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Where we are

Intermediate code

Canonical intermediate code

Abstract assembly code

Assembly code

syntax-directed translation
reordering with traces

tiling
dynamic programming

register allocation
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Abstract Assembly
• Abstract assembly = assembly code w/ infinite register 

set
• Canonical intermediate code = abstract assembly code – 

except for expression trees

• MOVE(e1, e2)  !  mov e1, e2

• JUMP(e)  !  jmp e

• CJUMP(e,l)  !  cmp e1, e2

  [jne|je|jgt|…] l

• CALL(e, e1,…)  !  push e1; … ; call e

• LABEL(l ) ! l:
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Instruction selection
• Conversion to abstract assembly is 

problem of instruction selection for a 
single IR statement node

• Full abstract assembly code: glue 
translated instructions from each of the 
statements

• Problem: more than one way to translate a 
given statement. How to choose?
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Example

MOVE

TEMP(t1) ADD

TEMP(t1) MEM

TEMP(fp) 4

add t1,[fp + 4]

mov t2, fp

add t2, 4

mov t3,[t2]

add t1, t3

?

MOVE(TEMP(t1), TEMP(t1) + MEM(TEMP(FP)+4))

ADD
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Pentium ISA
• Need to map IR tree to actual machine instructions – need to know 

how instructions work
• Pentium is two-address CISC architecture
• Typical instruction has

opcode (mov, add , sub, shl, shr, mul, div, jmp, jcc, push, 
pop, test, enter, leave, &c.)

– destination (r,[r],[k],[r+k],[r1+r2],
   [r1+w*r2],[r1+w*r2+k] )
(may also be an operand)

– source (any legal destination, or a constant)
  

 mov eax,1      add ebx,ecx

 sub esi,[ebp]  add [ecx+16*edi],edi
je label1  jmp [fp+4]

opcode dest src
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Tiling
• Idea: each Pentium instruction performs 

computation for a piece of the IR tree: a tile

MOVE

TEMP(t1) ADD

TEMP(t1) MEM

TEMP(fp) 4

mov t2, ebp

add t2, 4

mov t3,[t2]

add t1, t3

ADDt2

t2

t3

• Tiles connected by 

new temporary 

registers (t2, t3) that 

hold result of tile
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Some tiles
MOVE

TEMP(t1) e2

mov t1, t
2

ADD

t1 t2

mov t
f
, t

1

add t
f
, t

2

(t
f
 a fresh

  temporary)

MOVE

MEM CONST(i)

ADD

mov [t
1
+t

2
], i

t1
t2
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Problem
• How to pick tiles that cover IR statement tree with 

minimum execution time?
• Need a good selection of tiles

– small tiles to make sure we can tile every tree
– large tiles for e!ciency

• Usually want to pick large tiles: fewer instructions
• Pentium: RISC core instructions take 1 cycle, other 

instructions may take more
add [ecx+4], eax   mov edx,[ecx+4]
       add edx,eax
       mov [ecx+4],eax

"
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An annoying instruction
• Pentium mul instruction multiples single operand by 
eax, puts result in eax (low 32 bits), edx (high 32 
bits)

• Solution: add extra mov instructions, let register 
allocation deal with edx overwrite

MUL
mov eax, t1

mul t2

mov t
f
, eaxt1 t2
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Branches
• How to tile a conditional jump?
• Fold comparison operator into tile

CJUMP

l1 (l2)

test t1

jnz l1 
t1

CJUMP

l1 (l2)

t1

EQ

t2

cmp t1, t2

je l1 
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More handy tiles
lea instruction computes a memory address but doesn’t

actually load from memory

ADD

t1 t2

lea t
f
, [t

1
+t

2
] (t

f
 a fresh

  temporary)

ADD

t1

t2

lea t
f
, [t

1
+k

1
*t

2
] (k

1
 one of

 2,4,8,16)

MUL

CONST(k1)
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Greedy tiling
• Assume larger tiles = better
• Greedy algorithm: start from top of tree and use 

largest tile that matches tree
• Tile remaining subtrees recursively

MOVE

MEM 4

ADD

MEM

ADD

FP 8

MUL

4
MEM

ADD

FP 12
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How good is it?
Very rough approximation on modern 
pipelined architectures: execution time is 
number of tiles
Greedy tiling (Appel: “maximal munch”) 
finds an optimal but not necessarily 
optimum tiling: cannot combine two tiles 
into a lower-cost tile
• We can find the optimum tiling using 

dynamic programming!
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Instruction Selection
• Current step: converting canonical 

intermediate code into abstract assembly
– implement each IR statement with a 

sequence of one or more assembly 
instructions

– sub-trees of IR statement are broken into 
tiles associated with one or more assembly 
instructions
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Tiles

+

1

t2

t1
mov t2, t1
add t2, imm8

• Tiles capture compiler’s understanding of 

instruction set

• Each tile: sequence of instructions that 

update a fresh temporary (may need extra 

mov’s) and associated IR tree

• All outgoing edges are temporaries
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Another example

x = x + 1;

MOVE

MEM

FP

+

x

+

MEM

FP

+

x

1
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Example

x = x + 1;

MOVE

MEM

FP

+

x

+

MEM

FP

+

x

1

t2

t1
mov t1, [ebp+x]

mov t2, t1

add t2, 1

mov [ebp+x], t2

ebp: Pentium frame

pointer register
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Alternate (non-RISC) tiling

add [ebp+x], 1

x = x + 1;

MOVE

MEM

FP

+

x

+

MEM

FP

+

x

1

MOVE

+

CONST(k)
r/m32

r/m32
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ADD expression tiles

mov t1, t2

add t1, r/m32 +

t2

t1

t3

+

t2 r/m32

t1

+

t2 CONST(i)

t1

mov t1, t2

add t1, imm32
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ADD statement tiles

MOVE

r/m32

MOVE

+

CONST(k)
r/m32

r32

+

MOVE

+

r/m32

Intel Architecture 
Manual, Vol 2, 3-17:

add r32, r/m32

add r/m32, r32

add eax, imm32

add r/m32, imm32

add r/m32, imm8
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Designing tiles
• Only add tiles that are useful to compiler
• Many instructions will be too hard to use e"ectively or 

will o"er no advantage
• Need tiles for all single-node trees to guarantee that 

every tree can be tiled, e.g.

mov t1, t2

add t1, t3 +
t2

t1

t3
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More handy tiles
lea instruction computes a memory address but doesn’t

actually load from memory

+

t1 t2

lea t
f
, [t

1
+t

2
]

(t
f
 a fresh

  temporary)

+

t1

t2

lea t
f
, [t

1
+k

1
*t

2
]

(k
1
 one of

 2,4,8,16)*

CONST(k1)

tf

tf
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Matching CJUMP for RISC
• As defined in lecture, have

CJUMP(cond, destination)
• Appel: CJUMP(op, e1, e2, destination) 

where op is one of ==, !=, <, <=, =>, >
• Our CJUMP translates easily to RISC ISAs that 

have explicit comparison result
CJUMP

NAME(n)

t1

br    t1, n

cmplt t2, t3, t1
<

t2 t3

MIPS
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Condition code ISA
• Appel’s CJUMP corresponds more directly to 

Pentium conditional jumps

• However, can handle Pentium-style jumps 
with lecture IR with appropriate tiles

CJUMP

< NAME(n)
cmp t1, t2
jl n

t1 t2

set condition codes

test condition codes
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Branches
• How to tile a conditional jump?
• Fold comparison operator into tile

CJUMP

l1 (l2)

test t
1

jnz l1 
t1

CJUMP

l1 (l2)

t1

EQ

t2

cmp t
1
, t

2

je l1 

CS 4120 Introduction to Compilers 27

Fixed-register instructions

mul r/m32

 Sets eax to low 32 bits of eax * operand, 
edx to high 32 bits

jecxz label

 Jump to label if ecx is zero

add eax, r/m32

 Add to eax
No fixed registers in IR except TEMP(FP)!
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Strategies for fixed regs
• Use extra mov’s and temporaries

  
  mov eax, t2

  mul t3

  mov t1, eax

  

• Don’t use instruction (jecxz)
• Let assembler figure out when to use (add 

eax, …), bias register allocator

*

t1

t2 t3
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Implementation
• Maximal Munch: start from statement node
• Find largest tile covering top node and 

matching all children
• Invoke recursively on all children of tile
• Generate code for this tile (code for 

children will have been generated already in 
recursive calls)

• How to find matching tiles?

ADD

source
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Implementing tiles
• Explicitly building every tile: tedious
• Easier to write subroutines for matching Pentium 

source, destination operands
• Reuse matcher for all opcodes

MOVE

dest source

source =

CONST(i)

MEM
MEM

ADD

CONST(i)

TEMP(t)
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Matching tiles
abstract class IR_Stmt {
 Assembly munch();
}
class IR_Move extends IR_Stmt {
 IR_Expr src, dst;
 Assembly munch() {
  if (src instanceof IR_Plus &&
    ((IR_Plus)src).lhs.equals(dst) &&
    is_regmem32(dst) {
   Assembly e = (IR_Plus)src).rhs.munch();
       return e.append(new AddIns(dst, 

      e.target()));
  }
       else if ...
 }
}

MOVE

+

r/m32

CS 4120 Introduction to Compilers 32

Tile Specifications
• Previous approach simple, e!cient, but 

hard-codes tiles and their priorities
• Another option: explicitly create data 

structures representing each tile in 
instruction set
– Tiling performed by a generic tree-matching 

and code generation procedure
– Can generate from instruction set description 

– generic back end!
• For RISC instruction sets, over-engineering
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Improving instruction selection

• Greedy tiling may not generate best code
– Always selects largest tile, not necessarily 

fastest instruction
– May pull nodes up into tiles when better to 

leave below
• Can do better using dynamic 

programming algorithm
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Timing model
• Idea: associate cost with each tile (proportional to # 

cycles to execute)
– caveat: cost is fictional on modern architectures

• Estimate of total execution time is sum of costs of all tiles

MOVE

MEM

FP

+

x

+

MEM

FP

+

x

1

2

12

Total cost: 5
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Finding optimum tiling
• Goal: find minimum total cost tiling of tree
• Algorithm: for every node, find 

minimum total cost tiling of that node and 
sub-tree.

• Lemma: once minimum cost tiling of all 
children of a node is known, can find 
minimum cost tiling of the node by trying out 
all possible tiles matching the node

• Therefore: start from leaves, work 
upward to top node
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Dynamic programming: a[i]

MEM

+

MEM *

+

FP CONST(a)

CONST(4) MEM

+

FP CONST(i)

mov t1, [bp + a]
mov t2, [bp + i]
mov t3, [t1 + 4*t2]
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Recursive implementation
• Any dynamic programming algorithm 

equivalent to a memoized version of same 
algorithm that runs top-down

• For each node, record best tile for node
• Start at top, recurse:

– First, check in table for best tile for this node
– If not computed, try each matching tile to see which one 

has lowest cost
– Store lowest-cost tile in table and return

• Finally, use entries in table to emit code
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Greedy # Memoization
class IR_Move extends IR_Stmt {
 IR_Expr src, dst;
 Assembly best; // initialized to null

 int optTileCost() {
  if (best != null) return best.cost();
  if (src instanceof IR_Plus &&

    ((IR_Plus)src).lhs.equals(dst) && is_regmem32(dst)) {

     int src_cost = ((IR_Plus)src).rhs.optTileCost();
   int cost = src_cost + CISC_ADD_COST;
   if (cost < best.cost())
     best = new AddIns(dst, e.target); }
  …consider all other tiles…
  return best.cost();
 }
}

MOVE

+

r/m32

A small tweak to greedy algorithm!
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Problems with model
• Modern processors:

– execution time not sum of tile times
– instruction order matters

• Processors is pipelining instructions and executing 
di"erent pieces of instructions in parallel

• bad ordering (e.g. too many memory operations in 
sequence) stalls processor pipeline

• processor can execute some instructions in parallel 
(super-scalar)

– cost is merely an approximation
– instruction scheduling needed
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Summary
• Can specify code generation process as a set of tiles 

that relate IR trees to instruction sequences
• Instructions using fixed registers problematic but can 

be handled using extra temporaries
• Greedy algorithm implemented simply as recursive 

traversal
• Dynamic programming algorithm generates better 

code, also can be implemented recursively using 
memoization

• Real optimization will require instruction scheduling 


