
CS 4120
Introduction to Compilers

Andrew Myers
Cornell University

Lecture 17: Instruction Selection
5 Oct 2009

CS 4120 Introduction to Compilers 2

Where we are

Intermediate code

Canonical intermediate code

Abstract assembly code

Assembly code

syntax-directed translation
reordering with traces

tiling
dynamic programming

register allocation

CS 4120 Introduction to Compilers 3

Abstract Assembly
• Abstract assembly = assembly code w/ infinite register

set
• Canonical intermediate code = abstract assembly code –

except for expression trees

• MOVE(e1, e2) ! mov e1, e2

• JUMP(e) ! jmp e

• CJUMP(e,l) ! cmp e1, e2

 [jne|je|jgt|…] l

• CALL(e, e1,…) ! push e1; … ; call e

• LABEL(l) ! l:
CS 4120 Introduction to Compilers 4

Instruction selection
• Conversion to abstract assembly is

problem of instruction selection for a
single IR statement node

• Full abstract assembly code: glue
translated instructions from each of the
statements

• Problem: more than one way to translate a
given statement. How to choose?

CS 4120 Introduction to Compilers 5

Example

MOVE

TEMP(t1) ADD

TEMP(t1) MEM

TEMP(fp) 4

add t1,[fp + 4]

mov t2, fp

add t2, 4

mov t3,[t2]

add t1, t3

?

MOVE(TEMP(t1), TEMP(t1) + MEM(TEMP(FP)+4))

ADD

CS 4120 Introduction to Compilers 6

Pentium ISA
• Need to map IR tree to actual machine instructions – need to know

how instructions work
• Pentium is two-address CISC architecture
• Typical instruction has

opcode (mov, add , sub, shl, shr, mul, div, jmp, jcc, push,
pop, test, enter, leave, &c.)

– destination (r,[r],[k],[r+k],[r1+r2],
 [r1+w*r2],[r1+w*r2+k])
(may also be an operand)

– source (any legal destination, or a constant)

 mov eax,1 add ebx,ecx

 sub esi,[ebp] add [ecx+16*edi],edi
je label1 jmp [fp+4]

opcode dest src

CS 4120 Introduction to Compilers 7

Tiling
• Idea: each Pentium instruction performs

computation for a piece of the IR tree: a tile

MOVE

TEMP(t1) ADD

TEMP(t1) MEM

TEMP(fp) 4

mov t2, ebp

add t2, 4

mov t3,[t2]

add t1, t3

ADDt2

t2

t3

• Tiles connected by

new temporary

registers (t2, t3) that

hold result of tile

CS 4120 Introduction to Compilers 8

Some tiles
MOVE

TEMP(t1) e2

mov t1, t
2

ADD

t1 t2

mov t
f
, t

1

add t
f
, t

2

(t
f
 a fresh

 temporary)

MOVE

MEM CONST(i)

ADD

mov [t
1
+t

2
], i

t1
t2

CS 4120 Introduction to Compilers 9

Problem
• How to pick tiles that cover IR statement tree with

minimum execution time?
• Need a good selection of tiles

– small tiles to make sure we can tile every tree
– large tiles for e!ciency

• Usually want to pick large tiles: fewer instructions
• Pentium: RISC core instructions take 1 cycle, other

instructions may take more
add [ecx+4], eax mov edx,[ecx+4]
 add edx,eax
 mov [ecx+4],eax

"

CS 4120 Introduction to Compilers 10

An annoying instruction
• Pentium mul instruction multiples single operand by
eax, puts result in eax (low 32 bits), edx (high 32
bits)

• Solution: add extra mov instructions, let register
allocation deal with edx overwrite

MUL
mov eax, t1

mul t2

mov t
f
, eaxt1 t2

CS 4120 Introduction to Compilers 11

Branches
• How to tile a conditional jump?
• Fold comparison operator into tile

CJUMP

l1 (l2)

test t1

jnz l1
t1

CJUMP

l1 (l2)

t1

EQ

t2

cmp t1, t2

je l1

CS 4120 Introduction to Compilers 12

More handy tiles
lea instruction computes a memory address but doesn’t

actually load from memory

ADD

t1 t2

lea t
f
, [t

1
+t

2
] (t

f
 a fresh

 temporary)

ADD

t1

t2

lea t
f
, [t

1
+k

1
*t

2
] (k

1
 one of

 2,4,8,16)

MUL

CONST(k1)

CS 4120 Introduction to Compilers 13

Greedy tiling
• Assume larger tiles = better
• Greedy algorithm: start from top of tree and use

largest tile that matches tree
• Tile remaining subtrees recursively

MOVE

MEM 4

ADD

MEM

ADD

FP 8

MUL

4
MEM

ADD

FP 12

CS 4120 Introduction to Compilers 14

How good is it?
Very rough approximation on modern
pipelined architectures: execution time is
number of tiles
Greedy tiling (Appel: “maximal munch”)
finds an optimal but not necessarily
optimum tiling: cannot combine two tiles
into a lower-cost tile
• We can find the optimum tiling using

dynamic programming!

CS 4120 Introduction to Compilers 15

Instruction Selection
• Current step: converting canonical

intermediate code into abstract assembly
– implement each IR statement with a

sequence of one or more assembly
instructions

– sub-trees of IR statement are broken into
tiles associated with one or more assembly
instructions

CS 4120 Introduction to Compilers 16

Tiles

+

1

t2

t1
mov t2, t1
add t2, imm8

• Tiles capture compiler’s understanding of

instruction set

• Each tile: sequence of instructions that

update a fresh temporary (may need extra

mov’s) and associated IR tree

• All outgoing edges are temporaries

CS 4120 Introduction to Compilers 17

Another example

x = x + 1;

MOVE

MEM

FP

+

x

+

MEM

FP

+

x

1

CS 4120 Introduction to Compilers 18

Example

x = x + 1;

MOVE

MEM

FP

+

x

+

MEM

FP

+

x

1

t2

t1
mov t1, [ebp+x]

mov t2, t1

add t2, 1

mov [ebp+x], t2

ebp: Pentium frame

pointer register

CS 4120 Introduction to Compilers 19

Alternate (non-RISC) tiling

add [ebp+x], 1

x = x + 1;

MOVE

MEM

FP

+

x

+

MEM

FP

+

x

1

MOVE

+

CONST(k)
r/m32

r/m32

CS 4120 Introduction to Compilers 20

ADD expression tiles

mov t1, t2

add t1, r/m32 +

t2

t1

t3

+

t2 r/m32

t1

+

t2 CONST(i)

t1

mov t1, t2

add t1, imm32

CS 4120 Introduction to Compilers 21

ADD statement tiles

MOVE

r/m32

MOVE

+

CONST(k)
r/m32

r32

+

MOVE

+

r/m32

Intel Architecture
Manual, Vol 2, 3-17:

add r32, r/m32

add r/m32, r32

add eax, imm32

add r/m32, imm32

add r/m32, imm8

CS 4120 Introduction to Compilers 22

Designing tiles
• Only add tiles that are useful to compiler
• Many instructions will be too hard to use e"ectively or

will o"er no advantage
• Need tiles for all single-node trees to guarantee that

every tree can be tiled, e.g.

mov t1, t2

add t1, t3 +
t2

t1

t3

CS 4120 Introduction to Compilers 23

More handy tiles
lea instruction computes a memory address but doesn’t

actually load from memory

+

t1 t2

lea t
f
, [t

1
+t

2
]

(t
f
 a fresh

 temporary)

+

t1

t2

lea t
f
, [t

1
+k

1
*t

2
]

(k
1
 one of

 2,4,8,16)*

CONST(k1)

tf

tf

CS 4120 Introduction to Compilers 24

Matching CJUMP for RISC
• As defined in lecture, have

CJUMP(cond, destination)
• Appel: CJUMP(op, e1, e2, destination)

where op is one of ==, !=, <, <=, =>, >
• Our CJUMP translates easily to RISC ISAs that

have explicit comparison result
CJUMP

NAME(n)

t1

br t1, n

cmplt t2, t3, t1
<

t2 t3

MIPS

CS 4120 Introduction to Compilers 25

Condition code ISA
• Appel’s CJUMP corresponds more directly to

Pentium conditional jumps

• However, can handle Pentium-style jumps
with lecture IR with appropriate tiles

CJUMP

< NAME(n)
cmp t1, t2
jl n

t1 t2

set condition codes

test condition codes

CS 4120 Introduction to Compilers 26

Branches
• How to tile a conditional jump?
• Fold comparison operator into tile

CJUMP

l1 (l2)

test t
1

jnz l1
t1

CJUMP

l1 (l2)

t1

EQ

t2

cmp t
1
, t

2

je l1

CS 4120 Introduction to Compilers 27

Fixed-register instructions

mul r/m32

 Sets eax to low 32 bits of eax * operand,
edx to high 32 bits

jecxz label

 Jump to label if ecx is zero

add eax, r/m32

 Add to eax
No fixed registers in IR except TEMP(FP)!

CS 4120 Introduction to Compilers 28

Strategies for fixed regs
• Use extra mov’s and temporaries

 mov eax, t2

 mul t3

 mov t1, eax

• Don’t use instruction (jecxz)
• Let assembler figure out when to use (add

eax, …), bias register allocator

*

t1

t2 t3

CS 4120 Introduction to Compilers 29

Implementation
• Maximal Munch: start from statement node
• Find largest tile covering top node and

matching all children
• Invoke recursively on all children of tile
• Generate code for this tile (code for

children will have been generated already in
recursive calls)

• How to find matching tiles?

ADD

source

CS 4120 Introduction to Compilers 30

Implementing tiles
• Explicitly building every tile: tedious
• Easier to write subroutines for matching Pentium

source, destination operands
• Reuse matcher for all opcodes

MOVE

dest source

source =

CONST(i)

MEM
MEM

ADD

CONST(i)

TEMP(t)

CS 4120 Introduction to Compilers 31

Matching tiles
abstract class IR_Stmt {
 Assembly munch();
}
class IR_Move extends IR_Stmt {
 IR_Expr src, dst;
 Assembly munch() {
 if (src instanceof IR_Plus &&
 ((IR_Plus)src).lhs.equals(dst) &&
 is_regmem32(dst) {
 Assembly e = (IR_Plus)src).rhs.munch();
 return e.append(new AddIns(dst,

 e.target()));
 }
 else if ...
 }
}

MOVE

+

r/m32

CS 4120 Introduction to Compilers 32

Tile Specifications
• Previous approach simple, e!cient, but

hard-codes tiles and their priorities
• Another option: explicitly create data

structures representing each tile in
instruction set
– Tiling performed by a generic tree-matching

and code generation procedure
– Can generate from instruction set description

– generic back end!
• For RISC instruction sets, over-engineering

CS 4120 Introduction to Compilers 33

Improving instruction selection

• Greedy tiling may not generate best code
– Always selects largest tile, not necessarily

fastest instruction
– May pull nodes up into tiles when better to

leave below
• Can do better using dynamic

programming algorithm

CS 4120 Introduction to Compilers 34

Timing model
• Idea: associate cost with each tile (proportional to #

cycles to execute)
– caveat: cost is fictional on modern architectures

• Estimate of total execution time is sum of costs of all tiles

MOVE

MEM

FP

+

x

+

MEM

FP

+

x

1

2

12

Total cost: 5

CS 4120 Introduction to Compilers 35

Finding optimum tiling
• Goal: find minimum total cost tiling of tree
• Algorithm: for every node, find

minimum total cost tiling of that node and
sub-tree.

• Lemma: once minimum cost tiling of all
children of a node is known, can find
minimum cost tiling of the node by trying out
all possible tiles matching the node

• Therefore: start from leaves, work
upward to top node

CS 4120 Introduction to Compilers 36

Dynamic programming: a[i]

MEM

+

MEM *

+

FP CONST(a)

CONST(4) MEM

+

FP CONST(i)

mov t1, [bp + a]
mov t2, [bp + i]
mov t3, [t1 + 4*t2]

CS 4120 Introduction to Compilers 37

Recursive implementation
• Any dynamic programming algorithm

equivalent to a memoized version of same
algorithm that runs top-down

• For each node, record best tile for node
• Start at top, recurse:

– First, check in table for best tile for this node
– If not computed, try each matching tile to see which one

has lowest cost
– Store lowest-cost tile in table and return

• Finally, use entries in table to emit code

CS 4120 Introduction to Compilers 38

Greedy # Memoization
class IR_Move extends IR_Stmt {
 IR_Expr src, dst;
 Assembly best; // initialized to null

 int optTileCost() {
 if (best != null) return best.cost();
 if (src instanceof IR_Plus &&

 ((IR_Plus)src).lhs.equals(dst) && is_regmem32(dst)) {

 int src_cost = ((IR_Plus)src).rhs.optTileCost();
 int cost = src_cost + CISC_ADD_COST;
 if (cost < best.cost())
 best = new AddIns(dst, e.target); }
 …consider all other tiles…
 return best.cost();
 }
}

MOVE

+

r/m32

A small tweak to greedy algorithm!

CS 4120 Introduction to Compilers 39

Problems with model
• Modern processors:

– execution time not sum of tile times
– instruction order matters

• Processors is pipelining instructions and executing
di"erent pieces of instructions in parallel

• bad ordering (e.g. too many memory operations in
sequence) stalls processor pipeline

• processor can execute some instructions in parallel
(super-scalar)

– cost is merely an approximation
– instruction scheduling needed

CS 4120 Introduction to Compilers 40

Summary
• Can specify code generation process as a set of tiles

that relate IR trees to instruction sequences
• Instructions using fixed registers problematic but can

be handled using extra temporaries
• Greedy algorithm implemented simply as recursive

traversal
• Dynamic programming algorithm generates better

code, also can be implemented recursively using
memoization

• Real optimization will require instruction scheduling

