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Administration
• Problem Set 3 due Oct. 15 (next 
!ursday)

• Prelim 1 Oct. 20 (Wednesday after)
• Programming Assignment 4 due Oct. 26
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Trivial register allocation
• Can convert abstract assembly to real 

assembly easily (but generate bad code)
• Allocate every temporary in stack frame 

rather than to a real register
– t1 = [ebp-4], t2=[ebp-8], t3 = [ebp-12], ...

• Every temporary stored in di"erent place -- 
conflict is impossible

• Up to three registers needed to shuttle data in 
and out of stack frame (max. # registers used 
by one instruction) : e.g, eax, ecx, edx
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Rewriting abstract code
• Given instruction, replace every temporary 

in instruction with one of three registers 
e[acd]x

• Add mov instructions before instruction 
to load registers properly

• Add mov instructions after to put data 
back into stack frame (as necessary)

push t1        !  mov eax, [ebp-4]; push eax

add t2, t3 ! ?
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Result
• Simple way to get working code – will use 

for Programming Assignment 4
• Code is bigger and slower than necessary
• Refinement: allocate temporaries to registers 

until registers run out (3 temporaries on 
IA-32, 20+ on MIPS, PowerPC)

• Code generation technique actually used by 
some compilers when all optimization 
turned o" (-O0)

CS 4120 Introduction to Compilers 6

Optimization
• Next topic: how to generate better code 

through optimization.
• !is course covers the most valuable and 

straightforward optimizations – much 
more to learn!
– Other sources:

• Muchnick has 10 chapters of optimization 
techniques

• Cooper and Torczon also cover optimization
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How fast can you go?
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call-threaded interpreters
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tokenized program interpreters (BASIC, Tcl)

direct source code interpreters

pointer-threaded interpreters (FORTH)
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Goal of optimization
• Help programmers

– clean, modular, high-level source code
– but compile to assembly-code performance

• Optimizations are code transformations
– can’t change meaning of program to behavior not 

allowed by source.

• Di"erent kinds of optimization:
– space optimization: reduce memory use
– time optimization: reduce execution time
– power optimization: reduce power usage
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Why do we need optimization?
• Programmers may write suboptimal code to make it 

clearer.
• High-level language may make avoiding redundant 

computation inconvenient or impossible

a(i)(j) = a(i)(j) + 1

• Architectural independence.
• Modern architectures assume optimization–hard to 

optimize by hand.
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Where to optimize?
• Usual goal: improve time performance
• Problem: many optimizations trade o" space versus 

time.
• Example: loop unrolling replaces a loop body with N 

copies.
– Increasing code space slows program down a little, speeds up 

one loop
– Frequently executed code with long loops: space/time tradeo" 

is generally a win
– Infrequently executed code: optimize code space at expense of 

time, saving instruction cache space
– Complex optimizations may never pay o"!

• Focus of optimization: program hot spots
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Safety
• Possible opportunity for loop-invariant code motion:
  while (b) {

  z = y/x; // x, y not assigned in loop
  …
 }

• Transformation: invariant code out of loop:
  z = y/x;

 while (b) {
  …
 }

!ree aspects of an optimization:

• the code transformation
• safety of transformation
• performance improvement

Preserves meaning?
Faster?
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Writing fast programs in practice

1. Pick the right algorithms and data 
structures: design for locality and few 
operations

2. Turn on optimization and profile to figure 
out program hot spots.

3. Evaluate whether design works; if so…
4. Tweak source code until optimizer does 

“the right thing” to machine code
– understanding optimizers helps!
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Structure of an optimization
• Optimization is a code transformation
• Applied at some stage of compiler (HIR, 

MIR, LIR)
• In general requires some analysis:

– safety analysis to determine where 
transformation does not change meaning 
(e.g. live variable analysis)

– cost analysis to determine where it ought to 
speed up code (e.g., which variable to spill)
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When to apply optimization

AST

Canonical
IR

IR

Abstract
Assembly

Assembly

HIR

MIR

LIR

Inlining

Specialization

Constant folding

Constant propagation

Value numbering

Dead code elimination

Loop-invariant code motion

Common sub-expression elimination

Strength reduction

Constant folding & propagation

Branch prediction/optimization

Register allocation

Loop unrolling

Cache optimization

Peephole optimizations
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Register allocation
• Goal: convert abstract assembly (infinite no. of registers) into 

real assembly (6 registers)

 mov t1, t2

add t1, [bp–4]

mov t3, [bp-8]

 mov t4, t3

cmp t1, t4

Need to reuse registers aggressively (e.g., ebx)

• Coalesce registers (t3, t4) to eliminate mov’s

• May be impossible without spilling some temporaries to stack

mov eax, ebx

add eax, [ebp-4]

mov ebx, [ebp–8]

cmp eax, ebx
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Constant folding
• Idea: if operands are known at compile time, 

evaluate at compile time when possible.

 int x = (2 + 3)*4*y;  ⇒  int x = 5*4*y;

     ⇒  int x = 20*y;

• Can perform at every stage of compilation
– Constant expressions are created by translation and 

by optimization

a[2] ⇒ MEM(MEM(a) + 2*4)

    ⇒ MEM(MEM(a) + 8)
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Constant folding conditionals

if (true) S ⇒ S

if (false) S ⇒ ;

if (true) S else S’ ⇒ S

if (false) S else S’ ⇒ S’

while (false) S ⇒ ;

if (2 > 3) S ⇒ if (false) S ⇒ ;
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Algebraic simplification
• More general form of constant folding: take advantage of simplification 

rules

 a * 1 ⇒ a  a * 0 ⇒ 0
a + 0 ⇒ a
b | false ⇒ b  b & true ⇒ b

 (a + 1) + 2 ⇒ a + (1 + 2) ⇒ a+3

 a * 4 ⇒ a shl 2

 a * 7 ⇒ (a shl 3) − a 

 a / 32767 ⇒ a shr 15 + a shr 30

• Must be careful with floating point and with overflow - algebraic 
identities may give wrong or less precise answers.

– E.g., (a+b)+c ≠ a+(b+c) in floating point if a,b small.

identities

reassociation

strength reduction
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Unreachable code elimination

• Basic blocks not contained by any trace 
leading from starting basic block are 
unreachable and can be eliminated

• Performed at canonical IR or assembly 
code levels

• Reductions in code size improve cache, 
TLB performance.
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 Inlining
• Replace a function call with the body of the function:
f(a: int):int = { b:int=1; n:int = 0;

     while (n<a) (b = 2*b); return b; }
g(x: int):int  = { return 1+ f(x); }
⇒ g(x:int):int = { fx:int; { a:int = x;

    { b:int=1; n:int = 0;
         while (n<a) ( b = 2*b); fx=b };

    return 1 + fx; }
• Best done on HIR
• Can inline methods, but more di$cult – there can be only one f.
• May need to rename variables to avoid name capture—consider if 

f refers to a global variable x
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Specialization
• Idea: create specialized versions of functions (or 

methods) that are called from di"erent places w/ 
di"erent args

 class A implements I { m( ) {…} }
 class B implements I { m( ) {…} }
 f(x: I) { x.m( ); }  // don’t know which m
 a = new A(); f(a) // know A.m
 b = new B(); f(b) // know B.m
• Can inline methods when implementation is known
• Impl. known if only one implementing class
• Can specialize inherited methods (e.g., HotSpot JIT)
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Constant propagation
• If value of variable is known to be a 

constant, replace use of variable with 
constant

• Value of variable must be propagated 
forward from point of assignment

 int x = 5;
 int y = x*2;
 int z = a[y]; // = MEM(MEM(a) + y*4)
• Interleave with constant folding!
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Dead code elimination
• If side e"ect of a statement can never be observed, 

can eliminate the statement

 x = y*y;  // dead!   
…     // x unused …
x = z*z;     x = z*z;

• Dead variable: if never read after defn.

 int i;
 while (m<n) ( m++; i = i+1) while (m<n) (m++)
• Other optimizations create

dead statements, variables
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Copy propagation
• Given assignment x = y, replace subsequent 

uses of x with y
• May make x a dead variable, result in dead code
• Need to determine where copies of y propagate 

to

x = y
if (x > 1)
  x = x * f(x - 1)

x = y
if (y > 1) {
  x = y * f(y - 1)
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Redundancy Elimination

• Common Subexpression Elimination 
(CSE) combines redundant computations

a(i) = a(i) + 1

! [[a]+i*4] = [[a]+i*4] + 1

! t1 = [a] + i*4; [t1] = [t1]+1

• Need to determine that expression always 
has same value in both places

b[j]=a[i]+1; c[k]=a[i] ! t1=a[i]; b[j]=t1+1; c[k]=t1  ?
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Loops
• Program hot spots are usually loops (exceptions: OS 

kernels, compilers)
• Most execution time in most programs is spent in 

loops: 90/10 is typical.
• Loop optimizations are important, e"ective, and 

numerous
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Loop-invariant code motion
• Another form of redundancy elimination
• If result of a statement or expression does not 

change during loop, and it has no externally-visible 
side e"ect (!), can hoist its computation before loop

• Often useful for array element addressing 
computations – invariant code not visible at source 
level

• Requires analysis to identify loop-invariant 
expressions

for (i = 0; i < a.length; i++) {
 // a not assigned in loop
}

t1 = a.length ;
for (i = 0; i < t1; i++) {
 …
}
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Loop-invariant code motion

hoisted loop-invariant expression
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Strength reduction
• Replace expensive operations (*,/) by cheap ones

(+, −) via dependent induction variable

for (int i = 0; i < n; i++) {
 a[i*3] = 1;
}    int j = 0;
    for (int i = 0; i < n; i++) {
     a[ j ] = 1; j = j+3;
    }
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Loop unrolling
• Branches are expensive; unroll loop to avoid 

them:
for (i = 0; i<n; i++) { S }

for (i = 0; i < n−3; i+=4) {S; S; S; S;}
for (      ; i < n; i++) S;

• Gets rid of ¾ of conditional branches!
• Space-time tradeo": not a good idea for large 

S or small n.

CS 4120 Introduction to Compilers 31

Summary
• Many useful optimizations that can transform 

code to make it faster/smaller/...
• Whole is greater than sum of parts: 

optimizations should be applied together, 
sometimes more than once, at di"erent levels.

• Problem: when are optimizations are safe and 
when are they e"ective?

!Dataflow analysis
!Control flow analysis
!Pointer analysis


