
CS 4120
Introduction to Compilers

Andrew Myers
Cornell University

Lecture 16: Basic blocks, CFGs, traces

1

CS 4120 Introduction to Compilers 2

Where we are
abstract syntax tree

intermediate code

canonical intermediate code

assembly code

syntax-directed translation (IR generation)

syntax-directed translation (flattening)

reordering with traces

instruction selection

abstract assembly code

register allocation

CS 4120 Introduction to Compilers

IR lowering
• We lower the IR to a canonical form in

which code is a sequence of statements,
each containing a single side e!ect.

• Done by transformations that lift side-
e!ecting statements to the top of the IR
tree.

• L[s] = s1...sn

• L[e] = s1...sn ; e’
– Side e!ects of e in si. Value of e computed by side-e!ect-free e’

3 CS 4120 Introduction to Compilers 4

Conditional jumps
• IR is now just a linear list of statements with

one side e!ect per statement
• Still contains CJUMP nodes : two-way branches

• Real machines : fall-through branches (e.g. JZ,

JNZ)

CJUMP(e, t, f)
...
LABEL(t)
if-true code
LABEL(f)

 evaluate e
 JZ f
 if-true code
f:

CS 4120 Introduction to Compilers 5

Simple Solution
• Translate CJUMP into conditional branch

followed by unconditional branch

CJUMP(TEMP(t1)==TEMP(t2), t, f) CMP t1,t2

 JZ t

 JMP f

•JMP is usually gratuitous

• Code can be reordered so jump goes to next
statement

CS 4120 Introduction to Compilers 6

Basic blocks
• Unit of reordering is a basic block

• A sequence of statements that is always begun at its
start and always exits at the end:
– starts with a LABEL(n) statement

(or beginning of all statements)
– ends with a JUMP or CJUMP

statement, or just before a LABEL
statement

– contains no other JUMP or CJUMP
statement

– contains no interior LABEL used as a jump target
• No point to breaking up a basic block during reordering

LABEL(l)
…
CJUMP(e, l1, l2)

CS 4120 Introduction to Compilers 7

Basic block example

CJUMP(e, L2, L3)
LABEL(L1)
MOVE(TEMP(x), TEMP(y)
LABEL(L2)
MOVE(TEMP(x), TEMP(y) + TEMP(z))
JUMP(NAME(L1))
LABEL(L3)
EXP(CALL(NAME(f)), TEMP(x))

CS 4120 Introduction to Compilers

Control flow graph
• Control flow graph has basic blocks as nodes
• Edges show control flow between basic blocks

CJUMP(e, L2, L3)
LABEL(L1)
MOVE(TEMP(x), TEMP(y)
LABEL(L2)
MOVE(TEMP(x), TEMP(y) + TEMP(z))
JUMP(NAME(L1))
LABEL(L3)
EXP(CALL(NAME(f)), TEMP(x))

CJUMP(e, L2, L3)

LABEL(L1)
MOVE(TEMP(x), TEMP(y)

LABEL(L3)
EXP(CALL(NAME(f)), TEMP(x))

LABEL(L2)
MOVE(TEMP(x), TEMP(y) + TEMP(z))
JUMP(NAME(L1))

CS 4120 Introduction to Compilers 9

Fixing conditional jumps
• Reorder basic blocks so that (if possible)

–the “false” direction of two-way jumps goes to
the very next block

– JUMPs go to the next block (are deleted)

• What if not satisfied?
–For CJUMP add another JUMP immediately

after to go to the right basic block
• How to find such an ordering of the basic

blocks?
CS 4120 Introduction to Compilers 10

Traces
• Idea: order blocks according to a possible trace: a

sequence of blocks that might (naively) be executed in
sequence, never visiting a block more than once

• Algorithm:
– pick an unmarked block (begin w/ start block)
– run a trace until no more unmarked blocks can be visited,

marking each block on arrival
– repeat until no more unmarked blocks

CS 4120 Introduction to Compilers 11

Example

• Possible traces?

1 2

3

4 5

CS 4120 Introduction to Compilers 12

Arranging by traces

1 2

3

4 5

1

2

4

5

3

1

2

4

5

3

• Can use profiling information, heuristics
to choose which branch to follow

CS 4120 Introduction to Compilers 13

Reordered code

CJUMP(e, L2, L3)

LABEL(L1)
MOVE(TEMP(x),
 TEMP(y))

LABEL(L2)
MOVE(TEMP(x), …)
JUMP(L1)

LABEL(L3)
EXP(CALL(f),
 TEMP(x))

CJUMP(e, L2, [L3])
JUMP(L3)

LABEL(L2)
MOVE(TEMP(x), TEMP(y) +
TEMP(z))
JUMP(L1)

LABEL(L1)
MOVE(TEMP(x), TEMP(y)
JUMP(L2)

LABEL(L3)
EXP(CALL(NAME(f)), TEMP(x))

CS 4120 Introduction to Compilers 14

Reversing sense of jumps

CJUMP(e, L2, [L3])
JUMP(L3)

LABEL(L2)
MOVE(TEMP(x), TEMP(y) +
TEMP(z))

LABEL(L1)
MOVE(TEMP(x), TEMP(y)
JUMP(L2)

LABEL(L3)
EXP(CALL(NAME(f)), TEMP(x))

CJUMP(NOT(e), L3, [L2])

LABEL(L2)
MOVE(TEMP(x), TEMP(y) +
TEMP(z))

LABEL(L1)
MOVE(TEMP(x), TEMP(y)
JUMP(L2)

LABEL(L3)
EXP(CALL(NAME(f)), TEMP(x))

CS 4120 Introduction to Compilers 15

Progress
abstract syntax tree

intermediate code

canonical intermediate code

assembly code

syntax-directed translation (IR generation)

syntax-directed translation (flattening)

reordering with traces

instruction selection (tiling)

abstract assembly code

register allocation

