
CS 4120
Introduction to Compilers

Andrew Myers
Cornell University

Lecture 19: Introduction to Optimization
9 Oct 09

CS 4120 Introduction to Compilers 2

Administration
• Problem Set 3 due Oct. 15 (next
!ursday)

• Prelim 1 Oct. 20 (Wednesday after)
• Programming Assignment 4 due Oct. 26

CS 4120 Introduction to Compilers 3

Trivial register allocation
• Can convert abstract assembly to real

assembly easily (but generate bad code)
• Allocate every temporary in stack frame

rather than to a real register
– t1 = [ebp-4], t2=[ebp-8], t3 = [ebp-12], ...

• Every temporary stored in di"erent place --
conflict is impossible

• Up to three registers needed to shuttle data in
and out of stack frame (max. # registers used
by one instruction) : e.g, eax, ecx, edx

CS 4120 Introduction to Compilers 4

Rewriting abstract code
• Given instruction, replace every temporary

in instruction with one of three registers
e[acd]x

• Add mov instructions before instruction
to load registers properly

• Add mov instructions after to put data
back into stack frame (as necessary)

push t1 ! mov eax, [ebp-4]; push eax

add t2, t3 ! ?

CS 4120 Introduction to Compilers 5

Result
• Simple way to get working code – will use

for Programming Assignment 4
• Code is bigger and slower than necessary
• Refinement: allocate temporaries to registers

until registers run out (3 temporaries on
IA-32, 20+ on MIPS, PowerPC)

• Code generation technique actually used by
some compilers when all optimization
turned o" (-O0)

CS 4120 Introduction to Compilers 6

Optimization
• Next topic: how to generate better code

through optimization.
• !is course covers the most valuable and

straightforward optimizations – much
more to learn!
– Other sources:

• Muchnick has 10 chapters of optimization
techniques

• Cooper and Torczon also cover optimization

CS 4120 Introduction to Compilers 7

How fast can you go?

0.1

1

10

100

1000

10000

simple code generation (PA4, JIT)

register allocation
local optimization global optimization

naive assembly code

expert assembly code

bytecode interpreters (Java, Perl 5, OCaml)

call-threaded interpreters

AST interpreters (CS 3110 RCL, Perl 4)

tokenized program interpreters (BASIC, Tcl)

direct source code interpreters

pointer-threaded interpreters (FORTH)

CS 4120 Introduction to Compilers 8

Goal of optimization
• Help programmers

– clean, modular, high-level source code
– but compile to assembly-code performance

• Optimizations are code transformations
– can’t change meaning of program to behavior not

allowed by source.

• Di"erent kinds of optimization:
– space optimization: reduce memory use
– time optimization: reduce execution time
– power optimization: reduce power usage

CS 4120 Introduction to Compilers 9

Why do we need optimization?
• Programmers may write suboptimal code to make it

clearer.
• High-level language may make avoiding redundant

computation inconvenient or impossible

a(i)(j) = a(i)(j) + 1

• Architectural independence.
• Modern architectures assume optimization–hard to

optimize by hand.

CS 4120 Introduction to Compilers 10

Where to optimize?
• Usual goal: improve time performance
• Problem: many optimizations trade o" space versus

time.
• Example: loop unrolling replaces a loop body with N

copies.
– Increasing code space slows program down a little, speeds up

one loop
– Frequently executed code with long loops: space/time tradeo"

is generally a win
– Infrequently executed code: optimize code space at expense of

time, saving instruction cache space
– Complex optimizations may never pay o"!

• Focus of optimization: program hot spots

CS 4120 Introduction to Compilers 11

Safety
• Possible opportunity for loop-invariant code motion:
 while (b) {

 z = y/x; // x, y not assigned in loop
 …
 }

• Transformation: invariant code out of loop:
 z = y/x;

 while (b) {
 …
 }

!ree aspects of an optimization:

• the code transformation
• safety of transformation
• performance improvement

Preserves meaning?
Faster?

CS 4120 Introduction to Compilers 12

Writing fast programs in practice

1. Pick the right algorithms and data
structures: design for locality and few
operations

2. Turn on optimization and profile to figure
out program hot spots.

3. Evaluate whether design works; if so…
4. Tweak source code until optimizer does

“the right thing” to machine code
– understanding optimizers helps!

CS 4120 Introduction to Compilers 13

Structure of an optimization
• Optimization is a code transformation
• Applied at some stage of compiler (HIR,

MIR, LIR)
• In general requires some analysis:

– safety analysis to determine where
transformation does not change meaning
(e.g. live variable analysis)

– cost analysis to determine where it ought to
speed up code (e.g., which variable to spill)

CS 4120 Introduction to Compilers 14

When to apply optimization

AST

Canonical
IR

IR

Abstract
Assembly

Assembly

HIR

MIR

LIR

Inlining

Specialization

Constant folding

Constant propagation

Value numbering

Dead code elimination

Loop-invariant code motion

Common sub-expression elimination

Strength reduction

Constant folding & propagation

Branch prediction/optimization

Register allocation

Loop unrolling

Cache optimization

Peephole optimizations

CS 4120 Introduction to Compilers 15

Register allocation
• Goal: convert abstract assembly (infinite no. of registers) into

real assembly (6 registers)

 mov t1, t2

add t1, [bp–4]

mov t3, [bp-8]

 mov t4, t3

cmp t1, t4

Need to reuse registers aggressively (e.g., ebx)

• Coalesce registers (t3, t4) to eliminate mov’s

• May be impossible without spilling some temporaries to stack

mov eax, ebx

add eax, [ebp-4]

mov ebx, [ebp–8]

cmp eax, ebx

CS 4120 Introduction to Compilers 16

Constant folding
• Idea: if operands are known at compile time,

evaluate at compile time when possible.

 int x = (2 + 3)*4*y; ⇒ int x = 5*4*y;

 ⇒ int x = 20*y;

• Can perform at every stage of compilation
– Constant expressions are created by translation and

by optimization

a[2] ⇒ MEM(MEM(a) + 2*4)

 ⇒ MEM(MEM(a) + 8)

CS 4120 Introduction to Compilers 17

Constant folding conditionals

if (true) S ⇒ S

if (false) S ⇒ ;

if (true) S else S’ ⇒ S

if (false) S else S’ ⇒ S’

while (false) S ⇒ ;

if (2 > 3) S ⇒ if (false) S ⇒ ;
CS 4120 Introduction to Compilers 18

Algebraic simplification
• More general form of constant folding: take advantage of simplification

rules

 a * 1 ⇒ a a * 0 ⇒ 0
a + 0 ⇒ a
b | false ⇒ b b & true ⇒ b

 (a + 1) + 2 ⇒ a + (1 + 2) ⇒ a+3

 a * 4 ⇒ a shl 2

 a * 7 ⇒ (a shl 3) − a

 a / 32767 ⇒ a shr 15 + a shr 30

• Must be careful with floating point and with overflow - algebraic
identities may give wrong or less precise answers.

– E.g., (a+b)+c ≠ a+(b+c) in floating point if a,b small.

identities

reassociation

strength reduction

CS 4120 Introduction to Compilers 19

Unreachable code elimination

• Basic blocks not contained by any trace
leading from starting basic block are
unreachable and can be eliminated

• Performed at canonical IR or assembly
code levels

• Reductions in code size improve cache,
TLB performance.

CS 4120 Introduction to Compilers 20

 Inlining
• Replace a function call with the body of the function:
f(a: int):int = { b:int=1; n:int = 0;

 while (n<a) (b = 2*b); return b; }
g(x: int):int = { return 1+ f(x); }
⇒ g(x:int):int = { fx:int; { a:int = x;

 { b:int=1; n:int = 0;
 while (n<a) (b = 2*b); fx=b };

 return 1 + fx; }
• Best done on HIR
• Can inline methods, but more di$cult – there can be only one f.
• May need to rename variables to avoid name capture—consider if

f refers to a global variable x

CS 4120 Introduction to Compilers 21

Specialization
• Idea: create specialized versions of functions (or

methods) that are called from di"erent places w/
di"erent args

 class A implements I { m() {…} }
 class B implements I { m() {…} }
 f(x: I) { x.m(); } // don’t know which m
 a = new A(); f(a) // know A.m
 b = new B(); f(b) // know B.m
• Can inline methods when implementation is known
• Impl. known if only one implementing class
• Can specialize inherited methods (e.g., HotSpot JIT)

CS 4120 Introduction to Compilers 22

Constant propagation
• If value of variable is known to be a

constant, replace use of variable with
constant

• Value of variable must be propagated
forward from point of assignment

 int x = 5;
 int y = x*2;
 int z = a[y]; // = MEM(MEM(a) + y*4)
• Interleave with constant folding!

CS 4120 Introduction to Compilers 23

Dead code elimination
• If side e"ect of a statement can never be observed,

can eliminate the statement

 x = y*y; // dead!
… // x unused …
x = z*z; x = z*z;

• Dead variable: if never read after defn.

 int i;
 while (m<n) (m++; i = i+1) while (m<n) (m++)
• Other optimizations create

dead statements, variables

CS 4120 Introduction to Compilers 24

Copy propagation
• Given assignment x = y, replace subsequent

uses of x with y
• May make x a dead variable, result in dead code
• Need to determine where copies of y propagate

to

x = y
if (x > 1)
 x = x * f(x - 1)

x = y
if (y > 1) {
 x = y * f(y - 1)

CS 4120 Introduction to Compilers 25

Redundancy Elimination

• Common Subexpression Elimination
(CSE) combines redundant computations

a(i) = a(i) + 1

! [[a]+i*4] = [[a]+i*4] + 1

! t1 = [a] + i*4; [t1] = [t1]+1

• Need to determine that expression always
has same value in both places

b[j]=a[i]+1; c[k]=a[i] ! t1=a[i]; b[j]=t1+1; c[k]=t1 ?

CS 4120 Introduction to Compilers 26

Loops
• Program hot spots are usually loops (exceptions: OS

kernels, compilers)
• Most execution time in most programs is spent in

loops: 90/10 is typical.
• Loop optimizations are important, e"ective, and

numerous

CS 4120 Introduction to Compilers 27

Loop-invariant code motion
• Another form of redundancy elimination
• If result of a statement or expression does not

change during loop, and it has no externally-visible
side e"ect (!), can hoist its computation before loop

• Often useful for array element addressing
computations – invariant code not visible at source
level

• Requires analysis to identify loop-invariant
expressions

for (i = 0; i < a.length; i++) {
 // a not assigned in loop
}

t1 = a.length ;
for (i = 0; i < t1; i++) {
 …
}

CS 4120 Introduction to Compilers 28

Loop-invariant code motion

hoisted loop-invariant expression

CS 4120 Introduction to Compilers 29

Strength reduction
• Replace expensive operations (*,/) by cheap ones

(+, −) via dependent induction variable

for (int i = 0; i < n; i++) {
 a[i*3] = 1;
} int j = 0;
 for (int i = 0; i < n; i++) {
 a[j] = 1; j = j+3;
 }

CS 4120 Introduction to Compilers 30

Loop unrolling
• Branches are expensive; unroll loop to avoid

them:
for (i = 0; i<n; i++) { S }

for (i = 0; i < n−3; i+=4) {S; S; S; S;}
for (; i < n; i++) S;

• Gets rid of ¾ of conditional branches!
• Space-time tradeo": not a good idea for large

S or small n.

CS 4120 Introduction to Compilers 31

Summary
• Many useful optimizations that can transform

code to make it faster/smaller/...
• Whole is greater than sum of parts:

optimizations should be applied together,
sometimes more than once, at di"erent levels.

• Problem: when are optimizations are safe and
when are they e"ective?

!Dataflow analysis
!Control flow analysis
!Pointer analysis

