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Where we are
abstract syntax tree

intermediate code

canonical intermediate code

assembly code

syntax-directed translation (IR generation)

syntax-directed translation (flattening)

reordering with traces

instruction selection

abstract assembly code

register allocation
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IR lowering
• We lower the IR to a canonical form in 

which code is a sequence of statements, 
each containing a single side e!ect.

• Done by transformations that lift side-
e!ecting statements to the top of the IR 
tree.

• L[s] = s1...sn

• L[e] = s1...sn ; e’
– Side e!ects of e in si. Value of e computed by side-e!ect-free e’
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Conditional jumps
• IR is now just a linear list of statements with 

one side e!ect per statement
• Still contains CJUMP nodes : two-way branches

• Real machines : fall-through branches (e.g. JZ, 

JNZ)

CJUMP(e, t, f)
...
LABEL(t)
if-true code
LABEL(f)

    evaluate e
    JZ f
     if-true code
f:
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Simple Solution
• Translate CJUMP into conditional branch 

followed by unconditional branch

CJUMP(TEMP(t1)==TEMP(t2), t, f)  CMP t1,t2

      JZ t

      JMP f

•JMP is usually gratuitous

• Code can be reordered so jump goes to next 
statement
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Basic blocks
• Unit of reordering is a basic block

• A sequence of statements that is always begun at its 
start and always exits at the end:
– starts with a LABEL(n) statement

(or beginning of all statements)
– ends with a JUMP or CJUMP

statement, or just before a LABEL
statement

– contains no other JUMP or CJUMP
statement

– contains no interior LABEL used as a jump target
• No point to breaking up a basic block during reordering

LABEL(l)
…
CJUMP(e, l1, l2)
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Basic block example

CJUMP(e, L2, L3)
LABEL(L1)
MOVE(TEMP(x), TEMP(y)
LABEL(L2)
MOVE(TEMP(x), TEMP(y) + TEMP(z))
JUMP(NAME(L1))
LABEL(L3)
EXP(CALL(NAME(f)), TEMP(x))
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Control flow graph
• Control flow graph has basic blocks as nodes
• Edges show control flow between basic blocks

CJUMP(e, L2, L3)
LABEL(L1)
MOVE(TEMP(x), TEMP(y)
LABEL(L2)
MOVE(TEMP(x), TEMP(y) + TEMP(z))
JUMP(NAME(L1))
LABEL(L3)
EXP(CALL(NAME(f)), TEMP(x))

CJUMP(e, L2, L3)

LABEL(L1)
MOVE(TEMP(x), TEMP(y)

LABEL(L3)
EXP(CALL(NAME(f)), TEMP(x))

LABEL(L2)
MOVE(TEMP(x), TEMP(y) + TEMP(z))
JUMP(NAME(L1))



CS 4120 Introduction to Compilers 9

Fixing conditional jumps
• Reorder basic blocks so that (if possible)

–the “false” direction of two-way jumps goes to 
the very next block

– JUMPs go to the next block (are deleted)

• What if not satisfied?
–For CJUMP add another JUMP immediately 

after to go to the right basic block
• How to find such an ordering of the basic 

blocks?
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Traces
• Idea: order blocks according to a possible trace: a 

sequence of blocks that might (naively) be executed in 
sequence, never visiting a block more than once

• Algorithm:
– pick an unmarked block (begin w/ start block)
– run a trace until no more unmarked blocks can be visited, 

marking each block on arrival
– repeat until no more unmarked blocks
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Example

• Possible traces?
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Arranging by traces
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• Can use profiling information, heuristics 
to choose which branch to follow
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Reordered code

CJUMP(e, L2, L3)

LABEL(L1)
MOVE(TEMP(x),           
 TEMP(y))

LABEL(L2)
MOVE(TEMP(x), …)
JUMP(L1)

LABEL(L3)
EXP(CALL(f), 
 TEMP(x))

CJUMP(e, L2, [L3])
JUMP(L3)

LABEL(L2)
MOVE(TEMP(x), TEMP(y) + 
TEMP(z))
JUMP(L1)

LABEL(L1)
MOVE(TEMP(x), TEMP(y)
JUMP(L2)

LABEL(L3)
EXP(CALL(NAME(f)), TEMP(x))
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Reversing sense of jumps

CJUMP(e, L2, [L3])
JUMP(L3)

LABEL(L2)
MOVE(TEMP(x), TEMP(y) + 
TEMP(z))

LABEL(L1)
MOVE(TEMP(x), TEMP(y)
JUMP(L2)

LABEL(L3)
EXP(CALL(NAME(f)), TEMP(x))

CJUMP(NOT(e), L3, [L2])

LABEL(L2)
MOVE(TEMP(x), TEMP(y) + 
TEMP(z))

LABEL(L1)
MOVE(TEMP(x), TEMP(y)
JUMP(L2)

LABEL(L3)
EXP(CALL(NAME(f)), TEMP(x))
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Progress
abstract syntax tree

intermediate code

canonical intermediate code

assembly code

syntax-directed translation (IR generation)

syntax-directed translation (flattening)

reordering with traces

instruction selection (tiling)

abstract assembly code

register allocation


