
CS 4120 Lecture 16 IR Lowering, Basic Blocks 2 October 2009
Lecturer: Andrew Myers

1 IR lowering

As described earlier, we express the IR lowering transformation using two syntax-directed translation func-
tions, both named L (for “lowering”).

L[[s]] translates an IR statement s to a sequence s1; . . . ; sn of canonical IR statements that have the
same effect. We write L[[s]] = s1; . . . ; sn, or as a shorthand, L[[s]] = ~s.

L[[e]] translates an IR expression e to a sequence of canonical IR statements ~s that have the same
effect, and an expression e′ that has the same value if evaluated after the whole sequence of state-
ments ~s. We write L[[e]] = ~s; e′ to denote this.

2 Lowering statements

We translate a sequence of statements by lowering each statement, and concatenating the results:

L[[SEQ(s1, . . . , sn)]] = L[[s1]]; . . . ;L[[sn]]

To lower an EXP node, we just throw away the expression. We write the translation rule as an inference
rule:

L[[e]] = ~s; e′

L[[EXP(e)]] = ~s

For statements such as JUMP and CJUMP, we flatten the expression to obtain a sequence of state-
ments that are done before the jump:

L[[e]] = ~s; e′

L[[JUMP(e)]] = ~s;JUMP(e′)
L[[e]] = ~s; e′

L[[CJUMP(e, l1, l2)]] = ~s;CJUMP(e′, l1, l2)

Some statements we can leave alone:

L[[LABEL(l)]] = LABEL(l)

A tricky case is MOVE. We’d like the following translation, but it’s not safe in general:

L[[e]] = ~s; e′ L[[dest]] = ~s′; dest′

L[[MOVE(dest, e)]] = ~s; ~s′;MOVE(dest′, e′)

The problem is that if the statements ~s′ change the value of e′, the meaning of the translated program is
not the same as the original. We’ll say that e′ commutes with s′ if s′ can be evaluated either before or after
e′ with the same effect and the same value resulting from e′. The MOVE rule above can only be used if s′

and e′ are guaranteed to commute.
What if they don’t commute? In that case we can capture the value of e′ in a fresh temporary. This

is not as good a translation in general, because the simpler MOVE node at the end may eliminate some
opportunities to generate efficient code. As we’ll see later when we do instruction selection, big expression
trees are helpful for generating efficient assembly code.

L[[e]] = ~s; e′ L[[dest]] = ~s′; dest′ e′ and s′ do not commute

L[[MOVE(dest, e)]] = ~s;MOVE(TEMP(t), e′); ~s′;MOVE(dest′, t)

1



Deferring the question of how to decide when expressions and statements commute, let’s look at how
to lower IR expressions.

3 Lowering expressions

Recall that our goal is to convert an expression into one that has no side effects, the side effects being
factored out into a sequence of statements. If we use • to represent an empty sequence of statements,
expressions that already have no side effects are trivial to lower:

e = CONST(i) ∨ e = NAME(l) ∨ e = TEMP(t)
L[[e]] = •; e

For other simple expressions, we just hoist the statements out of subexpressions:

L[[e]] = ~s; e′

L[[MEM(e)]] = ~s;MEM(e′)

L[[e]] = ~s; e′

L[[JUMP(e)]] = ~s;JUMP(e′)

L[[e]] = ~s; e′

L[[CJUMP(e, l1, l2)]] = ~s;CJUMP(e′, l1, l2)

Since we can hoist statements, we can eliminate ESEQ nodes completely:

L[[s]] = ~s L[[e]] = ~s′; e′

L[[ESEQ(s, e)]] = ~s; ~s′; e′

Binary operations create the same commutation problem we saw with MOVE:

L[[e1]] = ~s1; e′1 L[[e2]] = ~s2; e′2 s2 and e′1 commute
L[[OP(e1, e2)]] = ~s1; ~s2;OP(e′1, e

′
2)

Call nodes must be hoisted too because they can cause side effects. And we have to prevent the side
effects of computing arguments from changing the computation of other arguments.

L[[ei]] = ~si; e′i
∀i∈0. .n

L[[CALL(e0, e1, . . . , en)]] = ~s0;
MOVE(TEMP(t0), e′0);
~s1;
MOVE(TEMP(t1), e′1);
. . .
~sn;
MOVE(TEMP(tn), e′n);
MOVE(TEMP(t),CALL(t0, t1, . . . , tn));

TEMP(t)

4 Commuting statements and expressions

The rules for OP and MOVE both rely on interchanging the order of a statement s and an expression e.
This can be done safely when the statement cannot alter the value of the expression. There are two ways
in which this could happen: the statement could change the value of a temporary variable used by the
expression, and the statement could change the value of a memory location used by the expression. It is
easy to determine whether the statement updates a temporary used by the expression, because temporaries
have unique names. Memory is harder because two memory location can be aliases. If the statement s

2



uses a memory location MEM(e1) as a destination, and the expression reads from the memory location
MEM(e2), and e1 might have the same value as e2 at run time, we cannot safely interchange the operations.

A simple, conservative approach is to assume that all MEM nodes are potentially aliases, so a statement
and an expression that both use memory are never reordered. We can do better by exploiting the observa-
tion that two nodes of the form MEM(TEMP(t) + CONST(k1)) and MEM(TEMP(t) + CONST(k2))
cannot be aliases if k1 6= k2

1.
To do a good job of reordering memory accesses, we want more help from analysis of the program at

source level. Otherwise there is not enough information available at the IR level for alias analysis to be
tractable.

A simple observation we can exploit is that if the source language is strongly typed, two MEM nodes
with different types cannot be aliases. If we keep around source-level type information for each MEM
node, which we might denote as MEMt(e), then these type annotations t can help identify opportunities
to reorder operations. Accesses to MEMt(e1) and to MEMt′(e2) cannot conflict if t is not compatible with
t′.

Sophisticated compilers incorporate some form of pointer analysis to determine which memory locations
might be aliases. The typical output of pointer analysis is a label for each distinct MEM node, such that
accesses to differently labeled MEM nodes cannot interfere with each other. The label could be as simple
as an integer index, where MEMi and MEMj cannot be aliases unless i = j. We’ll see how to do such a
pointer analysis in a later lecture.

5 Basic blocks and traces

See the slides for material on basic blocks and traces.

1We also need to know that the language run-time system will never map two virtual addresses to the same physical address.

3


