observe that the transfer functions Fn are normally monotonic, and therefore the function F
is too. A function on a partial order is monotonic if it preserves ordering:

Monotonicity: A function f : L→ L is monotonic if x v y⇒ f (x) v f (y).

In the context of dataflow analysis, monotonicity makes sense. We can think about the transfer functions
Fn as describing what we know after a node executes, given what we know beforehand. Having more
information before the node executes should not cause us to have less information afterward; it should only
help or at worst have no benefit.

The function F is constructed out of the transfer functions Fn and the meet operator. If the transfer
functions are monotonic on L, the function F is monotonic on LN. To see why, let us first check that the meet
operator is monotonic.

Theorem 1 (The meet operator is monotonic on its arguments)

x v y⇒ x u z v y u z

This proposition is depicted in Figure 2. Since the ordering v is transitive, we know that x u z v y. This
means x u z is a lower bound for both y and z, and therefore, it is bounded above by the greatest lower
bound for y and z, which is y u z.

The function F is formed by the composition of monotonic transfer functions and the monotonic meet
operator, as depicted in Figure 3, so it is also monotonic.

3

x⊓z

x

y

y⊓z

z

?

Figure 2: Monotonicity of meet

Transfer function Meet operator A node in a CFG

l

F(l)

l1 l2 l3

⊓ li

l1 l2 l3

F(⊓li)

⊓li

Figure 3: Dataflow analysis framework components

4

4 Termination

Iterative analysis starts with top element X0 and applies F to it. The result, which we called X1, must be
ordered with respect to X0; that is, X1 v X0. Because F is monotonic, F(X1) v F(X0); that is, X2 v X1. This
pattern must continue: for all n, Xn+1 v Xn, which we can see by induction. If we assume that Xn v Xn−1,
then by monotonicity of F, Xn+1 v Xn. Therefore the successive dataflow values produced by the algorithm
form a chain of distinct elements:

Xk v Xk−1 v . . . v X2 v X1 v X0

If the lattice LN has infinite height, there is no guarantee that this chain won’t continue indefinitely. But
for most of the problems we care about, the lattice L has some finite height (call it h). Therefore, the lattice
of tuples LN has height at most Nh. Once the iterative analysis algorithm has run Nh iterations, it must have
arrived at the bottom of the chain: convergence is achieved in k iterations where k ≤ Nh.

5 Example: live variable analysis

In live variable analysis, the dataflow values are sets of live variables. We want to find as few variables live
as possible to enable the most optimization, so the ordering v is ⊇, the top element > is ∅, and the meet
operator u is ∪.

Are the transfer functions monotonic? Recall that:

Fn(l) = use(n) ∪ (l − def (n))

So if l v l′, then l ⊇ l′. Suppose we have an element x ∈ Fn(l′) = use(n) ∪ (l′ − def (n)). Then either x ∈ use(n),
or else x ∈ l′ − def (n), in which case x ∈ l − def (n). In either case x ∈ Fn(l). Since this is true for arbitrary x,
Fn(l) ⊇ Fn(l′), as required.

6 The meet-over-all-paths solution and distributivity

We know that we get a solution to the dataflow equations if we run iterative analysis. But is it the best
possible solution? For example, in live variable analysis, we defined a variable as live if there is any path
leading from the current program point where that variable will be used. The set of live variables is therefore
the union (i.e., the meet) over all possible paths of the variables that are live along any of the paths. In most
dataflow analyses, like this one, we are trying to arrive at the meet-over-all-paths (MOP) solution:

out(n) =
�

all paths p0p1...pkn

Fn(Fpk (Fpk−1 (. . . (Fp1 (. . . (Fp0 (>)))))))

The reason we might not get the MOP solution is that even if that our transfer functions capture perfect
reasoning, there is still the possibility of losing information whenever we take a meet. If meet doesn’t lose
information, then we should get the same answer to the dataflow analysis when we duplicate the subsequent
node, perform the analysis on the replicas, and then recombine the results using meet (see Figure 4).

If this is true, we say that the transfer functions are distributive, and we can pull a meet operation out
from the argument to Fn and take it after applying Fn:

Fn(l1 u l2) = Fn(l1) u Fn(l2)

What the iterative analysis computes is an alternating application of meet and transfer functions (the
updates to in(n) and out(n), respectively), so the result is something like this:

out(n) = Fn

�
n′≺n

Fn′

�
n′′≺n′

Fn′′

 �
n′′′≺n′′

. . .

But if the Fn’s are all distributive, that means we can pull out all the meets, giving us exactly the MOP

solution.

5

n

Fn(l1 ⊓ l2)

l1 l2

l1 ⊓ l2

n

Fn(l1)

l1 l2

n

Fn(l2)

Fn(l1) ⊓ Fn(l2)

Figure 4: Analyses that are equivalent if meet loses no information

7 Example: live variable analysis

Does live variable analysis give us the MOP solution? Yes, which we can see by showing that Fn is
distributive:

Fn(x u y) = use(n) ∪ ((x ∪ y) − def (n))
= use(n) ∪ ((x − def (n)) ∪ (y − def (n)))
= (use(n) ∪ (x − def (n))) ∪ (use(n) ∪ (y − def (n)))
= Fn(x) u Fn(y)

8 Example: constant propagation

In “classic” constant propagation, the dataflow value is a mapping from variables to either a constant value
c, the “don’t know” value ⊥, or the “no assignment yet” value >, with ⊥ v c v > for all c. For a node
z = x OP y, then, we compute the outgoing value of x as follows (? represents any value):

x y z
c1 c2 c1 OP c2
⊥ ? ⊥

? ⊥ ⊥

> ? >

? > >

The transfer function is not distributive. Consider a node that computes z = x + y and has two
predecessor nodes with output values {x 7→ 2, y 7→ 3} and {x 7→ 3, y 7→ 2}. The meet of these values is
{x 7→ ⊥, y 7→ ⊥}, so the node will compute {x 7→ ⊥, y 7→ k, z 7→ ⊥}. However, applying the transfer function
to the individual values yields {x 7→ 2, y 7→ 3, z 7→ 5} and {x 7→ 3, y 7→ 2, z 7→ 5}, and the resulting meet is
{x 7→ ⊥, y 7→ ⊥, z 7→ 5}. Thus, information is lost by taking the meet before applying the transfer function.

6

